
Vector Space
Scoring
Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

Spamming indices

Vector Space Scoring

• This was invented before spam

• Consider:

• Indexing a sensible passive document collection

• vs.

• Indexing an active document collection, where people,

companies, bots are shaping documents to maximize

scores

• Vector space scoring may not be as useful in this context.

Interaction: vectors and phrases

Vector Space Scoring

• Scoring phrases doesn’t naturally fit into the vector space

world:

• How do we get beyond the “bag of words”?

• “dark roast” and “pot roast”

• There is no information on “dark roast” as a phrase in

our indices.

• Biword index can treat some phrases as terms

• postings for phrases

• document wide statistics for phrases

Interaction: vectors and phrases

Vector Space Scoring

• Theoretical problem:

• Axes of our term space are now correlated

• There is a lot of shared information in “light roast”

and “dark roast” rows of our index

• End-user problem:

• A user doesn’t know which phrases are indexed and

can’t effectively discriminate results.

Multiple queries for phrases and vectors

Vector Space Scoring

• Query: “rising interest rates”

• Iterative refinement:

• Run the phrase query vector with 3 words as a term.

• If not enough results, run 2-phrase queries and fold into

results: “rising interest” “interest rates”

• If still not enough results run query with three words as

separate terms.

Vectors and Boolean queries

Vector Space Scoring

• Ranked queries and Boolean queries don’t work very well together

• In term space

• ranked queries select based on sector containment - cosine

similarity

• boolean queries select based on rectangle unions and

intersections

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

�V (d1) �V (d2)

�V (d3)

X � Y

Vectors and wild cards

Vector Space Scoring

• How could we work with the query, “quick* print*” ?

• Can we view this as a bag of words?

• What about expanding each wild-card into the

matching set of dictionary terms?

• Danger: Unlike the boolean case, we now have tfs and

idfs to deal with

• Overall, not a great idea

Vectors and other operators

Vector Space Scoring

• Vector space queries are good for no-syntax, bag-of-

words queries

• Nice mathematical formalism

• Clear metaphor for similar document queries

• Doesn’t work well with Boolean, wild-card or positional

query operators

• But ...

Query language vs. Scoring

Vector Space Scoring

• Interfaces to the rescue

• Free text queries are often separated from operator

query language

• Default is free text query

• Advanced query operators are available in “advanced

query” section of interface

• Or embedded in free text query with special syntax

• aka -term -”terma termb”

Alternatives to tf-idf

Vector Space Scoring

• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times

the relevance

• This motivated the WTF score.

!

!

!

• There are other variants for reducing the impact of

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

!

!

• alpha is a smoothing term from (0 - 1.0) ~0.4 in

practice

• This addresses a length bias.

• Take one document, repeat it, WTF goes up

• this score reduces that impact

ntft,d = � + (1� �)
tft,d

tfmax(d)

TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

!

!

• a change in the stop word list can change weights

drastically - hard to tune

• still based on bag of words model

• one outlier word, repeated many times might

throw off the algorithmic understanding of the

content

ntft,d = � + (1� �)
tft,d

tfmax(d)

Laundry List

Vector Space Scoring : Alternatives to tf-idf

Term Frequency Document Frequency Normalization
(n)atural tft,d (n)o 1 (n)one 1
(l)ogarithm 1 + log(tft,d) (t)idf log |corpus|

dft
(c)osine 1⇤

w12+w22+...+wm
2

(a)ugmented � + (1� �) tft,d

tfmax(d) (p)robidf max{0, log(|corpus|�dft
dft

) (u)pivoted 1/u

(b)oolean tft,d > 0?1 : 0 (b)yte 1/CharLength�,� < 1
(L)ogaverage 1+log(tft,d)

1+log(avet�d(tft,d))

• SMART system of describing your IR vector algorithm

• ddd.qqq (ddd = document weighting) (qqq = query

weighting)

• first is term weighting, second is document, then

normalization

• lnc.ltc is what?

Efficient Cosine Ranking

Vector Space Scoring

• Find the k docs in the corpus “nearest” to the query

• the k largest query-doc cosines

• Efficient ranking means:

• Computing a single cosine efficiently

• Computing the k largest cosine values efficiently

• Can we do this without computing all n cosines?

• n = number of documents in corpus

Efficient Cosine Ranking

Vector Space Scoring

• Computing a single cosine

• Use inverted index

• At query time use an array of accumulators Aj to

accumulate component-wise sum (incremental dot-

product)

• Accumulate scores as postings lists are being

processed (numerator of similarity score)

Aj =
�

t

(wq,twd,t)

Efficient Cosine Ranking

Vector Space Scoring

• For the web

• an array of accumulators in memory is infeasible

• so only create accumulators for docs that occur in postings list

• dynamically create accumulators

• put the tf_d scores in the postings lists themselves

• limit docs to non-zero cosines on rare words

• or non-zero cosines on all words

• reduces number of accumulators

Efficient Cosine Ranking

Vector Space Scoring

CosineScore(q)
1 Initialize(Scores[d ⇤ D])
2 Initialize(Magnitude[d ⇤ D])
3 for each term(t ⇤ q)
4 do p⇥ FetchPostingsList(t)
5 dft ⇥ GetCorpusWideStats(p)
6 �t,q ⇥WeightInQuery(t, q, dft)
7 for each {d, tft,d} ⇤ p
8 do Scores[d] + = �t,q · WeightInDocument(t, q, dft)
9 for d ⇤ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ⇤ Scores

Use heap for selecting the top K Scores

Vector Space Scoring

• Binary tree in which each node’s value > the values of

children

• Takes 2N operations to construct

• then each of k “winners” read off in 2logn steps

• For n =1M, k=100 this is about 10% of the cost of sorting

• Java “TreeMap” for example

