Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Spamming indices

- This was invented before spam
- Consider:
 - Indexing a sensible passive document collection
 - VS.
 - Indexing an active document collection, where people, companies, bots are shaping documents to maximize scores
- Vector space scoring may not be as useful in this context.

Interaction: vectors and phrases

- Scoring phrases doesn't naturally fit into the vector space world:
 - How do we get beyond the "bag of words"?
 - "dark roast" and "pot roast"
 - There is no information on "dark roast" as a phrase in our indices.
- Biword index can treat some phrases as terms
 - postings for phrases
 - document wide statistics for phrases

Interaction: vectors and phrases

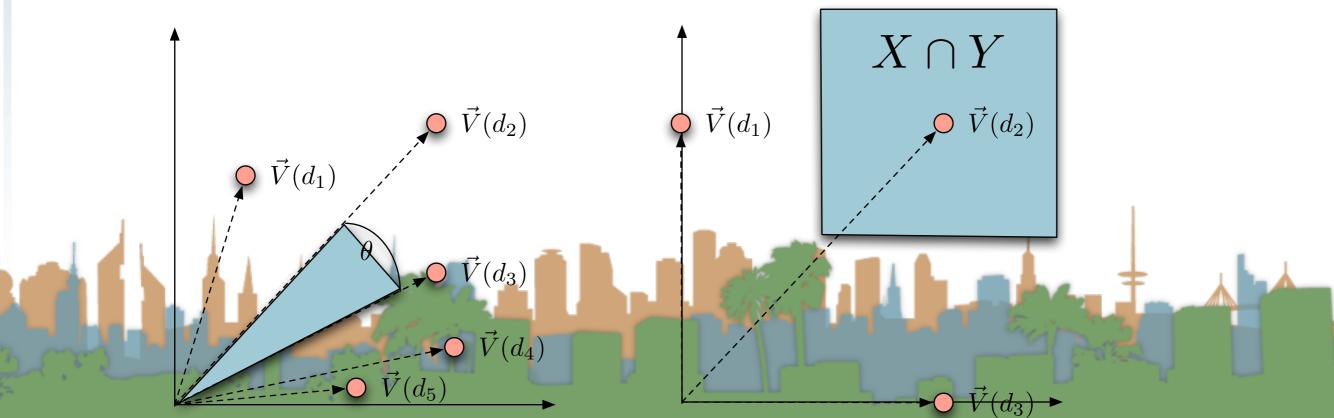
- Theoretical problem:
 - Axes of our term space are now correlated
 - There is a lot of shared information in "light roast" and "dark roast" rows of our index
- End-user problem:
 - A user doesn't know which phrases are indexed and can't effectively discriminate results.

Multiple queries for phrases and vectors

- Query: "rising interest rates"
- Iterative refinement:
 - Run the phrase query vector with 3 words as a term.
 - If not enough results, run 2-phrase queries and fold into results: "rising interest" "interest rates"
 - If still not enough results run query with three words as separate terms.

Vectors and Boolean queries

- Ranked queries and Boolean queries don't work very well together
 - In term space
 - ranked queries select based on sector containment cosine similarity
 - boolean queries select based on rectangle unions and intersections



Vectors and wild cards

- How could we work with the query, "quick* print*" ?
 - Can we view this as a bag of words?
 - What about expanding each wild-card into the matching set of dictionary terms?
- Danger: Unlike the boolean case, we now have tfs and idfs to deal with
- Overall, not a great idea

Vectors and other operators

- Vector space queries are good for no-syntax, bag-ofwords queries
 - Nice mathematical formalism
 - Clear metaphor for similar document queries
 - Doesn't work well with Boolean, wild-card or positional query operators
 - But ...

Query language vs. Scoring

- Interfaces to the rescue
 - Free text queries are often separated from operator query language
 - Default is free text query
 - Advanced query operators are available in "advanced query" section of interface
 - Or embedded in free text query with special syntax
 - aka -term -"terma termb"

Alternatives to tf-idf

- Sublinear tf scaling
 - 20 occurrences of "mole" does not indicate 20 times the relevance
 - This motivated the WTF score. WTF(t, d)

1 **if**
$$tf_{t,d} = 0$$

repeated terms

$$2 \qquad then \ return(0)$$

- 3 else $return(1 + log(tf_{t,d}))$
- There are other variants for reducing the impact of

Vector Space Scoring : Alternatives to tf-idf

TF Normalization

• Normalize tf weights by maximum tf in that document

$$ntf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)}$$

- alpha is a smoothing term from (0 1.0) ~0.4 in practice
- This addresses a length bias.
- Take one document, repeat it, WTF goes up
 - this score reduces that impact

Vector Space Scoring : Alternatives to tf-idf

TF Normalization

content

• Normalize tf weights by maximum tf in that document

$$ntf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)}$$

- a change in the stop word list can change weights drastically - hard to tune
- still based on bag of words model
 - one outlier word, repeated many times might throw off the algorithmic understanding of the

Vector Space Scoring : Alternatives to tf-idf

Laundry List

Inclitc is what?

Term Frequency		Document Frequency		Normalization	
(n)atural	$tf_{t,d}$	(n)o	1	(n)one	1
(l) ogarithm	$1 + log(tf_{t,d})$	(t)idf	$log \frac{ corpus }{df_t}$	(c)osine	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_m^2}}$
(a)ugmented	$\alpha + (1 - \alpha) \frac{t f_{t,d}}{t f_{max}(d)}$	(p)robidf	$max\{0, log(\frac{ corpus - dft}{df_t})\}$	(u) pivoted	1/u
(b)oolean	$tf_{t,d} > 0?1:0$			(b)yte	$1/CharLength^{\alpha}, \alpha < 1$
(L) ogaverage	$\frac{1 + log(tf_{t,d})}{1 + log(ave_{t \in d}(tf_{t,d}))}$				

- SMART system of describing your IR vector algorithm
 - ddd.qqq (ddd = document weighting) (qqq = query weighting)
 - first is term weighting, second is document, then normalization

Efficient Cosine Ranking

- Find the k docs in the corpus "nearest" to the query
 - the k largest query-doc cosines
- Efficient ranking means:
 - Computing a single cosine efficiently
 - Computing the k largest cosine values efficiently
 - Can we do this without computing all n cosines?
 - n = number of documents in corpus

Efficient Cosine Ranking

- Computing a single cosine
 - Use inverted index
 - At query time use an array of accumulators Aj to accumulate component-wise sum (incremental dot-product)
 - Accumulate scores as postings lists are being processed (numerator of similarity score)

$$A_j = \sum_t (w_{q,t} w_{d,t})$$

Efficient Cosine Ranking

- For the web
 - an array of accumulators in memory is infeasible
 - so only create accumulators for docs that occur in postings list
 - dynamically create accumulators
 - put the tf_d scores in the postings lists themselves
 - limit docs to non-zero cosines on rare words
 - or non-zero cosines on all words
 - reduces number of accumulators

Efficient Cosine Ranking

COSINESCORE(q)

5

6

7

8

9

- 1 INITIALIZE($Scores[d \in D]$)
- 2 INITIALIZE($Magnitude[d \in D]$)
- 3 for each $term(t \in q)$
- 4 **do** $p \leftarrow \text{FetchPostingsList}(t)$
 - $df_t \leftarrow \text{GetCorpusWideStats}(p)$
 - $\alpha_{t,q} \leftarrow \text{WeightInQuery}(t,q,df_t)$
 - **for** each $\{d, tf_{t,d}\} \in p$
 - do $Scores[d] + = \alpha_{t,q} \cdot WEIGHTINDOCUMENT(t, q, df_t)$ for $d \in Scores$
- 10 **do** NORMALIZE(Scores[d], Magnitude[d])
- 11 **return** $top \ K \in Scores$

Use heap for selecting the top K Scores

- Binary tree in which each node's value > the values of children
- Takes 2N operations to construct
 - then each of k "winners" read off in 2logn steps
 - For n =1M, k=100 this is about 10% of the cost of sorting
- Java "TreeMap" for example

