springScape – User Documentation[image: image1.png]springScapeg
springScape

_iParameter file Random seed [Weights [0,01

Max no. iterations| 4000 | Start edge repulsionat| 1200 |

Edge crossing detections Flot options

Start 500 @ Plot nodes
Detect every 200

Finish o000 |
Threshold [gefauir | Fixed axis

@ Plot edges

Force vectors

Respulsive force range [2
Potever | 2 Start Close

© 2004 Dr. Tim Ebbels, UCL

Tim Ebbels

 3rd March 2005

Introduction

springScape is software for visualising the results of gene expression microarray experiments in the context of other data. The system works by representing information as a network – a system of nodes and edges. For example, the nodes could be genes and the edges could connect genes whose expression profiles are similar. The networks from several information sources are combined and represented visually by a system of masses (the nodes) and springs (the edges). These are released from a random initial configuration and a Newtonian dynamic simulation finds a configuration of low energy. Once the 2-D coordinates have been found in this way, one particular aspect of the information can be viewed in the 3rd dimension as an ‘information landscape’ whose height is influenced by this extra information and the density of the nodes.

Installation

Installing to run from Matlab

To run springScape from Matlab you will need the following 18 source m-files:

adj2edge.m, plotnet.m, springScape.m, classprob_wt.m, gui_active.m, progressbar.m, dist2.m, landscape.m, sparseEfficiency.m, springScapeg.m, edge2adj.m, mnorm.m, springEmbedErr.m, sumnan.m, forceLaw.m, mywaitbar.m, springEnergy.m, textread_nowhich.m

plus 2 other Matlab files: springScapeg.fig and gauge_abort_icon.mat. These should all be found in the distributed tar file.

To install the package just untar the distributed archive and place all the files somewhere on your Matlab path.

Using springScape

springScape was developed in Matlab (version 7.0). It is actually composed of three programs which would be used in the following order:

1. springScape – This program does the spring embedding to determine the two dimensional coordinates of the nodes, displaying the layout as it goes.

2. plotnet – This program plots the network layout determined by springScape.

3. landscape – This program displays the information landscape on top of the network.

For the main program, springScape, there two modes of operation:

1. Run in GUI mode from the Matlab command line

2. Run without the GUI from the Matlab command line

These are roughly in order of increasing versatility / decreasing simplicity. The program has been tested mainly in the second mode.

Input files

The program requires each input data source to be representable as a network. For example, at GO network, protein interaction network, gene regulatory network etc. Each network must be defined by a weighted adjacency matrix, either provided as a tab-delimited text file or as a matrix in the Matlab environment.

For the information landscape, a vector of numbers is required corresponding to the height of the Gaussian kernel placed at each node. Again, this can be provided as a single column text file or a vector within Matlab.

springScape can be run using a parameter file or by specifying the parameters as command line options at the Matlab prompt.

Example input files are shown at the end of this document.
Run from Matlab with GUI

If using a parameter file, run springScape from the Matlab prompt:

>> springScapeg;

This brings up the GUI seen below:

[image: image2.png]

The form shows parameters which control the spring embedding algorithm. If you want to read these parameters from a file, check the ‘Parameter file’ box. See the end of this document for an example parameter file and explanation of the parameters. Press ‘Start’ to start reading the parameter file.

If not using a parameter file, you must have the adjacency matrices (and optionally the initial coordinates) as Matlab matrices. (These can be sparse matrices). If there is more than one adjacency matrix to combine they must form a 3-dimensional array with dimensions [nn,nn,nAdj] where there are nn nodes and nAdj adjacency matrices to be combined. Run the program with:

>> springScapeg(‘adj’,<adjacencyvar>,’seed’,<initialcoordsvar>);

where <adjacencyvar> and <initialcoordsvar> are the Matlab variables containing the adjacency matrices and initial coordinates. This will bring up the GUI as for stand-alone mode. Enter the values of parameters required and press ‘Start’.

Both the above calls can optionally return the final coordinates and the springEnergy at each iteration using the syntax:

>> xyfinal = springScapeg(…);

or

>> [xyfinal, energy] = springScapeg(…);

Note that computing the energy will incur a performance overhead.
Run from Matlab without GUI

For any development of this software, fixing bugs etc., you will need to run the program without the GUI from the Matlab command line. The syntax is the same as that for running the GUI from within Matlab but uses the function springScape (no g at the end):

>> [xyfinal, energy] = springScape(seed,adj,wt,nit,itcross,nitedgerep,plotit,plt,dmax,ecthresh);

The parameters have the same meaning as when a parameter file is used. To specify initial coordinates, put them in the matrix seed, ie seed = [x1 y1; x2 y2; …]. If either seed or ecthresh are string valued, they will be evaluated as Matlab expressions and expected to refer to variables within the program. For example:

seed = ‘sum(100*clock)’ – this uses a different random number seed each time

ecthresh = ‘0.5*max(wt)’ – this sets the threshold to half the maximum weight used. Useful if you only with to see the highest weighted edges (eg just the GO connectivity when combining GO with something else).

Viewing the network and landscape

The evolving network is displayed during the run of springScape. However, to plot the final network without running springScape, do the following:

>> plotnet(xyfinal,adj);

>> axis tight

This plots the network specified by adjacency matrix adj and node coordinates xyfinal. Then:

>> landscape(xyfinal,sig,u[,ng,absflg,col])

will display the information landscape overlaid on the network. [] denotes optional arguments. The arguments to landscape are:

xyfinal

Matrix giving the coordinates of the nodes

sig

The sigma (width) of each Gaussian kernel

u
A vector of values giving the information to be viewed, eg gene expression values

ng

Optional size of grid (ngXng points).

absflg
Optional flag: if 1 (default) then abs(height) is mapped to transparency of surface. If 0 then full range of height is mapped to transparency. If absflg=0 and you have some u<0, the bottoms of the valleys will be transparent and the u=0 level will be visible. If absflg=1 then the u=0 level is transparent and only the peaks are shown.

Col
Optional colour of the surface. If not present then colour is mapped to height.
Example input files

Examples of the three input files are included with the distribution in the directory examples:

examples/example_parameterfile.par

examples/example_coordfile.tab

examples/example_adjfile.tab

Note the examples below are not necessarily the same as those in the distribution.

Parameter file

The format of this file is tab delimited text. An example is shown below:
*** BEGIN FILE ***

% Parameter file for SpringScape

SEED
sum(100*clock)

WT
[0.01 1e-6]

NIT
5000

ITCROSS
[300 300 1500]

NITEDGEREP
3000

PLOTIT
2

PLT
[1 1 0 0]

DMAX
0.2

ECTHRESH
0.5*max(wt)

COORDFILE
examples/example_coordfile.tab

ADJFILE
examples/example_adjfile1.tab

ADJFILE
examples/example_adjfile2.tab

*** END FILE ***

Explanation of the parameters:

SEED
Random number generator seed. Either an integer or a Matlab expression (eg. Sum(100*clock) to use a different seed each time).

WT
Weight used to weight each adjacency matrix. Format: a Matlab vector using square brackets, eg [0.1 0.2] for combining two adjacency matrices.

NIT

Maximum number of iterations

ITCROSS
Edge crossing information in the form [n1 n2 n3]. Edge crossings are detected and fixed every n2 iterations, starting at n1 iterations and finishing at n3 iterations.

NITEDGEREP
Number of iterations at which to turn on edge repulsion. (Usually only for the last few hundred iterations).

PLOTIT
The display is updated every PLOTIT iterations. Larger number = faster.

PLT
4 element binary flag vector specifying what to display at each update:

1st flag
Display nodes

2nd flag
Display edges (only those with weights above ECTHRESH)

3rd flag
Keep axis limits constant throughout

4th flag
Display vectors showing forces acting on nodes

DMAX
Maximum range of repulsive force

ECTHRESH
Edge weight threshold above which edge crossings are detected and edges displayed. To specify an ECTHRESH related to the weights, use for example: ECTHRESH ‘0.5*max(wt)’.

COORDFILE
Path to text file giving initial coordinates of nodes (optional)

ADJFILE
Path to text file giving a single adjacency matrix. There may be any number of ADJFILE entries.

Weighted adjacency matrix file

The format of this file is tab delimited text. It must have the same number of rows and columns, equal to the number of nodes in the network. The first few rows & cols of an example (where the weights are the no. of interacting protein pairs between various GO terms) are shown below:

32
0
0
26
3
0
0
0
0
0
1
0
113
0
0
0
0
0
0
0
0
0

0
0
16
0
0
0
0
0
0
0
0

4126
0
0
28
0
0
0
0
0
0
0

3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
45
0
0
0
0
0
0
0

0
145
0
0
0
0
0
65
0
0
0

1
0
0
0
0
0
0
0
0
0
2

Initial coordinates file

The format of this file is tab delimited text. It must have two columns (x & y coordinates) and a number of rows equal to the number of nodes in the network. Note this file is optional – if not used (eg comment out COORDFILE line in parameter file) then SEED is used to provide random initial coordinates. An example is shown below (only first few lines):

0.67577
0.76652

0.45839
0.76275

0.57415
0.57321

0.40969
0.48678

0.66079
0.62647

0.70282
0.25005

0.54075
0.24269

0.66042
0.30512

0.65662
0.21445

