Example Parameter Files

      IV 1. AutoGrid GPF

An example AutoGrid parameter file is given below:

______________________________________________________________________________

 
receptor 3ptb.pdbqs		#macromolecule
 
gridfld  3ptb.maps.fld		#grid_data_file
 
npts     60 60 60		#num.grid points in xyz
 
spacing  .375			#spacing (Angstroms)
 
gridcenter -1.853 14.311 16.658	#xyz-coordinates or 'auto"
 
types CANH			#atom type names
 
smooth 0.500			#store minimum energy within radius (Angstroms)
 
map 3ptb.C.map			#filename of grid map
 
nbp_r_eps  4.00 0.0222750 12  6	#C-C lj
 
nbp_r_eps  3.75 0.0230026 12  6	#C-N lj
 
nbp_r_eps  3.60 0.0257202 12  6	#C-O lj
 
nbp_r_eps  4.00 0.0257202 12  6	#C-S lj
 
nbp_r_eps  3.00 0.0081378 12  6	#C-H lj
 
nbp_r_eps  3.00 0.0081378 12  6	#C-H lj
 
nbp_r_eps  3.00 0.0081378 12  6	#C-H lj
 
sol_par 12.77 0.6844		#C atomic fragmental volume, solvation param.
 
constant 0.000			#C grid map constant energy
 
map 3ptb.A.map			#filename of grid map
 
nbp_r_eps  4.00 0.0222750 12  6	#A-C lj
 
nbp_r_eps  3.75 0.0230026 12  6	#A-N lj
 
nbp_r_eps  3.60 0.0257202 12  6	#A-O lj
 
nbp_r_eps  4.00 0.0257202 12  6	#A-S lj
 
nbp_r_eps  3.00 0.0081378 12  6	#A-H lj
 
nbp_r_eps  3.00 0.0081378 12  6	#A-H lj
 
nbp_r_eps  3.00 0.0081378 12  6	#A-H lj
 
sol_par 10.80 0.1027		#A atomic fragmental volume, solvation param.
 
constant 0.000			#A grid map constant energy
 
map 3ptb.N.map			#filename of grid map
 
nbp_r_eps  3.75 0.0230026 12  6	#N-C lj
 
nbp_r_eps  3.50 0.0237600 12  6	#N-N lj
 
nbp_r_eps  3.35 0.0265667 12  6	#N-O lj
 
nbp_r_eps  3.75 0.0265667 12  6	#N-S lj
 
nbp_r_eps  2.75 0.0084051 12  6	#N-H lj
 
nbp_r_eps  2.75 0.0084051 12  6	#N-H lj
 
nbp_r_eps  2.75 0.0084051 12  6	#N-H lj
 
sol_par  0.00 0.0000		#N atomic fragmental volume, solvation param.
 
constant 0.000			#N grid map constant energy
 
map 3ptb.H.map			#filename of grid map
 
nbp_r_eps  3.00 0.0081378 12  6	#H-C lj
 
nbp_r_eps  2.75 0.0084051 12  6	#H-N lj
 
nbp_r_eps  1.90 0.3280000 12 10	#H-O hb
 
nbp_r_eps  2.50 0.0656000 12 10	#H-S hb
 
nbp_r_eps  2.00 0.0029700 12  6	#H-H lj
 
nbp_r_eps  2.00 0.0029700 12  6	#H-H lj
 
nbp_r_eps  2.00 0.0029700 12  6	#H-H lj
 
sol_par  0.00 0.0000		#H atomic fragmental volume, solvation param.
 
constant 0.118			#H grid map constant energy
 
elecmap 3ptb.e.map		#electrostatic potential map
 
dielectric -0.1146		#<0,distance-dep.diel; >0,constant
 
#fmap 3ptb.f.map		#floating grid

_________________________________________________________________

Note how hydrogen bonding is defined for oxygens. If a line in the parameter file contains a `10' in the fourth column, AutoGrid will treat this atom-pair as hydrogen bonding. So in the example above, the last 3 lines in the "mcp2_O.map" block will be treated as hydrogen bonds. AutoGrid scans for any polar hydrogens in the macromolecule. The vector from the hydrogen-donor, along with the vector from the probe-atom at the current grid point, are used to calculate the directional attenuation of the hydrogen bond. In this example, AutoGrid will calculate H-bonds between O-H, O- X and O- M .

      IV 2. AutoDock DPF

Some examples of commented AutoDock parameter files are given below.

        Example 1: Docking using Monte Carlo Simulated Annealing

In this case, the ligand file ` xk263pm3.pdbq ' has been defined such that it contains 10 rotatable bonds. The docking will be sampled every 7500 steps, from cycle 45 to cycle 50. Either accepted or rejected states will be output. The trajectory file ` xk263pm3 .trj' will hold the state information required to generate the coordinates later on. The external grid energy is set to 0.0, which can allow greater freedom for ligand rotations during docking.

______________________________________________________________________________

 
seed random
 
types CNOH		# atom type names
 
 
fld 4phv.nbc_maps.fld		# grid data file
 
map 4phv.nbc_C.map		# C-atomic affinity map
 
map 4phv.nbc_N.map		# N-atomic affinity map
 
map 4phv.nbc_O.map		# O-atomic affinity map
 
map 4phv.nbc_H.map		# H-atomic affinity map
 
map 4phv.nbc_e.map		# electrostatics map
 
 
move xk263pm3.pdbq		# ligand
 
about -5.452 -8.626 -0.082		# ligand center
 
 
tran0 -5.452 -8.626 -0.082		# initial coordinates/A
 
quat0 1. 0. 0. 0.               # initial quaternion:unit-vector(qx,qy,qz);angle/deg(qw)
 
ndihe 10		# number of rotatable bonds
 
dihe0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. # initial dihedrals/deg
 
 
tstep 0.2		# translation step/A
 
qstep 5.		# quaternion step/deg
 
dstep 5.		# torsion step/deg
 
trnrf 1.		# trans reduction factor/per cycle
 
quarf 1.		# quat reduction factor/per cycle
 
dihrf 1.		# tors reduction factor/per cycle
 
 
intnbp_coeffs	 1272653.000  1127.684  12  6 	# C-C internal energy non-bond parameters
 
intnbp_coeffs	  610155.100   783.345  12  6 	# C-N internal energy non-bond parameters
 
intnbp_coeffs	  588883.800   633.754  12  6 	# C-O internal energy non-bond parameters
 
intnbp_coeffs	   88604.240   226.910  12  6 	# C-H internal energy non-bond parameters
 
intnbp_coeffs	  266862.200   546.765  12  6 	# N-N internal energy non-bond parameters
 
intnbp_coeffs	  249961.400   445.918  12  6 	# N-O internal energy non-bond parameters
 
intnbp_coeffs	   39093.660   155.983  12  6 	# N-H internal energy non-bond parameters
 
intnbp_coeffs	  230584.400   368.677  12  6 	# O-O internal energy non-bond parameters
 
intnbp_coeffs	   38919.640   124.049  12  6 	# O-H internal energy non-bond parameters
 
intnbp_coeffs	    1908.578    46.738  12  6 	# H-H internal energy non-bond parameters
 
 
rt0	500.	# initial RT
 
rtrf	0.95	# RT reduction factor/per cycle
 
 
runs	10	# number of runs
 
cycles 	50	# cycles
 
accs   100		# steps accepted
 
rejs   100		# steps rejected
 
select	 m	# minimum or last
 
 
outlev	 1	# diagnostic output level
 
 
rmstol 	0.5	# cluster tolerance/A
 
 
trjfrq	 7500	# trajectory frequency
 
trjbeg	 45	# start trj output at cycle
 
trjend 	50	# end trj output at cycle
 
trjout	 xk263pm3.trj	# trajectory file
 
trjsel 	E	# A=acc only;E=either acc or rej
 
 
extnrg	 0.0	# external grid energy
 
e0max 0.0		# maximum allowable energy to start a run
 
 
simanneal		# perform automated docking using simulated annealing
 
 
analysis		# perform a ranked cluster analysis

______________________________________________________________________________

        Example 2: Clustering Many Dockings

The next example DPF shows how to use the cluster mode in AutoDock. The PDBQ files containing the final docked conformations have been extracted from the AutoDock log files (using the UNIX grep command), and stored together in the file "vac1.new.dlg.pdbq". You can extract the "DOCKED:" records during the dockings, or after the dockings have finished. For example:

 
% egrep '^DOCKED: ' vac1.*.dlg | sed 's/^DOCKED: //' > vac1.grouped.dlg.pdbq

or:

 
% egrep '^ATOM |^HETATM|^REMARK|^USER  ' vac1.*.dlg > vac1.grouped.dlg.pdbq
 

The tolerance for the positional rms deviation is set to 1.5Å, so only conformations with this rms deviation or less will be placed in the same cluster. All conformations will be written out, instead of just the lowest energy representative from each conformationally distinct cluster.

You may include the rmsnosym command, if you do not wish to use symmetry checking while clustering. Also, you must finish the DPF with the analysis command, to instruct AutoDock to perform the clustering and write out the histogram of docked conformations.

______________________________________________________________________________

 
types CANOH		# atom_type_names
 
rmstol 1.5		# cluster_tolerance/A
 
write_all		# write all conformations in a cluster
 
cluster vac1.new.dlg.pdbq		# structure binning
 
analysis		# do cluster analysis on results
 
______________________________________________________________________________

        Example 3: Docking Using the Lamarckian Genetic Algorithm (LGA)

This DPF shows how to set up a docking using the genetic algorithm (GA) in combination with the pseudo-Solis and Wets local search algorithm (psw1). This is also known as the Lamarckian Genetic Algorithm or LGA.

 
______________________________________________________________________________
 
 
seed    time pid		# for random number generator
 
types   CANH 		# atom type names
 
fld     3ptb.maps.fld 		# grid data file
 
map     3ptb.C.map		# C-atomic affinity map
 
map     3ptb.A.map		# A-atomic affinity map
 
map     3ptb.N.map		# N-atomic affinity map
 
map     3ptb.H.map		# H-atomic affinity map
 
map     3ptb.e.map		# electrostatics map
 
 
move    benA.pdbq		# small molecule
 
about   -1.853 14.311 16.658		# small molecule center
 
tran0   random		# initial coordinates/A or "random"
 
quat0   random		# initial quaternion or "random"
 
ndihe   0		# number of initial torsions
 
dihe0   random		# initial torsions
 
torsdof 0 0.3113		# num. non-H tors.degrees of freedom & coeff.
 
tstep   0.2		# translation step/A
 
qstep   5.		# quaternion step/deg
 
dstep   5.		# torsion step/deg
 
trnrf   1.		# trans reduction factor/per cycle
 
quarf   1.		# quat reduction factor/per cycle
 
dihrf   1.		# tors reduction factor/per cycle
 
intnbp_r_eps  4.00 0.0222750  12  6			#C-C lj
 
intnbp_r_eps  4.00 0.0222750  12  6			#C-A lj
 
intnbp_r_eps  3.75 0.0230026  12  6			#C-N lj
 
intnbp_r_eps  3.00 0.0081378  12  6			#C-H lj
 
intnbp_r_eps  4.00 0.0222750  12  6			#A-A lj
 
intnbp_r_eps  3.75 0.0230026  12  6			#A-N lj
 
intnbp_r_eps  3.00 0.0081378  12  6			#A-H lj
 
intnbp_r_eps  3.50 0.0237600  12  6			#N-N lj
 
intnbp_r_eps  2.75 0.0084051  12  6			#N-H lj
 
intnbp_r_eps  2.00 0.0029700  12  6			#H-H lj
 
outlev  1		# diagnostic output level
 
rmstol  0.5		# cluster tolerance/A
 
rmsref  benA.pdbq		# reference structure for RMS calc.
 
write_all		# write all conformations in a cluster
 
extnrg  1000.		# external grid energy
 
e0max   0. 10000		# max. allowable initial energy, max. num. retries
 
 
ga_pop_size 50		# number of individuals in population
 
ga_num_evals 150000		# maximum number of energy evaluations
 
ga_num_generations 27000		# maximum number of generations
 
ga_elitism 1		# num. of top individuals that automatically survive
 
ga_mutation_rate 0.02		# rate of gene mutation
 
ga_crossover_rate 0.80		# rate of crossover
 
ga_window_size 10		# num. of generations for picking worst individual
 
ga_cauchy_alpha 0		# ~mean of Cauchy distribution for gene mutation
 
ga_cauchy_beta 1		# ~variance of Cauchy distribution for gene mutation
 
set_ga		# set the above parameters for GA
 
 
sw_max_its 300		# number of iterations of Solis & Wets local search
 
sw_max_succ 4		# number of consecutive successes before changing rho
 
sw_max_fail 4		# number of consecutive failures before changing rho
 
sw_rho 1.0		# size of local search space to sample
 
sw_lb_rho 0.01		# lower bound on rho
 
ls_search_freq 0.06		# probability of performing local search on an indiv.
 
set_psw1		# set the above pseudo-Solis & Wets parameters
 
 
ga_run 10		# do this many hybrid GA-LS runs
 
analysis		# do cluster analysis on results

______________________________________________________________________________