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ABSTRACT
Motivation: The development of chemoinformatics has been hampe-
red by the lack of large, publicly available, comprehensive repositories
of molecules, in particular of small molecules. Small molecules play a
fundamental role in organic chemistry and biology. They can be used
as combinatorial building blocks for chemical synthesis, as molecu-
lar probes in chemical genomics and systems biology, and for the
screening and discovery of new drugs and other useful compounds.
Results: We describe ChemDB, a public database of small molecu-
les available over the Web. ChemDB is built using the digital catalogs
of over a hundred vendors and other public sources and is annotated
with information derived from these sources as well as from com-
putational methods, such as predicted solubility and 3D structure.
It supports multiple molecular formats and is periodically updated,
automatically whenever possible. The current version of the database
contains approximately 4.1 M commercially available compounds, 8.8
M counting isomers. The database includes a user-friendly graphical
interface, chemical reactions capabilities, as well as unique search
capabilities.
Availability: Database, datasets, and supplementary materials
available through: http://cdb.ics.uci.edu.
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
The development of chemoinformatics has been greatly hampered
by the lack of publicly available, comprehensive, datasets of mole-
cules (Marris, 2005), of large-scale collaborative projects to anno-
tate these molecules, and of efficient tools to rapidly sift through
large chemical repositories. Suffice it to say that no repository of
all known organic molecules and their properties is publicly availa-
ble and downloadable over the Internet. To draw a simple analogy
with bioinformatics, the chemoinformatics equivalent of GenBank
and Blast are still to be created. To begin addressing these problems,
at least for organic chemistry, we describe ChemDB, a public data-
base available over the Web and containing over 4.1 million small
molecules.

Small molecules with at most a few dozen atoms play a funda-
mental role in organic chemistry and biology. They can be used
as combinatorial building blocks for chemical synthesis (Schreiber,
2000; Agrafiotis et al., 2002), as molecular probes for perturbing
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and analyzing biological systems in chemical genomics and systems
biology (Schreiber, 2003; Stockwell, 2004; Dobson, 2004), and for
the screening, design, and discovery of useful compounds. These
include of course new drugs (Lipinski and Hopkins, 2004; Jonsdottir
et al., 2005), the majority of which are small molecules. Further-
more, huge arrays of new small molecules can be produced in a
relatively short period of time (Houghten, 2000; Schreiber, 2000).

As datasets of small molecules become available, it is crucial
to organize these datasets in rapidly searchable databases and to
develop computational methods to rapidly extract or predict useful
information for each molecule, including its physical, chemical, and
biological properties. Conversely, large and well-annotated datasets
are essential for developing statistical machine learning methods
in chemoinformatics, whether supervised or unsupervised, inclu-
ding predictive classification, regression, and clustering of small
molecules and their properties (e.g. Micheli et al. (2003); Ralaivola
et al. (2005)). Aggregation and organization of datasets of chemical
information allows for massive in silico processing that would be
impractical or even impossible in a traditional experimental setting.

Consider, for instance, a classical drug discovery problem where
the starting point is a protein of known structure and perhaps a
corresponding ligand (Figure 1). With a good database of small
molecules, the discovery process can proceed from both ends. Star-
ting from the protein, one can dock millions of small molecules
to the protein in silico. In fact, with sufficient computing power,
one ought to be able to dock all known small molecules to all pro-
teins with known structure contained in the PDB (Berman et al.,
2000). Starting from the ligand, one can search the database of
small molecules for compounds that are “similar” to the known
ligand(s), where similarity can be defined in different ways. In both
approaches, additional filters can be used to eliminate molecules that
are, for instance, poorly soluble, too flexible, or toxic (Swamidass
et al., 2005). Furthermore, in silico chemical reactions applied to the
molecules in the database can further expand the space of interesting
molecules being screened or designed.

Most large databases of small molecules, such as MDL’s Availa-
ble Chemicals Directory (ACD) or American Chemical Society’s
CAS registry, are privately owned, expensive, and often availa-
ble only through restricted interfaces that are not suitable for the
development of statistical methods. A few datasets of small mole-
cules, such as the NCI (National Cancer Institute) open database,
are available publicly. However, in general these are limited in size,
with on the order of 103 to 105 compounds (Voigt et al., 2001).
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Fig. 1. High-level view of a basic drug screening/design pipeline. R =
receptor protein; M = molecular ligand(s); NM = new molecular ligands;
RChemDB = set of compounds derived from ChemDB using a library of
reactions. NM is obtained by molecular docking applied to R, or by cons-
trained similarity searches applied to M. Computational filters can be used
to predict and constrain molecular properties (e.g. flexibility, solubility,
toxicity).

Furthermore, efforts towards public databases must face fierce oppo-
sition from the ACS (Marris, 2005; Kaiser, 2005a,b). Given the
importance of small molecules, ChemDB aims to address the data
bottleneck in the current environment by integrating existing public
datasets with datasets originating from dozens of chemical ven-
dors. These datasets are integrated into a database containing on
the order of 107 compounds, available over the Web with a unique
combination of chemoinformatics resources.

2 METHODS

2.1 Data Sources, Formats, and Size
ChemDB is a chemical information database system grown out of an
aggregation of multiple information sources, primarily commercial
vendor catalogs, but also publicly available repositories (e.g. NCI).
For vendors and other sources that periodically update their data
and make them available over the Internet, we automatically dow-
nload the data and resynchronize the latest updates into ChemDB.
For other sources that currently distribute their data only through
CDs, we contact them periodically for updates. Complete infor-
mation about all the vendors is available from the supplementary
materials. In total, the current database contains about 4.1 M uni-
que compounds, 8.8 M counting isomers, aggregated from over 115
sources.

Molecules come with multiple representations and formats
(Figure 2) including 1D SMILES strings (Weininger et al., 1989;
James et al., 2004), 2D graphs of atoms and bonds, 3D atom coordi-
nates (SDF or MOL2 files), and fingerprints (Fligner et al., 2002;
Flower, 1998; Ralaivola et al., 2005), all of which are stored in
ChemDB. We have developed scripts to automatically parse input

data, run different tests, and populate the database. To populate
the database, all datasets are first converted to the SDF format
because of its standardized annotation mechanism. However, con-
version between several popular molecular file formats, including
SMILES, MDL Mol, PDB, Tripos Sybyl mol2, and SDF is easily
accomplished using OpenEye Software’s OEChem toolkit (http:
//www.eyesopen.com), or the open-source alternative, Open-
Babel. Additional curation and normalization steps are applied to
the data as it is inserted. For instance, 3D structures are generally not
available and are therefore predicted using the program CORINA
(Sadowski et al., 1994; Gasteiger et al., 1996).

One difficult issue for chemoinformatics systems is how to handle
stereochemistry. This issue is complicated by the absence of ste-
reochemical and geometric information from most sources, which
generally provide only the atom-bond connection table. ChemDB
currently enumerates up to n = 16 stereoisomers for each mole-
cule. This is a reasonable number since it allows listing all possible
isomers for over 97.4% of compounds in ChemDB, i.e. those with at
most 4 stereocenters and therefore at most 16 isomers (see Results).
In addition, for each isomer, ChemDB generates and stores not only
the stereochemistry specific connection table as an isomeric SMI-
LES string, but also the corresponding predicted 3D coordinates as
an SDF file. This solution allows us to specify which isomer is rele-
vant when stereochemistry is known and provides a more complete
picture for the user, in virtual docking and other applications. If
the stereoisomer is not specified, we assume that the chemical is
available as a racemic mixture. Thus, this solution provides a reaso-
nable and effective compromise in light of limited information about
molecule handedness.

In the future it may be possible to heuristically guess more rele-
vant isomers by cross-referencing structures with other database
such as the PDB PubChem and the PDB and perhaps more intelli-
gent decoding of chemical names: our database schema immediately
accommodates these extensions.

C(C(C(=O)O)N)O
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OH
NH2

OH

(b) (c)

Fig. 2. Three representations for the amino acid Serine: (a) 1D
SMILES string; (b) 2D graph of atoms and bonds; and (c) 3D space-
filling model. A fourth representation based on fingerprint vectors is
briefly described in the text.

2.2 Database Schema
The basic database schema is relationally organized and relies
upon canonical SMILES string representations for rapid indexing
and enforcement of uniqueness. The relational structure allows for
maintenance and querying of complex arrangements, such as the
many-to-many relationship between sources and the chemicals for
which they provide records. The database schema contains pri-
mary tables for sources, chemicals, and molecular descriptors and
annotations. It is described in detail in the supplementary materials.
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2.3 Implementation
The database is implemented using the leading open-source relatio-
nal database PostgreSQL (http://www.postgresql.org).
We have also built filters for conversion to Oracle and maintain
an Oracle version internally for comparison purposes. Web inter-
faces and tools are delivered using the open-source Apache Web
server. Many of the basic application tools, scripts and Web interfa-
ces are written in Python, while computationally intensive modules
are written in C or Java. Python has convenient interfaces to
important packages, like the OEChem toolkit which implements
several basic algorithms needed for chemical data processing, inclu-
ding SMARTS pattern matching and SMIRKS reaction processing.
We use OEDepict and the JMol Java applet (http://jmol.
sourceforge.net/) for chemical image rendering.

2.4 Molecular Descriptors and Example of Filters
In addition to 3D structures obtained using CORINA, we compute
and store several other molecular descriptors including: molecular
weight, number of hydrogen-bond donors, number of hydrogen-
bond acceptors, octanol/water partition coefficient log P , solvation
energy, number of rigid fragments, number of rotatable bonds, num-
ber of chiral centers, and number of chiral double bonds. For each
molecular descriptor, we include hyperlinks to the program that
was used to compute it. For instance, we compute log P values
for all compounds, using the XLogP program and the calculation
module available from ChemAxon (http://www.chemaxon.
com). Similarly, compound solvation energy is always calculated
and recorded using OpenEyes ZAP module. We also store in a simi-
lar way any additional molecular descriptors found in the vendor ’s
electronic catalogs.

The database interface allow the user to implement flexible search
filters by specifying thresholds or ranges for any combination of
these molecular descriptors. For example, Lipinskis rules of five
(Lipinski et al., 1997) are often used as criteria for drug oral bio-
availability. These rules correspond to molecular mass less than 500
daltons; number of hydrogen-bond donors less than 5; number of
hydrogen-bond acceptors less than 10; and octanol/water partition
coefficient log P (an indication of the ability of a molecule to cross
biological membranes) less than 5. If two or more of those criteria
are out of range, the compound is likely to have poor absorption or
permeability. The cutoffs in the rules can be tightened or relaxed in
the interface to allow for flexible searches as well as computational
and experimental errors, especially in the computational determi-
nation of the partition coefficient. As an alternative, one can easily
use the set of rules proposed in Veber et al. (2002). By examining
oral bioavailability in rats for over 1100 drug candidates, Veber et
al. concluded that only two structural variables control this crucial
property: molecular flexibility, measured by the number of rotata-
ble bonds, and polar surface area, expressed as the sum of hydrogen
bond donors and acceptors. These studies indicate that drug can-
didates with 10 or fewer rotatable bonds and a polar surface area
equal to or less 140Å2 (equivalent to 12 or fewer H-bond donors
and acceptors) will exhibit favorable oral bioavailability.

It is important to recognize, however, that the Lipinski and Veber
rules are not absolute (Frimurer et al., 2000) and that oral bioavaila-
bility is only one of many potentially important criteria. New modes
of drug delivery have entered clinical practice recently and will
likely continue to do so in the future. Thus, even within the limited

chemoinformatics goals of drug screening, the ChemDB interface
provides the user with a wide array of filters and threshold values to
be tailored to different problems and searches.

2.5 Vendor/Source Descriptors and Experimental
Annotations

We store the name, contact information, and date of the latest update
for each vendors dataset in the database. In addition, we incorpo-
rate any annotation provided in the vendor’s digital catalogs. These
annotations range in utility and their presence can vary greatly from
vendor to vendor. Annotations provided typically include: purchase
price, English name, CAS registry number, experimentally deter-
mined octanol-water partition coefficient, amount available, purity,
melting point, heteroatoms, and net charge. For a smaller fraction of
compounds, additional miscellaneous information is available from
the vendors, ranging from literature references, to boiling points,
to possible activity (e.g. Interleukin agonist). We flag any expe-
rimentally derived annotation provided by the vendors or present
in some of the public datasets (e.g. NCI). Finally, we also flag
FDA-approved drugs for reference.

2.6 Similarity Search Methods and Kernels
As in the case of bioinformatics, once large repositories of small
molecules are assembled, the next fundamental step for chemo-
informatics is the definition and fast implementation of similarity
measures. This is fundamental for two reasons: (1) to enable rapid
and meaningful searches through million of records; and (2) to
enable supervised and unsupervised predictive methods that are
based on similarity measures, from clustering to kernel methods
(Schölkopf and Smola, 2002).

Similarity measures between small molecules can be defined in
several different ways and by leveraging different representations.
In Swamidass et al. (2005), several similarity measures are descri-
bed and assessed using spectral representations and spectral kernels,
i.e. similarity measures derived by comparing the occurrence of
substructures, such as substrings in SMILES strings, paths in 2D
atom-bond graphs, and histograms of atomic distances in 3D. While
these and other similarity measures are under investigation, at this
point the 2D similarity measures yield the best results and are used
extensively in ChemDB. These measures are based on fixed-size fin-
gerprint vectors counting the presence (or number of occurrences)
of labeled paths in a molecule (see Swamidass et al. (2005) and
references therein for details). Binary fingerprint representations
of typical length 512 or 1024, combined with efficient bit-wise
algorithms, yield fast search algorithms.

2.7 Web Interface
The speed with which the bit-wise algorithm can sequentially search
millions of chemical fingerprints makes the ChemDB available for
queries through a Web interface, where users can enter query mole-
cule(s) in any standard molecular file format with several additional
options. These novel options include the ability to search by a selec-
tion of ranges for the primary annotations (e.g. number of rotatable
bonds), by substructures and superstructures with or without cons-
traints on the presence or absence of particular groups or other
features (masks), and by “profile”, using a group of related mole-
cules rather than a single molecule as the query. The current version
of profile search maximizes the sum of the similarities to each of the
query structures. Alternatives under investigation include building a
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profile fingerprint vector and using alternative measures, such as the
maximum of the pairwise similarities between a molecule and the
structures in the query set.

2.8 In Silico Chemical Reactions: RChemDB
The repositorys size can be expanded further by considering vir-
tual compounds that can be synthesized from building-blocks in the
ChemDB, which are readily available through the vendors. This can
be achieved by annotating functional groups and applying in silico
reactions to the current dataset. Implicit or explicit functional group
annotation is derived using the SMARTS pattern method (James
et al., 2004) with the OEChem implementation. The SMARTS
pattern method is essentially a subgraph isomorphism algorithm
applied to a molecule represented as a graph of labeled atoms and
bonds. This method provides precise search results, but is compu-
tationally intensive and therefore not suitable for interactive use. In
comparison, the fingerprint bit vector approach may have a slightly
higher rate of false positives but is much faster and therefore more
suitable for interactive use. Furthermore, unlike a simple SMARTS-
based approach which only provides a binary result–depending on
whether a given substructure is present or not in a given structure–
a fingerprint-based approach provides a real-valued similarity score
between any two structures.

Once functional groups have been identified, combinatorial reac-
tions that specify which groups can react are defined by the
Daylight SMIRKS specification (James et al., 2004). Examples
of reactions currently implemented include: Amide Formation,
Buchwald-Hartwig, Cyanation of Aromatic Halides, DielsAlder,
Ester Formation, Grignard, GrubsReaction, Heck, Hiyama, Negishi,
Phosphodiester Formation, Sonogashira, Suzuki, and SwernOxi-
dation. RChemDB denotes the set of virtual molecules that can
be generated from ChemDB by iterative applications of a library
of in silico reactions. It is essential to note that as the reactions
are iterated, the number of compounds grows exponentially. Thus
RChemDB itself is virtual in the sense that we can generate and
conduct directed searches of its compounds, but these are not sto-
red directly into ChemDB. An example of application of RChemDB
is small chemical refinement of a basic lead or scaffold, by letting
the scaffold structure react with all of the very small molecules in
ChemDB, e.g. with less than 10 atoms. These correspond to slightly
less than 1% of ChemDB.

2.9 Additional Datasets
In addition to particular subsets that can be extracted from ChemDB,
we also maintain on a Web page associated with the ChemDB a
list of downloadable datasets that can be used as training/validation
sets in unsupervised or supervised machine learning and other com-
putational experiments. These are also hyperlinked with the UCI
Machine Learning Repository.

3 RESULTS

3.1 Statistics
ChemDB allows us to compute several useful statistics on small
molecules, such as the histogram counting the number of molecu-
les with a given number of stereocenters (supplementary materials).
A molecule with k stereocenters generally yields 2k isomers or
less. This is because isomers are based on stereocenters that gene-
rally have two configurations. The number of isomers can be less
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Fig. 3. Histogram of several molecular descriptors calculated for all che-
micals in ChemDB (unique records). Properties covered here include chiral
atoms and chiral bonds to identify structures that can exhibit stereochemistry,
rotatable bonds and rigid segments as a measure of molecular flexibility,
and H-bond donors and H-bond acceptors based on Lipinski’s definitions
of hydrogens attached to a nitrogen or oxygen (donor) and any nitrogen or
oxygen (acceptor).

than 2k due to geometric clashes or redundant combinations of ste-
reocenters. The majority of chemicals in the system (2.5M) have
no stereocenters, which explains why although CORINA is set
to determine up to 16 isomers per chemical, the number of iso-
mers (7.4 M) is only about twice the number of unique records.
In fact, 97.4% of the chemicals in ChemDB have at most 4 ste-
reocenters, resulting in at most 16 configurations, and thus all
their isomers are stored in ChemDB. Using values k = 5 or
k = 6 would increase the coverage only marginally to 98.3% and
99.2% respectively. For the small minority of compounds that have
more than 4 stereocenters, rather than pre-computing and storing
all configurations, a random sample of 16 isomers is precompu-
ted and stored in ChemDB. Additional isomers can be generated
on a per-request-basis. Finally, at the extreme end of the distribu-
tion, there are currently 27 chemicals with 50 or more stereocenters.
The top 4 (Cyanovirin, Heptakis-(6-O-maltosyl)-β-cyclodextrin, D-
Alanyl-lipoteichoic acid, and Scytovirin) have 111, 105, 86, and 86
stereocenters, respectively. Enumerating all of the isomers for the
first chemical alone would yield potentially 2111 ≈ 1033 possible
configurations. It is worth noting, however, that the majority of the
chemicals in this tail are natural products, or natural product deriva-
tives. Thus only one or two isomers of each chemical are likely to
exist in nature and be available from vendors.

ChemDB histograms for other molecular descriptors including
the number of chiral bonds, chiral atoms, H-bond donors, H-
bond acceptors, rotatable bonds, and rigid segments per molecule
are shown in Figure 3. Additional pairwise statistics, displaying
for instance the weak correlation betwen molecular weight and
(predicted) solubility, are given in the supplementary materials.
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Fig. 4. SMIRKS reaction specification (Carboxylic acid + amine
>> amide): Depiction of SMIRKS reaction for amide formation:
[O:1]=[C:2][O:3][H:7].[H:8][N:4][H:5]>>[O:1]=[C:2][N:4][H:8].

Fig. 5. dATP and di-dATP as an example of using reaction processing tools
to identify polymer candidates. dATP passes the simple polymer screen
because it can react with itself to yield a product with the same properties,
forming the initial components of a DNA polymer.

3.2 In Silico Reactions
Examples of simple reaction processing capabilities implemented
in ChemDB are given in Figures 4 and 5. Figure 4, derived from
the ChemDB interface, shows how amino groups and carboxylic
acids react to form an amide bond. Besides expanding the data set
by predicting reaction products, the reaction processing capabili-
ties can be applied to other novel purposes. For example, they can
be used as part of a screen for potential polymer components. A
simple polymer screen–identifying candidates that can at least self-
polymerize–is accomplished by identifying each molecule which,
given a library of reactions, can iteratively react with itself and with
the products of these reactions. Figure 5 shows how DNA can be
“rediscovered” in ChemDB using a simple polymer screen.

3.3 Web Interface and Searches
Figure 6 depicts a composite screenshot from the ChemDB interface
upon performing an integrated chemical similarity search. Shown
inset on the left is the structure for a chemical known to be an inhibi-
tor of monoacylglycerol lipase (MGL), an intracellular serine hydro-
lase that catalyzes the hydrolysis of 2-arachidonoylglycerol (2-AG),
a primary endogenous cannabinoid in the mammalian brain. Recent
studies suggest an MGL inhibitor can mediate opioid-independent
stress-induced analgesia, identifying MGL as an important drug tar-
get (Hohmann et al., 2005). In an effort to find additional inhibitors
in collaboration with chemists and pharmacologists (Drs. Cham-
berlin and Piomelli), ChemDB was searched for chemicals with
structural similarity to a known inhibitor. In this case similarity
is computed using the Tversky measure (Tversky, 1977; Rouvray,
1992) applied to the binary fingerprints. Based upon a mechanistic
understanding of the inhibitor, our collaborators provided feed-
back suggesting that chemicals of interest may not require complete

structural similarity to the original chemical. Instead, the two struc-
tures shown in the sketcher window in the top left, should be contai-
ned as sub-structures/functional groups of the desired structure. As
shown in the figure, beyond substructures, the search can be further
refined by restricting the ranges of several molecular descriptors,
in this case the number of rotatable bonds, predicted XLogP, and
molecular weight. The particular set of values selected in this exam-
ple reflect a customized combination of Lipinski’s and Veber’s rules.
All compounds are ranked in decreasing order of similarity, but only
the top 3 results are shown here together with their similarity score
and basic information, including corresponding vendor. The inter-
face also displays a dynamically generated histogram representing
the similarity score distribution for every chemical in the database
relative to the original structure on a logarithmic scale. After human-
expert examination, several top hits obtained from these searches
have been ordered from the corresponding vendors and are being
tested in the laboratory.

4 DISCUSSION
While most commercial databases of small molecules have sizes
smaller or comparable to ChemDB, there exist a few that are larger,
notably the CAS registry of the American Chemical Society (ACS)
with the related SciFinder tool. While these commercial databases
may contain useful information, they do not always provide flexi-
ble chemoinformatics tools or interfaces. For instance, even in the
ACS database, queries are allowed only one compound at a time
and the full database is not downloadable. As in bioinformatics with
Genbank or PDB, queries performed one item at a time may be satis-
factory for many users, but researchers involved in the development
and application of large-scale datamining methods need full access
to the entire corpus of data. Furthermore, the cost of these commer-
cial databases is often very significant, at least from an academic
standpoint.

To address the data bottleneck created in part by the ACS, public,
downloadable, chemical repositories have begun to emerge. In
addition to NIH’s PubChem, (http://pubchem.ncbi.nlm.
nih.gov), examples of other public database efforts related to
ChemDB include Harvard’s ChemBank (Strauseberg and Schreiber,
2003), UCSF’s ZINC (Irwin and Shoichet, 2005), and the European
Bioinformatics Institute’s ChEBi (http://www.ebi.ac.uk/
chebi). While in the long run some degree of consolidation among
these efforts can be expected–we are currently depositing ChemDB
compounds into PubChem–in the short run a diversity of efforts with
different aims and approaches allows the exploration of different
solutions and tradeoffs. Indeed, the existing databases have slightly
different goals and properties, in terms of size, focus, availability,
and informatics algorithms for searching and other operations. At
the time of this writing, for instance, Pub Chem and ChemBank
are smaller in size (approximately 1 M compounds) with a grea-
ter emphasis on literature references (PubChem) and experimental
bioactivity annotation (Chembank). Unlike the other public data-
bases, PubChem and ChemBank allow also searching compounds
by English names. ChemBank, however, is not fully downloadable.
ZINC is fully downloadable and perhaps closest in size and spirit
to ChemDB, with a primary focus on structure download to facili-
tate docking. Unlike ZINC and other public repositories, ChemDB’s
focus goes beyond drug discovery and includes the development
of new computational tools for annotating, searching, and mining
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Fig. 6. Composite screenshot example of an integrated search. The two structures shown in the sketcher window in the top left are simultaneously considered
in a similarity search, but only as sub-structures/functional groups. The substructure bias is accomplished by setting the alpha and beta parameters of the
Tversky similarity measure to 0.9 and 0.1, respectively. Results are ranked by similarity score, ranging from 0.0 to 1.0. Below each raw similarity score is
the corresponding z-score (i.e. the number of standard deviations away from the mean of similarity scores for all known chemicals in the database). The
similarity search is integrated with standard filters like those shown to restrict the results by number of rotatable bonds, predicted XLogP, and molecular
weight. More generally, using the drop-down menu, the user can specify ranges for combinations of 14 molecular descriptors (H-Bond Acceptors, H-Bond
Donors, Molecular Weight, LogP, XLogP, Heavy Atoms, Rotatable Bonds, Chiral Atoms, Chiral Bond, Rigid Segments, Solvation Energy, Solvation Area,
Solvation Total, Solvation Coulombic). A few top results for this search are shown. Shown on the left is a dynamically generated histogram representing the
similarity score distribution for every chemical in the database, with respect to the original search structure shown inset with the histogram. Note that the
histogram is displayed on a logarithmic scale and that the blocks corresponding to the first”page” worth of results (top 10) are automatically highlighted.

large repositories of chemical data. In particular, the current flexible
search capabilities found in ChemDB are unique and so are its che-
mical reaction capabilities, among publicly available databases. A
table in the supplementary materials summarizes some of the trade-
offs between these synergistic public efforts. Such a table, however,
quickly becomes outdated as all of these repositories are undergoing
rapid evolution.

Chemical descriptors and annotations are clearly essential for
exploring chemical space directly, as well indirectly for the develop-
ment of efficient computational annotation methods. Many mole-
cular descriptors described here, such as molecular weight and
number of rotatable bonds, are precisely defined and can be com-
puted exactly. Other computational annotations, such as the degree
of solubility (log P ) or 3D structures, are noisy and subject to closer
scrutiny. In particular, the predicted 3D structures are important but
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of some concern since we, and other authors, have noted that predic-
tive methods based on 3D structure can be outperformed by methods
based on 2D structure alone (Swamidass et al., 2005). While pre-
dicting the structure of small molecules is easier than predicting
the structure of proteins, it is still essential to run large-scale tests
to assess the quality of those predictions and whether they can be
used reliably. For this purpose, we have recently acquired a license
to the Cambridge Structural Database system, another commercial
repository, containing the experimentally determined 3D structu-
res of about 300,000 molecules to validate the quality of predicted
structures.

A related important problem arises with stereochemistry. In
ChemDB we have adopted the solution of storing up to 16 isomers
for each compound, but we currently do not test for the relevance
or synthetic feasibility of these compounds. In the future it may
be possible to heuristically guess more relevant isomers by cross-
referencing structures with other database such as PubChem and the
PDB and perhaps more intelligent decoding of chemical names: our
database schema immediately accommodates these extensions. As
far as synthetic feasibility, it is an important criterion that should
also be implemented in the future. Currently, we believe the enu-
meration of theoretical compounds has value in and of itself, as
we are not just interested in cataloging known compounds but also
pushing the boundaries of knowledge towards potential compounds
for a better understanding of chemical space. Even from a prac-
tical standpoint, a theoretical compound found to be of particular
value in a docking study, for instance, may spur the interest of
chemists towards its synthesis. Without enumeration of theoreti-
cal compounds, this particular compound would have not even been
considered. Furthermore, these theoretical compounds are not ran-
dom but logically derived by computational methods that stack the
odds in favor of finding a reasonable synthetic pathway.

Finally, the scarcity of publicly available chemical annotation
points to the need for new approaches to chemical annotation that
could include: (1) development of automated information retrieval
systems to derive annotations from chemical literature; (2) sharing
of private or commercial annotation by, for instance, the ACS or
large pharmaceutical companies; and (3) development of collabora-
tive, coordinated, and large-scale annotation efforts across academic
centers, similar to those used in the other life sciences. Coupling
public databases with public annotation efforts will lead in time to
repositories that may allow predictive chemical informatics to blos-
som and develop tools to fully explore chemical space, from drug
discovery, to new materials, to the origin of life.
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