
DCOracle2
C Layer API

Release 1.1
April 17, 2002

Matthew T. Kromer
Copyright © 2000, 2001, 2002 Zope Corporation

Zope Corporation
Lafayette Technology Center

513 Prince Edward Street
Fredericksburg, VA 22408

(888) 344-4332 (sales)
http://www.zope.com

LICENSE
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions, and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Names associated with Zope or Zope Corporation must not be used to endorse
or promote products derived from this software without specific prior written
permission from Zope Corporation.

• Modified redistributions in any form whatsoever must retain the following
acknowledgment:

"This product includes software developed by Zope Corporation for use in the Z
Object Publishing Environment (http://www.zope.com/)."

Intact (re-)distributions of any official Zope release do not require an external
acknowledgment.

THIS SOFTWARE IS PROVIDED BY ZOPE CORPORATION AND CONTRIBUTORS
AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ZOPE
CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1The DatabaseError object is the error returned when an OCI error is raised, regardless of the meaning of the OCI error.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 3

DCOracle2 C Layer API Documentation
This document describes the various objects and interfaces to the dco2 C binding for
Python to the Oracle 8 Call Interface (oci8). Under normal circumstances, no exposure
to dco2 is required for users of DCOracle2. This reference is provided for
completeness, but does not form an official application programming interface --
as such, it may be changed at any time, without warning.

Usage
import dco2

ServerContext = dco2.connect(userid, password, database)
tracebacklist = dco2.Traceback()
oracledate = dco2.OracleDate(ticks)

ServerContext.commit()
ServerContext.prepare()
ServerContext.rollback()
description = ServerContext.describe(schemaname)
bindingarray = ServerContext.BindingArray(elements, size, type)

Cursor = ServerContext.cursor()

Cursor.prepare(statement)
Cursor.bindbypos(pos, value)
Cursor.bindbyname(name, value)
Cursor.execute()
description = Cursor.describe()
ResultSet = Cursor.fetch(n)
Cursor.setPrefetch(records[, size])
Cursor.rowcount()

value = ResultSet[i][j].value()
string = str(ResultSet[i][j])

length = LobLocator.length()
data = LobLocator.read([bytes, [offset, [csid, [csfrm]]]])
count = LobLocator.write(string, [offset, [csid, [csfrm]]])
LobLocator.trim(length)

BindingArray.setStatic({0|1})
BindingArray.type([type])
BindingArray.width()

Objects
ServerContext
Cursor
BindingArray
ResultSet
ResultSetItem
OracleDate
LobLocator
Error
Warning
InterfaceError
DatabaseError1
InternalError
OperationalError
ProgrammingError
IntegrityError
DataError
NotSupportedError

DCOracle2 C Layer API

Page 4 Copyright © 2002 Zope Corporation

dco2.connect(userid, password, database)
The Connect method connects to the database with the specified credentials; it returns
a ServerContext object. When the ServerContext object goes out of scope (is
deallocated) the session is terminated. If database is "", the default database is used.
If userid and password are "", then OCI_CRED_EXT external credentials are used for
authentication as opposed to OCI_DEFAULT authentication.

dco2.Traceback()
The Traceback method on the module will return the current traceback table as a list of
lists. The first element for each row is the timestamp, the second element is the trace
code, and the remaining elements are trace data.

dco2.OracleDate(ticks)
Constructs an OracleDate object based on the timestamp in ticks, which should be
given in GMT. OracleDate objects are used to pass DATE fields in and out of Oracle
when binding positionally. When referred to in a string context, the OracleDate returns
a string representation as "yyyy-mm-dd hh:mm:ss" and in an integer context, returns the
timestamp as seconds since the epoch.

ServerContext.commit([2])
The commit method commits the data in the current transaction. If the optional
parameter 2 is specified, the commit is performed using OCI_TRANS_TWOPHASE vs. the
default of OCI_DEFAULT. Note that in a globally managed transaction a two phase
commit can introduce an indeterminate state.

ServerContext.prepare()
The prepare method prepares the data to be committed in the current transaction.

ServerContext.rollback()
The rollback method discards any changes in the current transaction.

SeverContext.describe(schemaname)
This method gets back a set of nested dictionaries describing the named schema
object, returned from the OCIDescribeAny call.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 5

ServerContext.BindingArray(elements, size, type)
This returns a BindingArray object of at least elements length, each element being size
bytes long, with the specified Oracle type. BindingArrays may be used with cursor
binding operations for operations which require writing back into the bound parameters
(stored procedure calls).

ServerContext.cursor()
The cursor method generates a cursor which is a combination of Oracle statement
handles, statement definitions, binding data, and result information. A cursor must be
allocated for any SQL work to be performed.

Cursor.prepare(statement)
The prepare method parses a SQL statement and prepares it for execution. No server
round trip is involved in preparation.

Cursor.bindbypos(pos, object, [type])
The bindbypos method binds an object to an input position in a statement. The pos
parameter starts with 1, for the first positional parameter. For example:

c.prepare("select * from emp where empno = :1")
c.bindbypos(1, empno)

See the section on ‘‘Type Conversion Rules’’ below for a detailed description of how an
object is bound.

Cursor.bindbypos will throw a ValueError if it cannot adequately bind object.

Note that a ResultSet or ResultSet Item is not supported by bindbypos, meaning the
output of a SELECT cannot be immediately reused!

Cursor.bindbyname(name, value)
The functional eqivalent of Cursor.bindbypos, this binds a variable to a statement by
name, rather than by position. All relelvant Cursor.bindbypos comments apply.
Note that the name used should be ":name", with a leading colon. The dco2 module
does not automatically insert the colon.

DCOracle2 C Layer API

Page 6 Copyright © 2002 Zope Corporation

Cursor.execute()
The execute method of the cursor will cause the statement handle bound by the prepare
method to be executed. After an execution, the statement result definitions are
obtained and made available for the Cursor.describe() method.

Cursor.describe()
The describe method of the cursor will return a list of 7-tuples (name, type, size,
size, precision, scale, nullok) for each column in the result of the
statement. The Python DB API 2.0 specification states that the first size is the
display_size and the second is the internal_size. The Oracle maximum external data
representation size field is returned for both values.

Cursor.fetch([n])
The fetch method of the cursor will fetch the next n results from the results of the
statement The default is to fetch one result. The return value of Cursor.fetch() is a list
of ResultSet objects. Each ResultSet object acts as a sequence. An individual value of
a ResultSet is a ResultSetItem.

Note: Cursor.fetch returns a list of columns, not a list of rows. The DCOracle2 fetch
methods will reorder the columns into rows.

Cursor.setPrefetch(rows [, size])
Sets the prefetching on the cursor. Size is the size in bytes to allocate. Oracle will
prefetch up to rows results or until a buffer or size is filled when executing queries.

Cursor.rowcount()
Gets the row count of the last operation. For non-select operations, this is the number
of rows affected by the operation. For select operations, the value is updated as rows
are fetched, but does not indicate the total number of records available to be returned.

ResultSetItem.value()
Generates an object representing the value of the result set Item. If there is no type
translator to convert the Oracle type to a Python object, a TypeError will be raised. In
this instance, the application can refer to str(ResultSetItem) to get the data in unaltered
format.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 7

Note: Currently, Numbers are retrieved as type SQL_STR (strings) not SQL_NUM.
Numeric translation from the string format happens in dco2’s output conversion
functions. Numeric conversion is based on the precision (length) and scale (number of
decimal places). If the number has a scale, it is not an integer, and so is returned as a
Python float. If it has no scale, and the precision is less than 10, the result is returned
as a Python int. Integers with a precision of 10 or higher are returned as Python longs.
It is possible, however, to use the str() representation function on the ResultSetItem
object to retrieve the original string however.

LobLocator.length()
Returns the length of the LOB referenced by LobLocator.

LobLocator.read([size, [offset, [csid, [csfrm]]]])
Returns the data from the LobLocator for size bytes, which defaults to the end of the
LOB. Optionally, the starting LOB offset may be provided, as may be the character set
ID csid and character set form csfrm. Both csid and csfrm default and can be safely
omitted unless the default character set Oracle was installed with is not appropriate.

LobLocator.write(string, [offset, [csid, [csfrm]]])
Writes string to the selected LOB, optionally starting offset bytes into the LOB. The
character set parameters csid and csfrm default to the Oracle installation defaults and
can be safely omitted.

Note: Empty LOBs can be inserted by using the EMPTY_BLOB() or EMPTY_CLOB()
Oracle functions. LOB objects must be selected for updating before they can be written,
for example:

import DCOracle2

db = DCOracle2.connect(’scott/tiger’)
c = db.cursor()
c.execute(’insert into blobtest values (:1, :2, EMPTY_BLOB())’, ’Shane Hathaway’, 4)
c.execute(’select * from blobtest where id=4 for update’)
r = c.fetchone()
lob = r[2]
lob.write(shanepic)
db.commit()

LobLocator.trim(length)
Trims the LOB to the specified length, which must be less than or equal to the current
length.

DCOracle2 C Layer API

Page 8 Copyright © 2002 Zope Corporation

BindingArray.setStatic({0|1})
Sets the binding type of the binding array, 1 for static binding, 0 for dynamic binding.
The internal function Cursor_bind in dco2.c uses this to set up the binding values.

BindingArray.type([type])
Gets/sets the Oracle type associated with the BindingArray.

BindingArray.width()
Gets the size field of the BindingArray (the width of each element.)

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 9

BUILDING and INSTALLATION
Generally, building the DCO2 module is as simple as setting up the Oracle build
environment and typing make. Here’s an example:

bane(1)$. oraenv
ORACLE_SID = [ORAC] ? <enter>
bane(2)$ make
(cd src; \
./testora)
Checking ORACLE_HOME...passed.
Checking for Oracle8i...not found, Oracle 8.0 assumed.
(cd src; \
cp -p Setup.in Setup)
(cd src; \
make -f Makefile.pre.in boot PYTHON=python || ./setuperrors; \
make dummy || ./setuperrors)
make[1]: Entering directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
rm -f *.o *~
rm -f *.a tags TAGS config.c Makefile.pre python sedscript
rm -f *.so *.sl so_locations
VERSION=‘python -c "import sys; print sys.version[:3]"‘; \
installdir=‘python -c "import sys; print sys.prefix"‘; \
exec_installdir=‘python -c "import sys; print sys.exec_prefix"‘; \
make -f ./Makefile.pre.in VPATH=. srcdir=. \
 VERSION=$VERSION \
 installdir=$installdir \
 exec_installdir=$exec_installdir \
 Makefile
make[2]: Entering directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
sed -n \
 -e ’1s/.*/1i\\/p’ \
 -e ’2s%.*%# Generated automatically from Makefile.pre.in by sedscript.%p’ \
 -e ’/^VERSION=/s/^VERSION=[]*\(.*\)/s%@VERSION[@]%\1%/p’ \
 -e ’/^CC=/s/^CC=[]*\(.*\)/s%@CC[@]%\1%/p’ \
 -e ’/^CCC=/s/^CCC=[]*\(.*\)/s%#@SET_CCC[@]%CCC=\1%/p’ \
 -e ’/^LINKCC=/s/^LINKCC=[]*\(.*\)/s%@LINKCC[@]%\1%/p’ \
 -e ’/^OPT=/s/^OPT=[]*\(.*\)/s%@OPT[@]%\1%/p’ \
 -e ’/^LDFLAGS=/s/^LDFLAGS=[]*\(.*\)/s%@LDFLAGS[@]%\1%/p’ \
 -e ’/^DEFS=/s/^DEFS=[]*\(.*\)/s%@DEFS[@]%\1%/p’ \
 -e ’/^LIBS=/s/^LIBS=[]*\(.*\)/s%@LIBS[@]%\1%/p’ \
 -e ’/^LIBM=/s/^LIBM=[]*\(.*\)/s%@LIBM[@]%\1%/p’ \
 -e ’/^LIBC=/s/^LIBC=[]*\(.*\)/s%@LIBC[@]%\1%/p’ \
 -e ’/^RANLIB=/s/^RANLIB=[]*\(.*\)/s%@RANLIB[@]%\1%/p’ \
 -e ’/^MACHDEP=/s/^MACHDEP=[]*\(.*\)/s%@MACHDEP[@]%\1%/p’ \
 -e ’/^SO=/s/^SO=[]*\(.*\)/s%@SO[@]%\1%/p’ \
 -e ’/^LDSHARED=/s/^LDSHARED=[]*\(.*\)/s%@LDSHARED[@]%\1%/p’ \
 -e ’/^CCSHARED=/s/^CCSHARED=[]*\(.*\)/s%@CCSHARED[@]%\1%/p’ \
 -e ’/^LINKFORSHARED=/s/^LINKFORSHARED=[]*\(.*\)/s%@LINKFORSHARED[@]%\1%/p’ \
 -e ’/^prefix=/s/^prefix=\(.*\)/s%^prefix=.*%prefix=\1%/p’ \
 -e ’/^exec_prefix=/s/^exec_prefix=\(.*\)/s%^exec_prefix=.*%exec_prefix=\1%/p’ \
 /usr/lib/python1.5/config/Makefile >sedscript
echo "/^#@SET_CCC@/d" >>sedscript
echo "/^installdir=/s%=.*%= /usr%" >>sedscript
echo "/^exec_installdir=/s%=.*%=/usr%" >>sedscript
echo "/^srcdir=/s%=.*%= .%" >>sedscript
echo "/^VPATH=/s%=.*%= .%" >>sedscript
echo "/^LINKPATH=/s%=.*%= %" >>sedscript
echo "/^BASELIB=/s%=.*%= %" >>sedscript
echo "/^BASESETUP=/s%=.*%= %" >>sedscript
sed -f sedscript ./Makefile.pre.in >Makefile.pre
/usr/lib/python1.5/config/makesetup \
 -m Makefile.pre -c /usr/lib/python1.5/config/config.c.in Setup -n
/usr/lib/python1.5/config/Setup
make -f Makefile do-it-again
make[3]: Entering directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
/usr/lib/python1.5/config/makesetup \
 -m Makefile.pre -c /usr/lib/python1.5/config/config.c.in Setup -n
/usr/lib/python1.5/config/Setup
make[3]: Leaving directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
make[2]: Leaving directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
make[1]: Leaving directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
make[1]: Entering directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
make[1]: ‘dummy’ is up to date.
make[1]: Leaving directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
(cd src; \
make || ./builderrors)
make[1]: Entering directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’

DCOracle2 C Layer API

Page 10 Copyright © 2002 Zope Corporation

gcc -fPIC -I/stripe1/oracle/8.0.5/rdbms/demo -I/stripe1/oracle/8.0.5/network/public -
I/stripe1/oracle/8.0.5/plsql/public -I/stripe1/oracle/8.0.5/rdbms/public -g -O2 -
I/usr/include/python1.5 -I/usr/include/python1.5 -DHAVE_CONFIG_H -c ./dco2.c
gcc -shared dco2.o -L/stripe1/oracle/8.0.5/lib/ -lclntsh -lcommon -lcore4 -lnlsrtl3 -Wl,-
rpath,/stripe1/oracle/8.0.5/lib -o dco2.so
make[1]: Leaving directory ‘/stripe0/home/matt/wrk/dc/DCO2/src’
cp src/dco2.so DCOracle2

That’s it! The makefile will try to detect as much as it can and will properly copy the built
dco2.so module to the DCOracle2 directory.

A number of problems can happen during building:

Oracle environment not set up correctly
If the environment variable ORACLE_HOME is not set, then the compilation will fail to
find the proper Oracle include and library files.

Oracle development files not installed
Oracle installs the C headers to build OCI programs in $ORACLE_HOME/rdbms/demo,
$ORACLE_HOME/network/public, and $ORACLE_HOME/plsql/public. If these
directories do not have the proper include files, the build will not succeed. Oracle
typically only installs these files when a complete server installation is performed.

Python development Makefile not available
If the make fails stating that /usr/lib/python1.5/config/Makefile (or similar)
cannot be built, it is symptomatic of the problem that the Python development is not
installed. On a RedHat Linux system this would be the python-devel package.

Python is not linked against libpthread (Linux)
Oracle on Linux is linked against libpthread. Some recent linux distributions may
include versions of Python that are not linked against libpthread. When dco2 is loaded,
it will load the Oracle shared libraries which are incompatible with the libpth libraries of
the existing Python binary. This will cause random lockups to occur to the process.
The only solution is to acquire a Python that is not linked against libpth, but is instead
linked against libptthread. This may be accomplished by either obtaining a different
Python binary package, or rebuilding Python from source.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 11

DIAGNOSIS

Trace Table Debugging
DCO2 keeps an internal trace table, controlled by four environment variables:

• DCO2TRACELOG (trace file name)
• DCO2TRACEDUMP (dump file name)
• DCO2TRACESIZE (trace table size)
• DCO2TRACEFLAGS (trace filter)

The variable DCO2TRACELOG, if set, names a file to record all trace events (as they
occur). The variable DCO2TRACEDUMP names a file to dump the trace table to if an
Oracle error occurs (but this is not the only reason dco2 will raise an error).

DCOracle2 will sometimes trap errors within a try/except, so this will cause a trace
dump to take place if DCO2TRACEDUMP is set. Each new Oracle error will append
the trace file to the dump file.

The variable DCO2TRACESIZE specifies the number of entries in the trace table (the
default is 512). Each entry in the trace table is 10 words (40 bytes) long, so the default
trace table consumes 20K of storage. Setting the size of the trace table to 0 will also
set the DCO2TRACEFLAGS to 0. DCO2TRACEFLAGS is the binary OR (sum) of the
following values:

1 Entry
2 Exit
4 Error
8 (unused)
16 Program
32 Oracle
64 Info
128 Verbose

The typical codes used are:

17 Function Entry
18 Function Exit
33 Oracle call
34 Oracle return
36 Oracle error
65 Info arguments
66 Info result

DCOracle2 C Layer API

Page 12 Copyright © 2002 Zope Corporation

161 Oracle handle call
162 Oracle handle return

Up to 7 arguments are also recorded in the trace table, with the first argument being a
function name.

Debugging with gdb
If dco2 causes a core dump (typically a segment fault) it is useful to obtain a traceback
of what was occurring at the time of the crash. The gnu debugger gdb should be run
against python to obtain the internal trace table. The following is an example:

% gdb python
...
(gdb) run badprog.py
...
<segmentation fault>
(gdb) where
(gdb) call Traceprint() (prints trace table to stdout)
(gdb) call Tracedump() (saves trace table to "dco2.tdm")

The output of the trace table should be included in any support message. Also include
the output from the where step of gdb, as this will pinpoint where in the code that the
error occurred.

Problem Reporting
When submitting a problem report to Zope Corporation about DCOracle2, it is useful to
include a trace dump when incorrect results are being returned. When reporting
problems, please be sure and identify the following:
• Operating System
• Distribution (for Linux)
• Python Version
• Oracle Version
• DCO2TRACEDUMP generated file (where appropriate)
• Python tracebacks (where appropriate)

2Automatic format means conversion to Float if the scale is greater than zero or the precision and scale are zero; conversion to
Integer if the scale is less than 10, or conversion to Long otherwise.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 13

Type Conversion Rules
The type conversion for dco2 uses the following rules (they are not necessarily the
correct rules, but this the current implementation):

Input types are converted in the internal function bindObject and obey the following
rules:

1. If the object is None, bind the input as NULL.
2. If the object is a BindingArray, set the column for array input/output.
3. If the object is a Cursor, bind the column as an SQL Result Set (SQLT_RSET).
4. If the object is an OracleDate, bind the column as a a Date (SQLT_DAT).
5. If the object is a String, bind the column as a string (SQLT_STR).
6. If the object is a Long, bind the column as an integer (SQLT_INT).
7. If the object is an Integer, bind the column as an integer (SQLT_INT).
8. If the object is a Float, bind the column as a float (SQLT_FLT).

However, the DCOracle2 Python layer will pass type conversion overrides to dco2 if the
object is a tuple (value, type). The input type override is either a string constant or a
numeric value representing the SQL data type, e.g. ’SQLT_STR’ for string.
Unsupported column types can be coerced from string data in this fashion.

Output types are converted by lookup in a type table. This table is:

Type Name Descripton Coercion Internal
Type

Result Object

SQLT_CHR Char Yes String
SQLT_NUM Number SQLT_STR Yes Automatic2

SQLT_INT Integer No Integer
SQLT_FLT Float No Float
SQLT_STR String No String
SQLT_VNU Length Prefixed Number No --
SQLT_PDN Packed Decimal Number No --
SQLT_LNG Long Yes String
SQLT_VCS Variable Character No --
SQLT_NON Null/Empty PCC desc No --
SQLT_RID Row ID Yes --
SQLT_DAT Date Yes OracleDate
SQLT_VBI Binary VCS format No --
SQLT_BIN Binary data Yes String
SQLT_LBI Long binary data Yes String
SQLT_UIN Unsigned Integer No --
SQLT_SLS Display sign leading No --
SQLT_LVC Longer longs (char) No --
SQLT_LVB Longer longs (binary) No --
SQLT_AFC ANSI Fixed Char Yes String
SQLT_AVC ANSI Var Char No --
SQLT_CUR Cursor No --
SQLT_RDD Rowid Descriptor SQLT_RID No --
SQLT_LAB Label No --
SQLT_OSL OS Label No --

DCOracle2 C Layer API

Page 14 Copyright © 2002 Zope Corporation

SQLT_NTY Named Type Yes --
SQLT_REF Reference Type Yes --
SQLT_CLOB CLOB Yes LobLocator
SQLT_BLOB BLOB Yes LobLocator
SQLT_BFILE Binary File LOB No --
SQLT_CFILE Character File LOB No --
SQLT_RSET Result set No --
SQLT_NCO Named collection No --
SQLT_VST OCIString type No --
SQLT_ODT OCIDate type No --
SQLT_DATE ANSI date No --
SQLT_TIME Time No --
SQLT_TIME_TZ Time with zone No --
SQLT_TIMESTAMP Timestamp No --
SQLT_TIMESTAMP_TZ Timestamp with zone No --

The result object column, if ‘‘--’’ means that there is no type converter for this type, and
that only the raw interface from dco2’s ResultSet object can get at the value. When an
output type is coerced, it is requested from Oracle as the type specified instead of the
original format.

DCOracle2 C Layer API

Copyright © 2002, Zope Corporation Page 15

Implementation Notes
The C source dco2.c should be self-contained, requiring only system, Python, and
Oracle include and library files.

Every normal entry and exit to functions in the code utilizes the TRACE macro to record
a trace table entry. TRACE macro calls also surround Oracle calls, attempting to
capture enough parameter data to provide a meaningful basis for diagnosis of errors.
When the address of data is recorded, the address is very useful for inspection within
gdb.

Most complex about operation is how type binding occurs; the two most responsible
functions are ‘‘bindObject’’ and ‘‘Cursor_bind.’’ The bindObject function is responsible
for inspecting the object to determine the type, and set up the data for the bind, without
actually performing the bind. Cursor_bind will use this data to call OCIBindByName,
OCIBindByPos, OCIBindDynamic, and OCIBindArrayOfStruct, as required.
BindingArray operation is filled with nuances and side-effects; largely these involve
whether or not the parameters maxarr_len and curelep get set in the OCIBind calls.
The two values should only be set when an array bind to PL/SQL is desired. In
practice, the code path makes the assumption that a BindingArray with size > 1 (not # of
elements USED > 1) is destined for an array bind and then changing its mind when it
becomes evident that the statement is used differently (i.e. it is messy).

Type coercion for input binds is done by seeing if the object is of type InstanceType; if
so, it is checked for the attributes ‘‘value’’ and ‘‘type.’’ The bound value and type are set
accordingly. This coercion is checked by bindObject and BindingArrayObject_ass_item.

For non-coerced types, a request type override is looked up in the type table. The
override will specify more convenient external datatypes (largely for the convenience of
the type conversion routines.) In this way, for instance, numeric type SQLT_NUM is
requested as character SQLT_STR.

The convertOut functions mapped in the type table are called by ResultSetItem_value
or BindingArrayObject_item functions to create a Python object. This result object is
cached so the underlying data field may be cleared and reused. The ResultSet in
particular works this way effectively ‘‘paging’’ though requests. DCOracle2 will never
skip values in the ResultSet, which is inefficient if the Python application is going to
throw them away (although not as inefficient as obtaining them from Oracle in the first
place.)

Raw results from ResultSetItems are available through the str mechanism, which
bypasses the output type conversion. Applications can use this to support additional
data types.

