
DCOracle2
User’s Guide & Reference

Release 1.1
April 16, 2002

Matthew T. Kromer
Copyright © 2000, 2001, 2002 Zope Corporation

Zope Corporation
Lafayette Technology Center

513 Prince Edward Street
Fredericksburg, VA 22408

(888) 344-4332 (sales)
http://www.zope.com

DCOracle2 Users’s Gude and Reference

LICENSE
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Names associated with Zope or Zope Corporation must not be used to endorse or
promote products derived from this software without specific prior written permission
from Zope Corporation.

• Modified redistributions in any form whatsoever must retain the following
acknowledgment:

"This product includes software developed by Zope Corporation for use in the Z
Object Publishing Environment (http://www.zope.com/)."

Intact (re-)distributions of any official Zope release do not require an external
acknowledgment.

THIS SOFTWARE IS PROVIDED BY ZOPE CORPORATION AND CONTRIBUTORS
AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ZOPE
CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 3

DCOracle2 User’s Guide & Reference
This document describes the various objects and interfaces to the DCOracle2 binding of
Oracle 8 OCI calls for Python. DCOracle2 is a Python wrapper around a C binding
called ‘‘dco2’’ which provides Python DB API 2.0 functionality.

DB API
At the time of this writing, the Python DB 2.0 API was available on the web at
http://www.python.org/topics/database/DatabaseAPI-2.0.html. The DB API forms the
official interface of DCOracle2, although DCOracle2 has a number of extensions and
alternatives.

Programming with DCOracle2
Writing DCOracle2 programs is fairly straightforward. Familiarity with the DB API
specification is useful, but should not be required to use DCOracle2.

All DCOracle2 programs must import the DCOracle2 module (or have it made available
to them.) The environment variable ORACLE_HOME should be set before importing
DCOracle2, and the Oracle run time libraries should be within the runtime library search
path (LD_LIBRARY_PATH on many systems.)

A program establishes one or more connections to Oracle. Each connection supports
cursors, which allow statements to be executed. The results of an executed statement
are retrievable with a fetch operation. For example:

import DCOracle2 # Import runtime

db = DCOracle2.connect(’scott/tiger’) # Connect to database

c = db.cursor() # Allocate a cursor

c.execute(‘select * from emp where empno=7902’) # Execute a statement

print c.fetchall() # Print all results

Stored procedure objects are available through a special ‘‘procedure’’ name on cursors.
Stored procedure objects simplify access to stored procedures. The docstring on a
stored procedure object will describe its parameters in english, for convenience.
Continuing with the previous example:

find = c.procedure.scott.emp_actions.find # Reference the stored procedure

print find.__doc__ # Print its docstring

print find(7902) # Invoke and print results

In the test directory of the source distribution, the ‘‘procdef.sql’’ file contains several
sample stored procedures in the package ‘‘emp_actions.’’

DCOracle2 Users’s Guide & Reference

Page 4 Copyright © 2002 Zope Corporation

Usage
import DCOracle2

connection = DCOracle2.connect(connectionstring)
traceback = DCOracle2.traceback([format={0|1}])
type = DCOracle2.TypeTable(type)
type = DCOracle2.Type(type)
version = DCOracle2.version
apilevel = DCOracle2.apilevel
threadsafety = DCOracle2.threadsafety
paramstyle = DCOracle2.paramstyle

connection.close()
connection.prepare([statement])
connection.commit([twophase={0|1}])
connection.rollback()
listoftuples = connection.objects([all={0|1}])
text = connection.getSource(procname)
description = connection.describe(name)
bao = connection.BindingArray(count, size, type)
versiondict = connection.version

cursor = connection.cursor()
cursor.arraysize = n
description = cursor.description
description = cursor.describe()
count = cursor.rowcount
cursor.close()
cursor.setPrefetch(records [, size])
cursor.execute(statement, [param1[, param2[, ...paramn]]]. [param=value, ...])
cursor.executemany(statment, paramsequence)
list = cursor.fetchone([skip=0])
listoflists = cursor.fetchmany([size=size][,skip=0])
listoflists = cursor.fetchall([skip=0])
listofparameters = cursor.callproc(name, parameters)
value = cursor.procedure.schema.package.name(param1, ... paramn)

length = LobLocator.length()
data = LobLocator.read([bytes, [offset, [csid, [csfrm]]]])
count = LobLocator.write(string, [offset, [csid, [csfrm]]])
LobLocator.trim(length)

Type Constructors:
OracleDate = DCOracle2.Date(year, month, day)
OracleDate = DCOracle2.Time(hour, minute, second)
OracleDate = DCOracle2.Timestamp(year, month, day, hour, minute, second)
OracleDate = DCOracle2.DateFromTicks(ticks)
OracleDate = DCOracle2.TimeFromTicks(ticks)
OracleDate = DCOracle2.TimestampFromTicks(ticks)
wrapper = DCOracle2.Binary(string)
wrapper = DCOracle2.TypeCoercion(value, type)

Type Comparison Objects:
DCOracle2.STRING
DCOracle2.BINARY
DCOracle2.NUMBER
DCOracle2.DATETIME
DCOracle2.ROWID

Error Objects:
DCOracle2.Error
DCOracle2.Warning
DCOracle2.InterfaceError
DCOracle2.DatabaseError
DCOracle2.InternalError
DCOracle2.OperationalError
DCOracle2.ProgrammingError
DCOracle2.IntegrityError
DCOracle2.DataError
DCOracle2.NotSupportedError

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 5

DCOracle2.connect(connectionstring)
The connect method connects to the database with the provided credentials. The
format of a connection string is userid/password@service, where the @service
component may be omitted. If service is not specified, the current default database will
be used. If connectionstring is null, the connection will be made using external
credentials (OCI_CRED_EXT).

DCOracle2.traceback([format=1]) [NONAPI]

DCOracle can retrieve a traceback of the C layer events for debugging purposes. It is
useful to save the output of the formatted traceback for problem reporting.

DCOracle2.TypeTable(type) [NONAPI]

The TypeTable method will convert numeric types to SQLT_ strings and back. For
example, TypeTable(1) will return ‘‘SQLT_CHR’’ and TypeTable(‘‘SQLT_CHR’’) will
return 1. The type table is a lookup table constructed from Oracle constants at compile
time.

DCOracle2.Type(type) [NONAPI]

The Type method will convert a numeric or string type into the external type
representation, e.g. Type(1) and Type(‘‘SQLT_CHR’’) will both return ‘‘VARCHAR2.’’
The type translation table is a dictionary inside the DCOracle2 module, and not
managed by Oracle.

DCOracle2.apilevel
This is the DB API level of DCOracle2, the constant "2.0".

DCOracle2.threadsafety
This is the thread-safety-ness level of DCOracle2, the constant 3. This means that
threads may share the module, connections, and cursors. Note that programming
errors are still possible without a mutex to serialize resources between threads.

DCOracle2.paramstyle
The value ‘‘numeric.’’ Numeric positional parameters are the norm, but named keyword
parameters are accepted by the execute() method. This means that bindings to SQL

DCOracle2 Users’s Guide & Reference

Page 6 Copyright © 2002 Zope Corporation

statements are normally specified as ‘‘:1’’ ‘‘:2’’ ‘‘:3’’ etc. e.g. ‘‘SELECT * FROM EMP
WHERE EMPNO=:1.’’

connection.close()
This closes the connection to Oracle. Any attempt to use a connection or cursor object
to access the database after the connection has been closed will raise an
InterfaceError. Note: Close the connection after all cursors have been closed;
closing the cursor after the connection may result in a "stuck" cursor.

connection.prepare([statement]) [NONAPI]

With no statement, this prepares for a commit operation (for a two-phase commit).
Under normal circumstances, applications use one-phase commit.

When a statement is provided, this creates a new cursor, with the statement bound to
the cursor, and returns the cursor object.

connection.commit([twophase={0|1}])
This commits all changes to the database on the connection. If the parameter
twophase is specified as 1, a two-phase commit is performed. The default is to do a
one-phase commit.

Two-phase commit is not very meaningful without spreading a transaction between
multiple databases, and transaction-ID support is not provided by DCOracle2.

connection.rollback()
This calls the dco2 ServerContext.rollback() method on the database connection.

connection.describe(name) [NONAPI]

This calls the OCI function OCIDescribeAny upon the named schema object; the object
can be of any type. The result is a dictionary which often contains lists of dictionaries
based on the key found. The method connection.collapsedesc(desc) will collapse this
dictionary somewhat into a more usable form.

connection.BindingArray(count, size, type) [NONAPI]

BindingArrays are used to form array or OUT parameters for PL/SQL. Constructs a
dco2 BindingArrayObject with count elements, each of size size and type type. The
type may be numeric or symbolic e.g. ’SQLT_CHR’. This container class is capable of

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 7

having its contents changed during the execution of a SQL statement, and forms the
basis for stored procedure argument passing.

The following example shows the longhand format of invoking a stored procedure using
a BindingArray. In this example, the find function accepts an employee ID and returns
the employee name.

import DCOracle2

db = DCOracle2.connect("scott/tiger")
c = db.cursor()
bao = db.BindingArray(1, 64, ’SQLT_STR’)

c.execute("begin :1 := emp_actions.find(7902); end;", bao)

print bao[0]

BindingArrays allow assignment into the array, or one past the end of the array.
BindingArrays will grow as necessary to contain all values. Example:

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
bao = db.BindingArray(1, 64, ’SQLT_STR’)

bao[1] = "eek!" # fails

bao[0] = "this works"
bao[1] = "NOW this works"

In general, BindingArrays are not used directly; they are constructed automatically as
part of the stored procedure invocation process and by cursor.executemany().

BindingArrays of size 1 form nonarray IN/OUT bindings to PL/SQL. BindingArrays of
size > 1 form array IN/OUT bindings. Most stored procedures do not accept array input.
BindingArrays of size > 1 are also used for multiple-row execution.

The default mode of invocation for a BindingArray is a dynamic bind; in some cases,
this will not be appropriate, and the BindingArrays should be declared as static binds.
The method setStatic(1) on the BindingArray will change it to be a static bind.

connection.version
This returns a version dictionary of the relevant Oracle version strings. It is useful for
diagnosing problems. Example:

{’CORE ’: ’8.1.3.0.0 (Production)’,
 ’DCOracle2’: ’1.84 (dco2: 1.106 -DORACLE8i -DUSEOBJECT -Dlinux -D_REENTRANT)’,
 ’NLSRTL ’: ’3.4.0.0.0 (Production)’,
 ’Oracle8i Enterprise Edition ’: ’8.1.5.0.2 (Production)’,
 ’PL/SQL ’: ’8.1.5.0.0 (Production)’,
 ’TNS for Linux: ’: ’8.1.5.0.0 (Production)’}

DCOracle2 Users’s Guide & Reference

Page 8 Copyright © 2002 Zope Corporation

connection.cursor()
This returns a cursor object suitable for executing SQL statements and retrieving
results.

The connection internal cursor
Each connection object contains an internal cursor, and thus all cursor methods also
apply to connection objects. It is advisable, however, to explicitly allocate a cursor for
use rather than using the internal cursor.

cursor.arraysize
This attribute controls the array size used to transfer SELECT results from Oracle. The
default value is 20.

cursor.rowcount
The row count affected by the last execute() operation. For SELECT statements, the
rowcount is the number of rows retrieved so far, not the total available rows.

cursor.description
This is a list of tuples of (name, type, display_size, internal_size,
precision, scale, nullok) which has had the type field turned into text instead of
the number. This value is not assignable, but is set after each cursor.execute()
function. The description is None if the last statement executed did not return any
results.

The type field is checked against the API neutral types by comparing it to the standard
API type classes STRING, BINARY, NUMBER, DATETIME, and ROWID. The
comparison will be equal if it is of that type. For an example, see the Type Comparison
Objects section.

cursor.describe() [NONAPI]

This returns a list of tuples of (name, type, display_size, internal_size,
precision, scale, nullok)which is represents the result columns of the last
cursor.execute. The type field returned is a numeric representation of the type.

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 9

cursor.close()
This closes the cursor. Using a closed cursor (or a stored procedure object bound to
that cursor) to attempt to access the database will raise an InterfaceError. Cursors
are implicitly closed when they are deleted by Python as their reference count goes to
zero. Cursors should be closed before the underlying database object is closed.

cursor.execute(statement, [parm1[, parm2[, ... parmn]]],
[parm=value, ...])

This executes an SQL statement with optional parameters being bound as input
arguments by position. The statement is cached, and if the same statement is used
successively the original statement handle is re-used. If the statement is None, the last
statement to be executed will be used.

The Python DB 2.0 API specifies that execute takes only one parameter,
sequence_of_values. DCOracle2 accepts this calling convention, but also allows
multiple arguments to appear in the call (the outer list around the sequence of
parameters is optional). DCOracle2 also allows named binding for execute parameters.
The executemany method does not allow named parameters.

Examples:

cursor.execute("SELECT * FROM EMP WHERE EMPNO = :1", empno) # Numeric form

cursor.execute("SELECT * FROM EMP WHERE EMPNO = :1", (empno,)) # DBAPI form

cursor.execute("SELECT * FROM EMP WHERE EMPNO = :empno’, empno=empno) # Named param

The underlying C module only has input binding translators for a restricted set of types,
being OracleDates, Strings, Integers, Longs, and Floats. Any other type of object
passed in as a parameter will generate an error. See the section ‘‘Type Conversion
Rules’’ for more information on input type conversions.

Coercion example, where column "photo" is a LONG RAW:

cursor.execute("INSERT INTO PHOTOTABLE (id, photo) VALUES (:1, :2)", id, \
Binary(photo))

When binding values, named binds may also be used with keyword arguments. For
example:

cursor.execute("INSERT INTO TEST (name, id) VALUES (:name, :id)", name="Matt Kromer",
id="1")

The underlying C implementation will accept BindingArrays as bound parameters;
BindingArrays will cause iterative execution of non-select and non-PL/SQL statements
(i.e. this is how cursor.executemany works).

DCOracle2 Users’s Guide & Reference

Page 10 Copyright © 2002 Zope Corporation

cursor.executemany(statement, paramsequence)
This repeatedly executes an SQL statement with parameters being bound as input
arguments by position. The statement handle is re-used for all inputs, and may also be
shared with a successive execute or executemany. The parameter paramsequence is a
sequence of lists of input values.

Example:
cursor.executemany("INSERT INTO TEST (NAME, ID) VALUES (:1, :2)", (("Matt", 1),

("Mike", 2)))

See the restriction in cursor.execute about the allowable object types to be bound.
Type overriding is the same as for cursor.execute.

Named parameters to executemany are not implemented.

Using the executemany method can improve performance for INSERT operations.

Note: Calling executemany for a SELECT statement will not produce the desired
results; only the results of the last SELECT will be available for fetching.

cursor.setPrefetch(rows [, size]) [NONAPI]

The setPrefetch method sets Oracle prefetching for this cursor; Oracle will instructed to
prefetch up to rows rows, and if a size is specified, that is the maximum storage area to
be used for prefetching. The default is to prefetch the lesser of 20 rows or one
megabyte of storage.

cursor.fetchone([skip=0 [NONAPI]])
This retrieves one row of a result from a prior execute function. The values of the row
are returned as a list. Fetch operations will internally buffer based on the value of the
arraysize attribute of the cursor. If no data is available to be returned, the result will
be None. If the skip argument is specified, that many results will be skipped before
fetching a row. The skip argument is not a part of the DB 2.0 API.

cursor.fetchmany([size=size][,skip=0 [NONAPI]])
This retrieves at most size rows from a prior execute function. The values of the rows
return is a list of lists (a list of rows each containing a list of values). If the skip
argument is specified, that many results will be skipped before fetching the rows. The
skip argument is not a part of the DB 2.0 API.

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 11

cursor.fetchall([skip=0 [NONAPI]])
This retrieves all remaining rows from a prior execute function. The values of the rows
return is a list of lists (a list of rows each containing a list of values). If the skip
argument is specified, that many results will be skipped before fetching the rows. The
skip argument is not a part of the DB 2.0 API.

cursor.callproc(name, [param1, [param2, ... paramn]],
[name=value, ...])

Calls the stored procedure name with the given parameters. The complete list of
parameters is returned as a result list. For example

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
(empname, empid) = c.callproc(‘‘emp_actions.findp’’,7902)

cursor.procedure.schema.package.name(args...) [NONAPI]

Invoke a stored procedure in the named schema and package. The schema and
package names are optional; the default schema is used if the schema is omitted, and if
a function or procedure is not in a package, the package name may be omitted. For
example, user SCOTT may have a package named EMP_ACTIONS, which may
contain a set of functions such as FIND, FINDP, and FINDY. The procedure FINDP has
as an IN parameter an integer (the employee ID) and an OUT parameter (the employee
name). The following example would invoke this procedure:

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
empname = c.procedure.emp_actions.findp(7902)

The result of a procedure or function is a single item if there is only one OUT parameter,
or a list of results if there are multiple OUT parameters (this differs from the
cursor.callproc() method, which returns all parameters). Only IN parameters should be
specified as arguments to the procedure/function; this includes IN OUT parameters.
Because DCOracle2 knows the variable names used by the procedure, keyword
arguments may also be passed, e.g.

empname = c.procedure.emp_actions.findp(empid=7902)

Overloaded procedure names are not currently handled by DCOracle2.

DCOracle2 Users’s Guide & Reference

Page 12 Copyright © 2002 Zope Corporation

LOB Operations
Oracle can return Large OBjects (LOBs). DCOracle2 supports character LOBs and
binary LOBs, CLOBs and BLOBs, respectively. When a LOB object is returned, it may
be read and written to by its methods.

LobLocator.length() [NONAPI]

Returns the length of the LOB referenced by LobLocator.

LobLocator.read([size, [offset, [csid, [csfrm]]]]) [NONAPI]

Returns the data from the LobLocator for size bytes, which defaults to the end of the
LOB. Optionally, the starting LOB offset may be provided, as may be the character set
ID csid and character set form csfrm. Both csid and csfrm default and can be safely
omitted unless the default character set Oracle was installed with is not appropriate.

LobLocator.write(string, [offset, [csid, [csfrm]]]) [NONAPI]

Writes string to the selected LOB, optionally starting offset bytes into the LOB. The
character set parameters csid and csfrm default to the Oracle installation defaults and
can be safely omitted.

Note: Empty LOBs can be inserted by using the EMPTY_BLOB() or EMPTY_CLOB()
Oracle functions. LOB objects must be selected for updating before they can be written,
for example:

import DCOracle2

db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
c.execute(’insert into blobtest values (:1, :2, EMPTY_BLOB())’, ’Shane Hathaway’, 4)
c.execute(’select * from blobtest where id=4 for update’)
r = c.fetchone()
lob = r[2]
lob.write(shanepic)
db.commit()

LobLocator.trim(length) [NONAPI]

Trims the LOB to the specified length, which must be less than or equal to the current
length.

Type Constructors

DCOracle2.Date(year, month, day)
DCOracle2.Time(hour, minute, second)

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 13

DCOracle2.Timestamp(year, month, day, hour, minute, second)
DCOracle2.DateFromTicks(ticks)
DCOracle2.TimeFromTicks(ticks)
DCOracle2.TimestampFromTicks(ticks)

Each of these constructors returns an OracleDate object, which represents a date
suitable for passing by parameter into an execute() call. The object is GMT based.

DCOracle2.Binary(string)

The Binary constructor currently returns its input, coerced as a ‘‘SQLT_LBI’’ object (long
binary). DCOracle2 deals with most Oracle types as strings, not Binary objects.

DCOracle2.TypeCoercion(value, type) [NONAPI]

The TypeCoercion constructor will return a coerced value, which will be represented to
Oracle as the specified type. The type may be numeric or named, e.g. 5 or
‘‘SQLT_STR’’. Type coercion is normally not required unless the default type binding
rules are insufficient, in which case the application must prepare the data and provide a
type coercion to present it to Oracle.

Type Comparison Objects
The type field of the cursor description is only meaningful within the context of a
particular database; the DB API provides type comparison objects which will compare
equal to the value of the type field if the that is the meta-type represented.

DCOracle2.STRING
DCOracle2.BINARY
DCOracle2.NUMBER
DCOracle2.DATETIME
DCOracle2.ROWID

The STRING type means the object uses string representaton to Python, it does not (in
the case of DCOracle2) imply that the string does not contain nonprintable characters,
only that it creates a Python string object.

The BINARY type means the object is a LobLocator , and has read(), write(),
length(), and trim() methods. See the corresponding dco2 LobLocator documentation.

The NUMBER type means the object represents a number, either integer, long, or
floating point.

DCOracle2 Users’s Guide & Reference

Page 14 Copyright © 2002 Zope Corporation

The DATETIME type means the object represents an OracleDate. OracleDates return a
string in the format "yyyy-mm-dd hh:mm:ss" when used in a string context, or an an
integer (timestamp) when used in an integer context.

The ROWID type means the object represents a ROWID.

Example:

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
c.execute(’select * from emp’)

if c.description[0][1] == DCOracle2.NUMBER:
print "The first column is a number"

else:
print "The first column is not a number"

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 15

Example Program
#

import DCOracle2
import common

names = (
 ("Matt Kromer", 1),
 ("Jens Vagelpohl", 2),
 ("Chris Petrilli", 3)
)

db = DCOracle2.connect(common.getConnectionString())
c = db.cursor()

print "Dropping table"

try:
 c.execute("drop table test")
except:
 pass

print "Creating table"
c.execute("create table test (name varchar2(64), id number(9))")

print "Inserting into test"
c.executemany("insert into test (name, id) values (:1, :2)", names)

#print DCOracle2.traceback(format=1)

print "Selecting from test"
c.execute("select * from test")

print "Describing test"
print list(c.description)

c.arraysize = 20

print "Printing test"
r = c.fetchall()
print r

print "Commiting test"
db.commit()

print "Adding one more entry"
c.execute("insert into test (name, id) values (:1, :2)", "Fred Flintstone", 4)

print "Printing test"
c.execute("select * from test")
r = c.fetchall()
print r

print "Rolling back last entry"
db.rollback()

print "Printing test"
c.execute("select * from test")
r = c.fetchall()
print r

DCOracle2 Users’s Guide & Reference

Page 16 Copyright © 2002 Zope Corporation

BUILDING and INSTALLATION
Generally, building the DCO2 module is as simple as setting up the Oracle build
environment and typing make. Here’s an example:

bane(1)$. oraenv
ORACLE_SID = [ORAC] ? <enter>
bane(2)$ make
(lots of output)

That’s it! The makefile will try to detect as much as it can and will properly copy the built
dco2.so module to the DCOracle2 directory.

A number of problems can happen during building:

Oracle environment not set up correctly
If the environment variable ORACLE_HOME is not set, then the compilation will fail to
find the proper Oracle include and library files.

Oracle development files not installed
Oracle installs the C headers to build OCI programs in $ORACLE_HOME/rdbms/demo,
$ORACLE_HOME/network/public, and $ORACLE_HOME/plsql/public. If these
directories do not have the proper include files, the build will not succeed. Oracle
typically only installs these files when a complete server installation is performed.

Python development Makefile not available
If the make fails stating that /usr/lib/python1.5/config/Makefile (or similar)
cannot be built, it is symptomatic of the problem that the Python development is not
installed. On a RedHat Linux system this would be the python-devel package.

Python is not linked against libpthread (Linux)
Oracle on Linux is linked against libpthread. Some recent linux distributions may
include versions of Python that are not linked against libpthread. When dco2 is loaded,
it will load the Oracle shared libraries which are incompatible with the libpth libraries of
the existing Python binary. This will cause random lockups to occur to the process.
The only solution is to acquire a Python that is not linked against libpth, but is instead
linked against libpthread. This may be accomplished by either obtaining a different
Python binary package, or rebuilding Python from source.

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 17

DIAGNOSIS

Trace Table Debugging
DCOracle2 keeps an internal trace table, controlled by four environment variables:

• DCO2TRACELOG (trace file name)
• DCO2TRACEDUMP (dump file name)
• DCO2TRACESIZE (trace table size)
• DCO2TRACEFLAGS (trace filter)

The variable DCO2TRACELOG, if set, names a file to record all trace events (as they
occur). The variable DCO2TRACEDUMP names a file to dump the trace table to if an
Oracle error occurs (but this is not the only reason DCOracle2 will raise an error).

DCOracle2 will sometimes trap errors within a try/except, but this will still cause a trace
dump to take place if DCO2TRACEDUMP is set. Each new Oracle error will append
the trace file to the dump file.

The variable DCO2TRACESIZE specifies the number of entries in the trace table (the
default is 512). Each entry in the trace table is 10 words (40 bytes) long, so the default
trace table consumes 20K of storage. Setting the size of the trace table to 0 will also
set the DCO2TRACEFLAGS to 0. DCO2TRACEFLAGS is the binary OR (sum) of the
following values:

1 Entry
2 Exit
4 Error
8 Thread
16 Program
32 Oracle
64 Info
128 Verbose

The typical codes used are:

17 Function Entry
18 Function Exit
33 Oracle call
34 Oracle return
36 Oracle error
65 Info arguments
66 Info result

DCOracle2 Users’s Guide & Reference

Page 18 Copyright © 2002 Zope Corporation

161 Oracle handle call
162 Oracle handle return

Up to 7 arguments are also recorded in the trace table, with the first argument being a
function name.

Problem Reporting
When submitting a problem report to Zope Corporation about DCOracle2, it is useful to
include a trace dump when incorrect results are being returned. When reporting
problems, please be sure and identify the following:
• Operating System
• Distribution (for Linux)
• Python Version
• Oracle Version
• DCO2TRACEDUMP generated file (where appropriate)
• Python tracebacks (where appropriate)

The problem collector for DCOracle2 is currently located at
htp://www.zope.org/Members/matt/dco2/Tracker.

Paid Support
Paid support is an option for users of DCOracle2. While DCOracle2 is a free product, it
still requires the commitment of resources on the part of Zope Corporation to maintain it.
Free support is handled on an ad-hoc basis when time permits; paid support contracts
to Zope Corporation are handled on a priority basis.

Zope Corporation is willing to work with its customers to establish support programs
which meet their needs. Persons interested in purchasing a support contract should
contact sales@zope.com or visit http://www.zope.com/Services/SupportContracts.

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 19

Converting from DCOracle to DCOracle2
When converting from DCOracle, a few points are in order:

DCOracle uses the "Connect" method to connect to Oracle; DCOracle2 uses "connect"
but allows "Connect" for compatibility.

Binding to execute() is different. DCOracle (and DB API 1.0) blurs the definition
between execute and executemany() and will act as executemany() if it is passed lists
of lists; DCOracle execute() takes list parameters in column major order -- DCOracle2
executemany() takes list parameters in row major order. DCOracle performs positional
parameter binds by using the names ":p1" ":p2" etc. rather than ":1" ":2" which is the
format supported by DCOracle2. DCOracle takes list parameters as a single
parameter, whereas DCOracle2 takes each value as a separate parameter.

Example: single row insert
import DCOracle
db = DCOracle.Connect(’scott/tiger’)
c = db.cursor()
c.execute(’insert into test (name, id) values (:p1, :p2)’, (’Matt Kromer’, 1))

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
c.execute(’insert into test (name, id) values (:1, :2)’, ’Matt Kromer’, 1)

Example: multiple row insert
import DCOracle
db = DCOracle.Connect(’scott/tiger’)
c = db.cursor()
c.execute(’insert into test (name, id) values (:p1, :p2)’, ([’Matt Kromer’, ’Jens

Vagelpohl’], [1, 2]))

import DCOracle2
db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
c.executemany(’insert into test (name, id) values (:1, :2)’, ((’Matt Kromer’, 1), (’Jens

Vagelpohl’, 2)))

DCOracle2 supports the list mode of aruments to execute() in a compatible way with
DCOracle, but requires the parameter notation to be changed.

DCOracle uses the dbiRaw object to access LONG data; DCOracle2 stores LONG data
as strings and uses type coercion. DCOracle2 provides a compatible
DCOracle2.dbiRaw function which will return a DCOracle2.Binary object.

DCOracle2 uses different date handling than DCOracle. The DCOracle dbiDate
constructor is not supported, use the API 2.0 date and time constructors instead.

1Automatic format means conversion to Float if the scale is greater than zero or the precision and scale are zero; conversion to
Integer if the scale is less than 10, or conversion to Long otherwise.

DCOracle2 Users’s Guide & Reference

Page 20 Copyright © 2002 Zope Corporation

Type Conversion Rules
The type conversion for the C layer of DCOracle2 uses the following rules (they are not
necessarily the correct rules, but this the current implementation):

Input types are converted in the internal function bindObject and obey the following
rules:

1. If the object is None, bind the input as NULL.
2. If the object is a BindingArray, set the column for array input/output.
3. If the object is a Cursor, bind the column as an SQL Result Set (SQLT_RSET).
4. If the object is an OracleDate, bind the column as a a Date (SQLT_DAT).
5. If the object is a String, bind the column as a string (SQLT_STR).
6. If the object is a Long, bind the column as an integer (SQLT_INT).
7. If the object is an Integer, bind the column as an integer (SQLT_INT).
8. If the object is a Float, bind the column as a float (SQLT_FLT).

However, the DCOracle2 Python layer will pass type conversion overrides to the C layer
if the object is a TypeCoercion(value, type). The input type override is either a string
constant or a numeric value representing the SQL data type, e.g. ’SQLT_STR’ for
string. Unsupported column types can be coerced from string data in this fashion.

Output types are converted by lookup in a type table. This table is:

Type Name Descripton Coercion Internal
Type

Result Object

SQLT_CHR Char Yes String
SQLT_NUM Number SQLT_STR Yes Automatic1

SQLT_INT Integer No Integer
SQLT_FLT Float No Float
SQLT_STR String No String
SQLT_VNU Length Prefixed Number No --
SQLT_PDN Packed Decimal Number No --
SQLT_LNG Long Yes String
SQLT_VCS Variable Character No --
SQLT_NON Null/Empty PCC desc No --
SQLT_RID Row ID Yes --
SQLT_DAT Date Yes OracleDate
SQLT_VBI Binary VCS format No --
SQLT_BIN Binary data Yes String
SQLT_LBI Long binary data Yes String
SQLT_UIN Unsigned Integer No --
SQLT_SLS Display sign leading No --
SQLT_LVC Longer longs (char) No --
SQLT_LVB Longer longs (binary) No --
SQLT_AFC ANSI Fixed Char Yes String
SQLT_AVC ANSI Var Char No --
SQLT_CUR Cursor No --
SQLT_RDD Rowid Descriptor SQLT_RID No --
SQLT_LAB Label No --
SQLT_OSL OS Label No --

DCOracle2 Users’s Guide & Reference

Copyright © 2002 Zope Corporation Page 21

SQLT_NTY Named Type Yes --
SQLT_REF Reference Type Yes --
SQLT_CLOB CLOB Yes LobLocator
SQLT_BLOB BLOB Yes LobLocator
SQLT_BFILE Binary File LOB No --
SQLT_CFILE Character File LOB No --
SQLT_RSET Result set No --
SQLT_NCO Named collection No --
SQLT_VST OCIString type No --
SQLT_ODT OCIDate type No --
SQLT_DATE ANSI date No --
SQLT_TIME Time No --
SQLT_TIME_TZ Time with zone No --
SQLT_TIMESTAMP Timestamp No --
SQLT_TIMESTAMP_TZ Timestamp with zone No --

The result object column, if ‘‘--’’ means that there is no type converter for this type, and
that only the raw interface from dco2’s ResultSet object can get at the value. When an
output type is coerced, it is requested from Oracle as the type specified instead of the
original format.

