Link Analysis

Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Draw a graph with 10 nodes

1) such that 1 node clearly has the highest PageRank

Elline Part

Link Analysis - Exercises

Draw a graph with 10 nodes

2) such that 4 nodes have very high and equal PageRank

Link Analysis - Exercises

Draw a graph with 10 nodes

3) such that no node has the same PageRank

Link Analysis - Exercises

11

]

How could PageRank be calculated in Hadoop?

- PageRank is iterative
- MapReduce is not
- This solution describes how to do one iteration of PageRank using MapReduce
- Multiple iterations would be required to converge

- Quick review of PageRank
 - PageRank determines which pages are well-connected
 - A connection is a social signal that a web page is important
 - A connection is a vote for importance
 - Connections take time to form
 - Not so good for real-time data
 - Mathematically this is a Markov Chain

- Quick review of PageRank
 - A Markov Chain
 - Has a starting probability
 - Has a set of states
 - Has transition probabilities
 - The web forms a graph which can be treated like a Markov Chain
 - If the Markov Chain is ergodic, then PageRank

converges

- Quick review of PageRank
 - A Markov Chain
 - Has a starting probability $\,P_0\,$
 - Has a set of states $\,N\,$
 - Has transition probabilities A_{ij}
 - The web forms a graph which can be treated like a Markov Chain
 - If the Markov Chain is ergodic, then PageRank

converges

 $P_1 = P_0 A$

 $PageRank = \lim_{n \to \infty} (P_n)$

- Assumptions
 - Initial probability is uniform
 - A transition is made up of
 - outlinks O
 - deadend teleports D
 - random teleports T

$$A_{ij} = \alpha O + \alpha D + (1 - \alpha)T$$

- Assumptions
 - Initial probability is uniform
 - A transition is made up of
 - outlinks O
 - deadend teleports D
 - random teleports T

$$A_{ij} = \alpha O + \alpha D + (1 - \alpha)T$$

- Map
 - Input is
 - key: page id, *i*
 - value: [p_i , set of outlinked pages O_i]
 - One output for every page $j \in (1..n)$
 - key: page id, j

 $(j \notin O_i)$

• value:

if

- if $(O_i == \{\}) (\alpha f_D(i,j) + (1-\alpha)f_T(i,j))p_i$
- if $(j \in O_i)$ $(\alpha f_O(i, j) + (1 \alpha) f_T(i, j)) p_i$

 $p_i(\alpha -$

 $(\alpha(0) + (1 - \alpha)f_T(i, j))p_i$

- Outlink probability
 - uniform
- When you hit a deadend
 - jump to a random page uniformly
- When you teleport
 - teleport to a random page uniformly

 $f_O(i,j) = \frac{1}{|O_i|}$

$$f_D(i,j) = \frac{1}{n}$$

- $f_T(i,j) = \frac{1}{n}$
- More sophisticated extensions are imaginable

- Reduce collects the probabilities and adds them
 - Input is
 - key: page id, *i*
 - value: probability of $j \rightarrow i$
 - Output is
 - key: page id, i
 - value: sum of all input probabilities

$$p_i = \sum_j p_j A_{ji}$$

- Summary
 - Each step of PageRank computes one iteration of

$$P_{n+1} = P_n A$$

- Each Map job handles the probability mass of one page being split across many pages
- Each Reduce job collects the probabilities of one page coming from many pages

input: node_a:[P(node_a), [node_b,node_c]]

map out: [node_b, P(node_a)/2] [node_c, P(node_a)/2] [node_a,[node_b,node_c]]

reduce in:

node_x: [P(in1),...,P(in3)....[node_y,node_z]]

reduce out: node_x: [sum(P(in1)...P(in3)),[node_y,node_z]]

