Link Analysis
 Introduction to Information Retrieval INF 141/ CS 121
 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Link Analysis - Exercises

Draw a graph with 10 nodes

1) such that 1 node clearly has the highest PageRank

Link Analysis - Exercises

LOAD SAVE

 ITERATE_PAGERANK ELEPORT_PERCENT LOAD_SEQUENCE

Link Analysis - Exercises

Draw a graph with 10 nodes

2) such that 4 nodes have very high and equal PageRank

Link Analysis - Exercises

$$
\begin{aligned}
& \text { [1, "a", 2.0, [2, 1.0]], } \\
& \text { [2,"b",2.0,[2,1.0]], } \\
& \text { [3, "c", 2.0, [4, 1.0]], } \\
& \text { [4,"d",2.0, [4,1.0]], } \\
& \text { [5,"e", 2.0, [6, 1.0]] , } \\
& \text { [6,"f",2.0,[6,1.0]], } \\
& \text { [7, "g", 2.0, [8, 1.0]], } \\
& \text { [8, "h", 2.0, [8,1.0]], } \\
& {[9, " i ", 2.0,[1,1.0],[3,1.0],[10,1.0]] \text {, }} \\
& {[10, " j ", 2.0,[5,1.0],[7,1.0],[9,1.0]] \text {, }}
\end{aligned}
$$

Link Analysis - Exercises

Draw a graph with 10 nodes

3) such that no node has the same PageRank

Link Analysis - Exercises

LOAD		edu.uci.ics.luci.lucipagerank.gui.Processing		
		ITERATE_PAGERANK	19	

$[2, " b ", 2.0,[3,1.0],[4,1.0],[5,1.0],[6,1.0],[7,1.0],[8,1.0],[9,1.0],[10,1.0]]$,
$[3, " \mathrm{c} ", 2.0,[4,1.0],[5,1.0],[6,1.0],[7,1.0],[8,1.0],[9,1.0],[10,1.0]]$,
$[4, " \mathrm{~d} ", 2.0,[5,1.0],[6,1.0],[7,1.0],[8,1.0],[9,1.0],[10,1.0]]$,
$[5, " e ", 2.0,[6,1.0],[7,1.0],[8,1.0],[9,1.0],[10,1.0]]$,
[6,"f",2.0,[7,1.0],[8,1.0],[9,1.0],[10,1.0]],
$\left[7, " \mathrm{~g}^{\prime \prime}, 2.0,[8,1.0],[9,1.0],[10,1.0]\right]$,
$[8, " \mathrm{~h} ", 2.0,[9,1.0],[10,1.0]]$,
[9,"i", 2.0, [10, 1.0]],
\square

Link Analysis - Exercises

How could PageRank be calculated in Hadoop?

arthicis.

PageRank with MapReduce

- PageRank is iterative
- MapReduce is not
- This solution describes how to do one iteration of

PageRank using MapReduce

- Multiple iterations would be required to converge

PageRank with MapReduce

- Quick review of PageRank
- PageRank determines which pages are well-connected
- A connection is a social signal that a web page is important
- A connection is a vote for importance
- Connections take time to form
- Not so good for real-time data
- Mathematically this is a Markov Chain

PageRank with MapReduce

- Quick review of PageRank
- A Markov Chain
- Has a starting probability
- Has a set of states
- Has transition probabilities
- The web forms a graph which can be treated like a Markov Chain
- If the Markov Chain is ergodic, then PageRank converges

PageRank with MapReduce

- Quick review of PageRank
- A Markov Chain
- Has a starting probability P_{0}
- Has a set of states N
- Has transition probabilities $A_{i j}$

- The web forms a graph which can be treated like a Markov Chain
- If the Markov Chain is ergodic, then PageRank converges

PageRank with MapReduce

$$
P_{1}=P_{0} A
$$

$$
\text { PageRank }=\lim _{n \rightarrow \infty}\left(P_{n}\right)
$$

PageRank with MapReduce

- Assumptions
- Initial probability is uniform
- A transition is made up of
- outlinks
- deadend teleports D

- random teleports T
- a mixing constant $0<=\alpha<=1$

$$
A_{i j}=\alpha O+\alpha D+(1-\alpha) T
$$

PageRank with MapReduce

- Assumptions
- Initial probability is uniform
- A transition is made up of
- outlinks
- deadend teleports D

- random teleports T
- a mixing constant $0<=\alpha<=1$

$$
A_{i j}=\alpha O+\alpha D+(1-\alpha) T
$$

PageRank with MapReduce

- Map
- Input is
- key: page id, i
- value: $\left[p_{i}\right.$, set of outlinked pages $\left.O_{i}\right]$
- One output for every page $j \in(1 . . n)$
- key: page id, j
- value:
- if $\left(O_{i}==\{ \}\right)\left(\alpha f_{D}(i, j)+(1-\alpha) f_{T}(i, j)\right) p_{i}$
- if $\quad\left(j \in O_{i}\right) \quad\left(\alpha f_{O}(i, j)+(1-\alpha) f_{T}(i, j)\right) p_{i}$
- if $\quad\left(j \notin O_{i}\right)$

$$
\left(\alpha(0)+(1-\alpha) f_{T}(i, j)\right) p_{i}
$$

$$
p_{i}\left(\alpha \frac{1}{\left|O_{i}\right|}+(1-\alpha) \frac{1}{n}\right)
$$

PageRank with MapReduce

- Outlink probability
- uniform

$$
f_{O}(i, j)=\frac{1}{\left|O_{i}\right|}
$$

- When you hit a deadend
- jump to a random page uniformly

$$
f_{D}(i, j)=\frac{1}{n}
$$

- When you teleport
- teleport to a random page uniformly $f_{T}(i, j)=\frac{1}{n}$
- More sophisticated extensions are imaginable

PageRank with MapReduce

- Reduce collects the probabilities and adds them
- Input is
- key: page id, i
- value: probability of $j \rightarrow i$
- Output is
- key: page id, i
- value: sum of all input probabilities

$$
p_{i}=\sum_{j} p_{j} A_{j i}
$$

PageRank with MapReduce

- Summary
- Each step of PageRank computes one iteration of

$$
P_{n+1}=P_{n} A
$$

- Each Map job handles the probability mass of one page being split across many pages
- Each Reduce job collects the probabilities of one page coming from many pages

Link Analysis - Exercises

input: node_a:[P(node_a), [node_b,node_c]]
map out: [node_b, P(node_a)/2]
[node_c, P(node_a)/2] [node_a,[node_b,node_c]]
reduce in:
node_x: [P(in1),...,P(in3)....[node_y,node_z]]
reduce out:
node_x: [sum(P(in1)...P(in3)),[node_y,node_z]]

