Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org

Index Construction

Overview

¢ |ntroduction

e Hardware

e BSBI - Block sort-based indexing

e SPIMI - Single Pass in-memory indexing
e Distributed indexing

e Dynamic indexing

e Miscellaneous topics

Why we use these algorithms

intel)

Cloud

Storage Size ~Infinite

Access Speed ~1s

Disk Drive

SSD

~PB

.005s

~TB

.00001 s

RAM

~GB

CPU Cache

~MB

0.00000002 s 40 clock cycle

e Deal with storage size / speed tradeoff

Index Construction

Review

e termlD is an index given to a vocabulary word
® e.g., “house” =57820

e doclDisanindex given to a document
® e.g, "news.bbc.co.uk/index.html” = 74291

e posting list is a data structure for the term-document matrix

Term DoclID DoclID DoclID DoclD

® posting list is an inverted data structure

Index Construction

Review
e BSBI and SPIMI

® are single pass indexing algorithms
® |everage fast memory vs slow disk speeds

e for data sets that won't fit in entirely in memory

e for data sets that will fit on a single disk

Index Construction

Review
e BSBI
® builds (termlD, doclD) pairs until a block is filled
® builds a posting list in the final merge

® requires a vocabulary mapping word to terml|D

e SPMI
® builds posting lists until a block is filled

® combines posting lists in the final merge

® uses terms directly (not termlIDs)

Index Construction

e What if your documents don't fit on a single disk?
e \Web-scale indexing

e Use a distributed computing cluster

e supported by “Cloud computing” companies

Distributed Indexing

e Other benefits of distributed processing
¢ |ndividual machines are fault-prone
e They slow down unpredictably or fail
e Automatic maintenance
e Software bugs
¢ Transient network conditions

® A truck crashing into the pole outside

e Hardware fatigue and then failure

Distributed Indexing - Architecture

e The design of Google’s indexing as of 2004

Distributed Indexing - Architecture

e Think of our task as two types of parallel tasks
e Parsing
e A Parser will read a document and output (t,d) pairs

® |nverting

e An Inverter will sort and write posting lists

Distributed Indexing - Architecture

e Use an instance of MapReduce
e A general architecture for distributed computing jobs
e Manages interactions among clusters of
® cheap commodity compute servers
® aka nodes
e Uses Key-Value pairs as primary object of computation

e An open-source implementation is “Hadoop” by

apache.org

http://apache.org

Distributed Indexing - Architecture

e Generally speaking in MapReduce
® There is a map phase
® This takes input and makes key-value pairs
e this corresponds to the “parse” phase of BSBl and SPIMI
e The map phase writes intermediate files
e Results are bucketed into R buckets

® Thereis areduce phase

e This is the “invert” phase of BSBl and SPIMI

® There are R inverters

Distributed Indexing - Architecture

Jl\i{lastierrr

Corpus

\ Parsers Inverters Postings
/ P ——

| AF /| Gp

Distributed Indexing - Architecture

e Parsers and Inverters are not separate machines
® They are both assighed from a pool
e |tis different code that gets executed

® |ntermediate files are stored on a local disk

e For efficiency

e Part of the “invert” task is to talk to the parser machine

and get the data.

Distributed Indexing - Hadoop

e Hadoop/MapReduce does
e Hadoop manages fault tolerance
e Hadoop manages job assignment
e Hadoop manages a distributed file system
e Hadoop provides a pipeline for data
e Hadoop/MapReduce does not

e define data types

® manipulate data

Distributed Indexing - Hadoop

(K

((
((K1,V1) (K2,V2) (K2, list<V2>)

¢ |nputFormat
e (Creates splits

e One splitis assigned to one mapper

e A splitis a collection of <K1,V1> pairs

Distributed Indexing - Hadoop

(K

((
((K1,V1) (K2,V2) (K2, list<V2>)

¢ |nputFormat

e Hadoop comes with NLinelnputFormat which breaks text

input into splits with N lines each

e K1=line number

o V1 =text of line

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/lib/NLineInputFormat.html

Distributed Indexing - Hadoop

(K

((
(1w (K2,list<V2>)

e Mapper<K1,V1,K2,V2>
e Takes a <K1,V1> pair as input

® Produces 0,1 or more <K2,V2> pairs as output

e Optionally it can report progress with a Reporter

Distributed Indexing - Hadoop

(K

((
((K1,V1) (K2,V2) (K2, list<V2>)

® Partitioner<K2,V2>
e Takes a <K2,V2> pair as input

® Produces a bucket number as output

e Default is HashPartitioner

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/lib/HashPartitioner.html

Distributed Indexing - Hadoop

(K

((
((K1,V1) (K2,V2) (K2, list<V2>)

® Reducer<K?2,V2,K3,V3>
e Takes a <K2,list<V2>> pair as input

® Produces <K3,V3> as output

e Qutputis not resorted

Distributed Indexing - Hadoop

(K

((
((K1,V1) (K2,V2) (K2, list<V2>)

e QutputFormat

¢ Does something with the output (like write it to disk)

e TextOutputFormat<K3,V3> comes with Hadoop

Hadoop example: WordCount

e Example: count the words in an input corpus
® |nputFormat = TextinputFormat
e Mapper: separates words, outputs <Word, 1>
e Partitioner = HashPartitioner

e Reducer: counts the length of list<V2>, outputs <Word,count>

e OutputFormat = TextOutputFormat

Index Construction

Overview

¢ |ntroduction

e Hardware

e BSBI - Block sort-based indexing

e SPIMI - Single Pass in-memory indexing
e Distributed indexing

e Dynamic indexing

e Miscellaneous topics

Dynamic Indexing

e Documents come in over time
e Postings need to be updated for terms already in
dictionary
e New terms need to get added to dictionary

e Documents go away

o Get deleted, etc.

Dynamic Indexing

e Overview of solution
¢ Maintain your “big” main index on disk
e (or distributed disk)
e Continuous crawling creates “small” indices in memory

e Search queries are applied to both

® Results merged

Dynamic Indexing

e Overview of solution
® Document deletions
® |nhvalidation bit for deleted documents
e Just like contextual filtering,
® results are filtered to remove invalidated docs

® according to bit vector.

e Periodically merge “small” index into “big” index.

Dynamic Indexing

Inverters Small Indices Big Indices
sy A-F
s G-P
e
— Invalidation
Q-Z Bits

1_.>|_.>

Result

o~ » >
N U L

Query

Dynamic Indexing

® |ssues with big *and* small indexes
e Corpus wide statistics are hard to maintain
e Typical solution is to ignore small indices when
computing stats
® Frequent merges required
e Poor performance during merge

e unless well engineered

® | ogarithmic merging

End of Chapter 4

