
A Wireless Sensor Network For Structural Monitoring ∗

Ning Xu
† ‡

Sumit Rangwala
†

Krishna Kant Chintalapudi
†

Deepak Ganesan
§

Alan Broad
¶

Ramesh Govindan
†

Deborah Estrin
§

ABSTRACT
Structural monitoring—the collection and analysis of structural re-
sponse to ambient or forced excitation–is an important application
of networked embedded sensing with significant commercial po-
tential. The first generation of sensor networks for structural mon-
itoring are likely to bedata acquisition systemsthat collect data
at a single node for centralized processing. In this paper, we dis-
cuss the design and evaluation of a wireless sensor network sys-
tem (called Wisden) for structural data acquisition. Wisden in-
corporates two novel mechanisms,reliable data transportusing a
hybrid of end-to-end and hop-by-hop recovery, and low-overhead
data time-stampingthat does not require global clock synchroniza-
tion. We also study the applicability of wavelet-basedcompression
techniques to overcome the bandwidth limitations imposed by low-
power wireless radios. We describe our implementation of these
mechanisms on the Mica-2 motes and evaluate the performance of
our implementation. We also report experiences from deploying
Wisden on a large structure.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Wireless commu-
nication; C.3 [Special-Purpose and Application-Based Systems]:
Embedded Systems

∗This material is based upon work supported by the National Sci-
ence Foundation under Grants No. 0121778 (Center for Embedded
Networked Systems) and 0325875 (ITR: Structural Health Moni-
toring Using Local Excitations and Dense Sensing). Any opinions,
findings and conclusions or recomendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation (NSF).
†Computer Science Department, University of Southern California,
{nxu, srangwal, chintala, ramesh }@usc.edu
‡Current Affiliation - Center for Embedded Networked Sensing,
Los Angeles
§Computer Science Department, University of California, Los An-
geles{deepak, destrin }@cs.ucla.edu
¶Crossbow Technology Inc.abroad@xbow.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’04,November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011 ...$5.00.

General Terms
Reliability, Design

Keywords
Sensor Network, Structural Health Monitoring, Wisden

1. INTRODUCTION
Structural health monitoring systems seek to detect and local-

ize damage in buildings, bridges, ships, and aircraft. The design
of such systems is an active and well-established area of research.
When built, such systems would infer the existence and location
of damage by measuring structural response to ambient or forced
excitation. Wireless sensor networks are a natural candidate for
structural health monitoring systems, since they enable dense in-
situ sensing and simplify deployment of instrumentation. However,
techniques for damage assessment are quite complex, and practical
wireless networked structural health monitoring systems are sev-
eral years away.

Wireless sensor networks do have a more immediate role to play
in structural monitoring. Advances in structural engineering de-
pend upon the availability of many detailed data sets that record
the response of different structures to ambient vibration (caused,
for example, by earthquakes, wind, or passing vehicles) or forced
excitation (delivered by large special-purpose shakers). Currently,
structural engineers use wired or single-hop wirelessdata acqui-
sition systemsto acquire such data sets. These systems consist of
a device that collects and stores vibration measurements from a
small number of sensors. However, power and wiring constraints
imposed by these systems can increase the cost of acquiring these
data sets, impose significant setup delays, and limit the number
and location of sensors. Wireless sensor networks can help address
these issues.

In this paper, we describe the design of Wisden, awireless sen-
sor network system for structural-response data acquisition. Wis-
den continuously collects structural response data from a multi-hop
network of sensor nodes, and displays and stores the data at a base
station. Wisden can be thought of as a first-generation wireless
structural monitoring system; it incorporates some in-network pro-
cessing, but later systems will move more processing into the net-
work once the precise structural monitoring applications are better
understood. In being essentially a data collection system, Wisden
resembles other early sensor networks such as those being deployed
for habitat monitoring [10].

While the architecture of Wisden is simple—a base station cen-
trally collecting data—its design is a bit more challenging than that
of other sensor networks built till date. Structural response data
is generated athigher data ratesthan most sensing applications

(typically, structures are sampled upwards of 100 Hz). Further-
more, this application requiresloss intolerant1 data transmission,
and time synchronizationof readings from different sensors. The
relatively low radio bandwidths, the high packet loss rates observed
in many environments [21], and the resource constraints of existing
sensor platforms add significant challenges to the design of Wis-
den.

In this paper, we discuss the design and implementation of Wis-
den. Wisden currently uses avibration card, especially designed
for structural applications. In addition to describing this card, our
description of Wisden focuses on its three novel software compo-
nents:

Reliable Data Transport Wisden uses existing topology manage-
ment techniques to construct a routing tree [20], but imple-
ments a hybrid error recovery scheme that recovers packet
losses both hop-by-hop and end-to-end.

Compression Wisden uses a simple run-length encoding scheme
to suppress periods of inactivity in structural response, but
we also evaluate the feasibility of wavelet compression tech-
niques to reduce Wisden’s data rate requirements and to im-
prove latency.

Data Synchronization Wisden also implements a data synchro-
nization scheme that requires little overhead and avoids the
need to synchronize clocks network-wide.

For each of these components, we evaluate its performance through
experiments on the motes. We also report experiences from a small
deployment of Wisden on a real structure.

Our choice of platform (Mica2 motes, Chipcon radios) is largely
dictated by availability of interface hardware (e.g., the vibration
card). However, as these platforms evolve to using perhaps ARM-
based processors and Zigbee radios, we do not see the need for our
proposed mechanisms going away. Rather, such an evolution (par-
ticularly to higher-bandwidth radios) will help increase the scale
of Wisden deployments. One kind of platform we have explicitly
not considered are more powerful processors equipped with 802.11
radios. While there has been some work on using high-powered
radios as cable replacements in wired instrumentation systems [9],
these platforms are significantly more energy-intensive, and have
less software support for multi-hopping (which can increase de-
ployment flexibility).

2. BACKGROUND AND MOTIVATION
In this section, we first discuss the requirements of structural

monitoring and describe devices used to measure structural response.
We then discuss structural data acquisition systems, their capabil-
ities and their shortcomings. This sets the stage for the design of
Wisden, which we discuss in the next section.

2.1 Sensing Structural Response
Structural engineers use different kinds of sensors to monitor

structures: displacement sensors, strain gauges, and accelerome-
ters, to name a few. While Wisden can be used with displacement
sensors and strain gauges, we focus in this paper on an accelerometer-
based system. Accelerometers measure, as the name suggests, ac-
celerations of the surface they are mounted on. Accelerations are
translated into changes in capacitance or in other electrical proper-
ties. These analog signals are then sampled at a specified frequency.
1We should note that Wisden’s silence suppression technique is
lossy, but the system attempts to deliver useful structural vibration
data reliably.

From a structural engineering standpoint, accelerometers are char-
acterized by several performance parameters: sensitivity, which
denotes the smallest measurable acceleration and is expressed in
g’s (gravitational acceleration); dynamic range, which denotes the
range of accelerations that the device is capable of measuring and
is also expressed ing’s; and noise, which is measured either as an
RMS value, or is expressed as a function of the frequency of vibra-
tion.

From a software designer’s perspective, the output of an accelerom-
eter is a time series of sensor readings with a specified resolution
and a specified sampling rate. Strictly speaking, these are param-
eters associated with the analog-to-digital circuitry attached to an
accelerometer, but they nevertheless constrain the performance of
the accelerometer. The resolution constrains the sensitivity of an
accelerometer; a 10-bit accelerometer whose dynamic range is 1g
cannot have a sensitivity less than 1mg. The sampling rate, on the
other hand, governs the frequencies that can by measured by the
accelerometers.

Accelerometers are used for a wide variety of applications. For
monitoring large structures, though, it is generally considered suf-
ficient to have a dynamic range of 1-2g’s, a sensitivity in theµg
range and low noise characteristics. This translates to a sampling
resolution of at least 16 bits per sample. Finally, since many struc-
tural engineering methods monitor the frequency response of struc-
tures (which are usually focused in the tens of Hz), a sampling rate
of 100 Hz is considered to be a minimum requirement.

Thus, from our perspective, an accelerometer might be modeled
as a device that generates about 100 2-byte samples asecond. More
generally, a single sensor node might be attached to an accelerom-
eter capable of measuring accelerations along three axes. Such tri-
axial accelerometers are capable of generating about 600 bytes a
second, which is a significant fraction of the bandwidth of current
and future low-power wireless radios such as the Chipcon CC1000,
and the Zigbee (IEEE 802.15.4) radios.

2.2 Structural Data Acquisition Systems
Accelerometers (or displacement sensors and strain gauges, for

that matter) collect structural response from a single location on
a large structure. Structural engineers would like to collect data
from tens or hundreds of locations. A long-term goal of such an
instrumentation infrastructure is an on-line system for damage de-
tection and localization. In such a system, structural response from
different locations can be used to parametrize a model of the struc-
ture; when damage occurs, the parameters of this model change,
allowing the system to infer the existence (and possibly location)
of damage. Practical damage detection and localization systems are
several years away. As an aside, there is no inherent reason for such
systems to be centralized; wireless sensor networks employing de-
centralized detection and localization algorithms are plausible, but
are beyond the scope of this paper.

In order to develop methods for detecting and locating dam-
age, structural engineers rely on extensive data-sets of structural
response. These data-sets can help validate, benchmark, and pro-
vide intuition for such methods. Currently, these data sets are col-
lected by expensive wired (or one hop wireless) and powereddata
acquisition systems. These systems typically consist of a single
device that supports a fixed number ofchannels. Each channel
is connected to one sensor. Data acquisition systems include so-
phisticated signal conditioning, processing and analysis functions.
A simpler, and cheaper, variant of a data acquisition system is a
data logger—it lacks some of the analysis capabilities of a data ac-
quisition system, and merely provides storage and high-bandwidth
transmission capabilities for the collected data.

Data acquisition systems collect structural response either to am-
bient vibrations, or forced vibrations. Ambient vibrations can be
caused by earthquakes, or passing vehicles. In large structures such
as bridges and buildings, wind can also evoke structural response.
Obviously, systems that collect structural response to ambient vi-
brations are generally long-running, since the occurrence of signif-
icant ambients may be unpredictable. For this reason, especially
from structures under test, engineers collect structural response to
forcedvibrations. Occasionally, these are delivered by largeshak-
ers: mechanical devices with large moving parts attached to the
structure, whose motion vibrates the structure at different frequen-
cies.

In either scenario, setting up a data acquisition system is an ex-
pensive proposition and a cumbersome endeavor. Data acquisition
systems are expensive, which limits the number of points on the
structure that can be instrumented. Furthermore, installing the ca-
bling for the sensors and the power for the data acquisition sys-
tem itself is a logistical challenge. Anecdotally, engineers reckon
preparing a structure for data collection can take 2-3 weeks.

In this paper, we consider whether wireless sensor networks can
potentially replace structural data acquisition systems. Sensor de-
vices offer the freedom from cabling and associated placement con-
straints. This, together with multi-hop routing, allows a very flexi-
ble instrumentation infrastructure. On the other hand, several con-
straints of sensor networks make it difficult to design a wireless
structural data acquisition system. Most important of these is en-
ergy: not only is wireless communication energy-intensive, but
accelerometers themselves are not low-power as we discuss later.
Other challenges include limited radio bandwidths, high packet loss
in wireless environments, and lack of time synchronization. We re-
turn to these challenges later.

Given our discussions above, a wireless long-lived (for several
weeks) structural data acquisition system for measuring response to
ambient vibrations will require careful systems engineering. We do
not undertake this endeavor in this paper. Rather, we focus on the
design of a structural data acquisition system that can be deployed
for a short-term (a few hours to a day), such that it is possible to
provision adequate battery power. Usually, such a system will be
deployed in situations where forced vibrations are used to excite a
structure. In these situations, a wireless system has two advantages:
rapid deployment and flexibility. Both these advantages are evident
in the following actual episode. A transportation agency is ready to
declare a newly built bridge open, but allows a team of structural
engineers one or two days to measure structural properties by, for
example, driving a large truck through the bridge. While wiring
such a structure might take hours to days, a wireless network can be
deployed in tens of minutes. Often, the challenge in such scenarios
is not knowingwhereto instrument the structure. This is usually
because the structural characteristics may not be precisely known.
A wireless data acquisition system allows the engineers to iterate
on sensor placement to determine appropriate locations.

3. Wisden: BACKGROUND AND DESIGN
OVERVIEW

In this section, we discuss the design of Wisden, our structural
data acquisition system. We first describe the hardware that we use,
then present the abstraction that the system provides to the user,
and finally give a brief overview of how the system works. In the
subsequent sections, we describe the system internals in detail.

3.1 Hardware
Wisden uses mostly off-the-shelf hardware. Specifically, our

sensor nodes are the Mica-2s. The Mica-2 represented a conve-
nient low-power platform which already had a few software com-
ponents that we could re-use for our purpose. Although careful
power management and recording ambients was not a goal of our
project, moving in that direction is now easier since we have started
with the Mica-2. However, the memory constraints of the Mica-2
made it a slightly more difficult platform choice, since our applica-
tion is memory intensive.

Existing sensor platforms do not, however, have hardware sup-
port for high quality vibration sensing. So, Wisden uses a 16-
bit vibration card designed specifically for high-quality vibration
sensing. The card was originally designed for high-frequency (up
to 20ksps), sampling at 16 bits per sample. It consists of 4 sepa-
rate analog input channels. Each channel has sensor excitation (5V
or 18 V constant current), gain, attenuation and a programmable
anti-aliasing filter. The analog channels are interfaced to a 16-bit
analog-to-digital converter. The ADC is controlled by an on-board
microprocessor, and exhibit a sensitivity of 100mV/g.2 In turn,
the microprocessor can be commanded by an attached Mica2 mote
(which runs the Wisden software) to set the sampling rate, read
the output data, and stores the samples into an external 64K byte
SRAM.

The vibration card is designed for low power operation. Two
separate, controllable, power supplies allow the card to power up
different circuits. One of the circuits supplies power to the on-board
microprocessor and is enabled by a control line from the Mica2.
Once the microprocessor is powered, commands from the mica2
then enable analog power to the sensors and signal conditioning
circuits. Full power is only used during data acquisition; during
this time, the current draw is about 100 mA. After data is stored in
the on-board SRAM the analog power can be disabled while data
is being retrieved. Data can be retained in the SRAM at a very low
sleep current (< 50µA) until needed.

The vibration card was not specifically designed for our appli-
cation: lower frequency (100 Hz)continuoussampling. As such,
it draws rather more power than one would expect from a board
specifically designed for our application. We believe we can reduce
the current draw by customizing the board to our application us-
ing various tricks: removing the on-board microprocessor and the
SRAM, and multiplexing the signal conditioning circuitry across
the different channels. We estimate that the current draw in such a
board will be in the 40 mA range.

Finally, we modified the on-board microprocessor’s software to
permit continuous sampling. Our modified software allows peri-
odic, sample-by-sample, data acquisition and does not use the on-
board SRAM on the vibration card. Getting our new firmware
working proved to be a significant software engineering challenge
because there was a pin conflict between the vibration card and
the EEPROM which Wisden uses to store vibration samples. We
finally solved this using some tricky low-level handshaking to arbi-
trate the use of the conflicting pin.

3.2 Wisden Abstraction
The goal of Wisden is to provide the abstraction of a data acqui-

sition system (in its current form, Wisden provides the functionality
of a data logger as it lacks the on-line data processing capabilities
present in data acquisition systems). Traditional data loggers sup-
port a fixed number ofchannels. By contrast, Wisden can support
a flexible number of channels by trading off acquisition latency or
if the measured vibration activity is intermittent (see below). In all
other respects, Wisden seeks to emulate data loggers as closely as

2The accelerometer used with the vibration card provided a low
noise of 300µgrms.

possible. Of course, the implementation of Wisden is quite differ-
ent from that of traditional data loggers, as we discuss below.

A data logger or acquisition system abstraction implies that sam-
ples are centrally collected in near real-time. An alternative ap-
proach would have been to design a system where the data at each
sensor is stored at the sensor node and retrieved later manually. The
storage limitations on current platforms limit the amount of vibra-
tion data one could collect. More fundamentally, however, such a
system would be cumbersome to use. It would also not allow struc-
tural engineers to iteratively decide where to place the accelerome-
ters, a crucial requirement for data collection.

3.3 Wisden Overview
Although the abstraction presented by Wisden is simple, its de-

sign and implementation is rather challenging. A typical Wisden
deployment will consist of several tens of nodes placed at differ-
ent locations on a large structure. Each node has an attached ac-
celerometer that is capable of sensing up to three channels of vi-
bration data, with a configurable sampling rate. Abase station
provides the functionality equivalent to a data logger or acquisi-
tion unit—the ability to store samples and to provide near real-time
display of samples. Nodes self-configure to form a tree topology,
then send their vibration data to the base station, potentially over
multiple-hops.

Implicit in the data acquisition system abstraction that Wisden
provides are two essential design requirements: that the vibration
samples be deliveredreliably to the base station, and that samples
be time-synchronized. Further complicating the design of the sys-
tem is the fact that the data rates from a single sensor node can be
a significant fraction of the radio bandwidth available on current
sensor platforms. For example, a tri-axial accelerometer generat-
ing 16-bit samples at 100 Hz requires 4.8 Kbps. The Chipcon radio
nominally provides 19.9 Kbps after accounting for coding over-
head, but achievable radio data rates are closer to 10 Kbps.

Clearly, the bandwidth limitation implies that reliably delivering
everysample from tens of nodes is infeasible. Fortunately, struc-
tural engineers are content to acquire vibration data correspond-
ing to interestingevents– relatively large motions caused by earth-
quakes, high wind, or large vehicles.3 Accordingly, nodes in Wis-
den locallycompressthe data before transmitting it to the base sta-
tion. Of course, this approach serves to reduce energy usage as
well, and represent the kind of in-network processing that sensor
networks are predicated on. Our current implementation of Wis-
den incorporates a simple run-length encoding scheme, but we also
implement and evaluate more sophisticated wavelet compression
schemes. We have not yet integrated the latter into Wisden given
memory limitations.

Once the nodes generate compressed data, they transmit data to
the base station. Data transmitted by a node is rate-limited, and the
rate limits are currently manually configured (we discuss this later
in detail). Wisden nodes implement ahybrid hop-by-hop and end-
to-enderror recovery scheme to enable reliable transmission of data
to the base station. In this scheme, vibration samples are recovered,
to the extent possible, in a hop-by-hop fashion. Wisden’s error re-
covery protocol aggressively uses overhearing and piggybacking
techniques in order to detect and repair packet loss. (We can do this
because, at least in its current design, Wisden does not put nodes
or radios into low-power states.) Given high packet losses on links,

3By contrast, seismologists, who sometimes monitor structural re-
sponses to micro-tremors, usually require even low-levels of vibra-
tion to be recorded. Another interesting difference is that seismol-
ogists are interested in 24-bit data, so the current instantiation of
Wisden is insufficient for their needs.

this approach can reduce the overhead of error recovery. However,
topology changes and high packet loss rates necessitate a fallback
end-to-end recovery scheme that ensures reliable end-to-end deliv-
ery.

Finally, Wisden also implements adata time-stampingscheme
that is qualitatively different from the time synchronization schemes
discussed in the literature [3, 4]. In this scheme, as a packet is
transmitted to the base station hop-by-hop, it acquires enough tim-
ing information for the base station to determine when (by its local
clock), the corresponding samples were generated by the sending
node. In this fashion, samples corresponding to the same event, but
generated by two different nodes, can be synchronizedat the base
station4.

The rest of the paper discussed these three main components
of Wisden: reliable data transport, compression and data time-
stamping. In each section, we discuss the design of each com-
ponent, then evaluate it using our implementation. We follow this
with a section that presents preliminary measurement data from an
actual structure.

4. RELIABLE DATA TRANSPORT
The first challenge in Wisden is to reliably transmit data from

each sensor to the base station. Techniques for reliable transport in
networking are well-studied in the networking literature and Wis-
den leverages many of these techniques. In particular, Wisden uses
bothhop-by-hop and end-to-end recovery; the former is a necessary
performance optimization in wireless networks where link losses of
up to 30% are not uncommon [21].

In our current implementation of Wisden, nodes first self-organize
into a tree topology. Each node stores the generated vibration data
into its EEPROM (after run-length encoding compression, described
in the next section), and then transmits it to the base station. An
aspect closely related to reliable transport is sending rate adapta-
tion. In our current implementation of Wisden, node transmission
is rate-limited to a configured value. In this section, we describe
the topology self-configuration and data transport components of
Wisden, and evaluate its performance.

4.1 Related Work
Reliable, congestion-adaptive data transport for wireless sensor

networks is an ongoing area of research. Recently several relia-
bility protocols have been proposed. RMST [13] (Reliable Multi-
Segment Transport) is a transport layer protocol that is designed
to add reliable service on top of Directed Diffusion. RMST is a
NACK-based protocol, receiver detects loss and loss is repaired
hop-by-hop. In this respect, it most closely resembles Wisden’s
mechanisms, but because it is integrated with Diffusion, designed
for larger platforms, and optimized for recovering losses of image
fragments, it was unsuitable for our application. PSFQ [17] (Pump
Slowly, Fetch Quickly) is a hop-by-hop reliable transport protocol
designed for sensor network reprogramming. In this application,
the direction of data transfer is from a base station to all the nodes
in the network. In Wisden, data transfer is in the opposite direction.

There has also been some recent work on congestion control
for wireless sensor networks. Two examples of such work are
CODA [18] and ESRT [12]. Both these pieces of work are less
concerned with reliable data transfer from sources to sinks. Rather,
they are designed for applications in which an event may be de-
tected by correlated sources, and the system needs to avoid a degra-

4Of course, this technique generalizes easily to synchronizing sam-
ples at intermediate network nodes (e.g.,at a common ancestor in
the sink tree), but we have not implemented this in Wisden.

dation in the fidelity of reported data when congestion occurs. Also
in this vein is early work by Wooet al. [19] on rate adaptation
in sensor networks. That work considers periodic sources sending
data to a sink, and the goal is to adapt the sending rate to the per-
ceived congestion in the network. Reliable transport is not a goal
of that piece of work.

There has been much work on reliable transport in wired net-
works and wireless mobile networks. For brevity, we do not cover
that literature here.

4.2 Topology Self-Configuration
In Wisden, nodes self-organize themselves into a routing tree

rooted at the base station. This problem has been extensively stud-
ied by Wooet al. [20] who showed that it is important to use only
“good” wireless links in the tree topology in order to get good per-
formance. In their approach, nodes select parents based on packet
loss performance to potential parents. This packet loss performance
can be measured both passively (using actual data transmissions)
and actively (using probes sent by nodes).

Wisden actually leverages the software developed for [20]. It
uses the prototype called BLAST [20], which supports both tree
construction and packet delivery.5 Specifically, BLAST has two
separable components: one that performs parent selection, and an-
other that exports data transmission and reception interfaces. Wis-
den uses only the parent selection component and implements its
reliable transport on top of it. An important consequence of this
is that Wisden uses active probes and not data traffic in order to
estimate link quality. While this does not affect the correctness of
Wisden it does add additional overhead. Reducing this overhead
will be a focus in the next version of Wisden. We did not need to
modify the BLAST parent selection module at all, save for setting
application-specific parameters that control the probing rate.

4.3 Implementation of Reliable Data Trans-
port

Wisden implements a hop-by-hop NACK-based reliability scheme.
Each source stores generated vibration data in its EEPROM, then
transmits the data to its parent. Parents keep track of sequence num-
bers of packets that they receive, on a per source basis. A gap in the
sequence number of sent packets indicates packet loss. Each node
maintains a list of missing packets. When a loss is detected, a tu-
ple containing a source ID and sequence number of the lost packet
is inserted into this list. Entries in the “missing packets” list are
piggybacked in outgoing transmissions, and children infer losses
by overhearing this transmission. Nodes keep a small cache of re-
cently transmitted packets, from which a child can repair losses
reported by its parent.

Lost packets are often recovered hop-by-hop, however, two fac-
tors necessitateend-to-endrecovery. First, heavy packet losses can
lead to large missing packet lists that might exceed the memory of
the motes. We have observed this in our experiments. More fun-
damentally, a topology change could cause loss of missing packet
list information. For example, when a node selects a new parent, it
will no longer respond to repair requests for missing packets from
its previous parent.

Our end-to-endrecovery scheme is essentially implemented in
much the same way as our hop-by-hop scheme. It leverages the fact
that the base station has significantly more memory and can keep
track of all missing packets. The base station attempts hop-by-hop
recovery of a missing packet. When one of its children notices that

5BLAST is a precursor to the MintRouting TinyOS component.
For logistical reasons, Wisden uses BLAST, but we intend to mi-
grate to MintRouting soon.

AM

Loss Recovery

VirtualComm

SnoopReceive

Delete InsertInsert

Packet Receiver

Loss
Detection Radio Queue

Forward Send

Retransmit

SendMsg ReceiveMsg

Piggyback

Missing List Management

Figure 1: Block Diagram of Reliability Implementation

it has seen a packet from the corresponding source, but does not
have a cached copy of that packet, it adds that recovery request to
its missing packets list. This request is propagated downward in
this manner (using the same mechanisms described for hop-by-hop
recovery) until it reaches the source. Since the source maintains
generated packets in its EEPROM, it can repair the missing packet.

During testing, we noticed an interesting livelock in our imple-
mentation of this recovery, caused by memory constraints on the
Mica-2. When some children (particularly those who are listed in
the parent’s missing packets list) of a parent migrate to a differ-
ent parent (e.g.,when wireless link quality changes), the parent’s
missing packets list is never cleared, so that new entries cannot be
added and the system never makes progress. To avoid this, we use a
simple watchdog timer that resets the entire missing packets list at
a node. This timer is set whenever a missing packets list becomes
full, and is cleared whenever any entry is removed from the list.

Finally, if there is no radio transmission for a certain period of
time, a dummy packet with sequence numberN+1 is sent out,
whereN is sequence number of the last outgoing packet. This
dummy packet serves 3 purposes: it detects the loss of the last
packet in a stream, it triggers recovery, and maintains state about
parent-child relationships at the node’s children.

Most of the reliability mechanisms are implemented on the Mica-
2. Figure 1 shows the block diagram of our reliability implemen-
tation in TinyOS. However, a crucial component is implemented at
the base station (as alluded to above). Wisden relies on a PC-class
machine as a base station, connected to a mote through the serial
interface. The PC implements end-to-end recovery, as well as as
data decompression and time-stamping (described in subsequent
sections). Functionality on the PC is implemented in Java.

Wisden currently does not include two important pieces of func-
tionality. Adding end-to-end cumulative acknowledgements would
allow sources to purge the vibration data from EEPROM, a nec-
essary pre-requisite for a deployable system. This is easy to do.
A bigger limitation of Wisden is that it requires manual configura-
tion of a sending rate. This rate is a function of the achievable radio
bandwidth and the number of nodes in the network. In our tests, the
achievable radio bandwidthR is measured empirically by sending
packets back-to-back and determining a “safe” rate (one at which
significant packet losses do not occur). Then, each Wisden node is
configured to so that vibration data that it originates is rate limited
to R

N
whereN is the number of nodes. Rate-adaptation is related

to congestion control, and is a research topic in and of itself. We
have left this to future work.

4.4 Experimental Evaluation
How well does our scheme work? We deployed 25 mica2 motes

on three floors of a medium-sized office building. Fifteen of those
motes were programmed to generateartificial traffic, not vibrations

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(s

ec
on

d
)

 Packet Injecting Rate (packet/second)

"latency"

Figure 2: Average Recovery Latency

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

0.1 pkt/s
0.2 pkt/s

0.25 pkt/s

0.5 pkt/s

1 pkt/s

P
er

ce
nt

ag
e

repaired from RAM
repaired from EEPROM

Figure 3: End-to-end vs. hop-by-hop, analysis based on a mote 3 hops
away from the sink.

recorded from an accelerometer. (In this part of the paper, we are
interested in evaluating the reliability scheme alone. In a later sec-
tion, we describe a live experiment on a real structure). The remain-
ing 10 motes only forwarded traffic, and were placed to improve the
density of the deployment as well as to ensure that we got a multi-
hop topology. Having these ten nodes increases the likelihood of
selecting different parents at different times, and triggers the end-
to-end recovery6.

We performed several experimental runs. In each run of the ex-
periment, the 15 nodes programmed to generate traffic did so at
one of the following rates: 0.1 packet/sec, 0.2 packet/sec, 0.25
packet/sec, 0.5 packet/sec and 1 packet/sec. Each packet was 80
bytes long and carried 18 samples. For context, a 1 packet/sec rate
can enable the network to support readings from a structure that vi-
brates about 18% of the time (assuming no packet losses). In each
run, every node sent out 200 packets, resulting in a total of 3000
packets per run.

In all our experiments, we achieved 100% reliability. However,
if we set the sending rate to 2 packet/sec per node, our network es-
sentially collapses and very few of the packets are received. This
collapse is hinted at in Figure 2, which plots the average end-to-end
latency experienced for each experiment. Notice how this latency
increases dramatically for the highest sending rate; in this regime,
packet recovery plays a dominant part in the latency. This has im-
portant implications for our time-stamping scheme, as discussed

6We should mention that these 10 nodes also improve connectivity.
With a smaller deployment, the packet losses can be higher, and
this impacts recovery latency, as we discuss a bit later.

in Section 6. These results also point out the need for an intelli-
gent rate-adaptation scheme that tries to keep the nodes close to the
knee of the curve. Finally, Figure 3 shows how many packets are
transmitted from the EEPROM (this corresponds to sources gener-
ating retransmissions), vs. those transmitted from RAM (this corre-
sponds to intermediate nodes retransmitting packets). Notice, how,
beyond 0.25 packets/sec, the system moves into a regime where
end-to-end recovery dominates (far more packets recovered from
the EEPROM). This, of course, explains the increased latency that
we see in Figure 2.

5. COMPRESSION
The second crucial aspect of Wisden isdata compression. While

most prior research ([7]) has focused on data aggregation in order
to increase network lifetime, our primary motivation for consider-
ing compression is to scale Wisden to many nodes. In Section 3.3,
we showed how the data rate requirements for structural monitor-
ing can be a significant fraction of radio bandwidth. Another way
to describe this limitation is to consider thelatencyof data acqui-
sition; Even if each of 20 nodes generated only 10 minutes worth
of 3-channel vibration data, it would take almost an hour transmit
the data to the base station assuming a nominal radio bandwidth of
2 KBps.

Higher bandwidth 802.11 radios represent a possible solution
to this problem. However, platforms employing such radios typ-
ically consume an order of magnitude more power. As such, each
node would require significantly large batteries in order to run unat-
tended for up to a day. While this is not a fundamental challenge, it
does present significant practical difficulties. An important consid-
eration in large structures ismountingthe instrumentation safely (to
avoid disconnections or damage to the instrumentation). Lighter,
smaller platforms like the motes and their associated sensor boards
and batteries can be quickly taped onto structures. Larger, more
powerful hardware platforms with heavy batteries might need care-
ful drilling and mounting, together with cabling that allows flexible
placement.

For this reason, we consider a second alternative, data compres-
sion. One possible approach to data compression isevent detection;
only transmitting samples that exceed a certain threshold, and uti-
lizing the fact that structures will experience relatively few of these.
Our current implementation of Wisden uses this approach. A more
general strategy is to useprogressive storage and transmissionthat
stores vibration data locally and transmits a lossy version (using
wavelet compression) of the data to the base station. Such an ap-
proach enables low-latency but lossy data acquisition. The stored
data allows detailed views of the vibration data to be retrieved on
demand. This technique will be useful in platforms that have sig-
nificant local storage, a trend that is likely given the falling prices
of flash memory. In the rest of this section, we describe these ap-
proaches and evaluate them.

5.1 Related Work
Event detection and data compression are very elaborately stud-

ied research areas. Our major contribution is in applying these
ideas to a new domain (wireless sensor networks), understanding
its applicability to new datasets (wireless structural vibrations) and
its implementation on highly resource-constrained devices (motes).
We briefly describe some key prior research that relate to our work.

Dimensions [5] is an in-network sensor data storage system that
maintains summaries at different resolutions constructed using wavelet
compression. While our work bears similarities to Dimensions in
the use of wavelet compression, we differ in system goals and the
choice of implementation platform. Our investigation of wavelet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

25

30

35

40

Normalized Frequency (xπ rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/ r

ad
/s

am
pl

e)

π

Figure 4: Periodogram of the Power Spectral Density estimate of
the structural vibration event. Energy is concentrated in the low-
frequency bands, making the use of wavelet compression ideal.

Vibration Radio

Threshold−based
Event detection

Flash Storage
File System

 Decomposition

Quantization Encoding

BitStream

EEPROMSensor

Event Storage Manager

Progressive Data Collect Application

Wavelet Run−length

Real−time Wavelet

Thresholding

Figure 5: Component Diagram of Mote implementation

techniques is designed with latency in mind rather than as tech-
nique for distributed storage, hence our focus is on using wavelet
coding for progressive transmission. In addition, our implementa-
tion is on the mote platform rather than for the IPAQs.

Lynchet al. [9] propose the use of wavelet compression for loss-
less data transmission of structural monitoring data. While our rea-
sons for using wavelet compression are similar, our system is de-
signed for lossy transmission rather than lossless.

Progressive transmission has been used extensively in the inter-
net context, especially for transmission of large images over bandwidth-
limited or latency-constrained links. Our work uses ideas from
progressive transmission schemes such as JPEG2000 [14], how-
ever, our design and implementation targets a significantly more
resource-constrained platform.

5.2 Event Detection
The simplest approach to compression of vibration data isevent

detection. This approach is based on the observation that, if sam-
ples within a small window have a low valueand are compara-
ble in value, the structure is quiescent. Such quiescent periods are
compressed using run-length encoding; samples in non-quiescent
periods are transmitted without compression.7

Event detection suppresses data transmission when events do not
occur. Thus, the overall data rate required to transmit the samples
is a function of the duty-cycle of the vibrations, and directly affects

7In practice, these samples can be compressed using some loss-less
compression techniques, an approach we have not yet investigated,
but which we do not expect to provide significant gains.

the Wisden’s scaling. For example, if continuous vibration data
from two nodes matches the radio bandwidth, then vibration sam-
ples can be collected from a network of 20 nodes when the structure
shakes only 10% of the time.

This approach has two limitations. The first is that the number
of instrumentation locations is constrained by the rate at which a
structure is expected to vibrate. For forced vibrations, this might
constrain the design of the experiment. Second, and more impor-
tant, this approach does not reduce the user-perceivedlatencyof
data acquisition. Due to the global nature of vibration events, vi-
bration data is usually generated from all node simultaneously. In
the example discussed at the beginning of this section, even if the
20 nodes generate 1 minute of vibration data (a duty cycling of
10%), it would take 6 minutes to transmit all the data to the base
station.

5.3 Progressive Storage and Transmission
To address the latency of data acquisition, we have designed

and implemented a progressive storage and transmission strategy
on the motes. This approach uses local storage on the motes as a
in-network cache for raw data and transmits low-resolution com-
pressed summaries of data in near-real time. The user can visualize
this summarized event data and the raw data can be collected from
the distributed caches when required. This on-demand data collec-
tion has to occur within the time window before which data in the
cache is replaced by newly generated samples. As we show below,
such an approach can compress vibration data by a factor of 20;
when coupled with event detection, it can reduce the acquisition
latency to less than a minute in many cases.

Our progressive transmission strategy for vibration data uses wavelet
compression. The applicability of wavelet techniques follows from
characteristics of large structures, whose frequency response is usu-
ally focused in the low-frequency components [16]. Figure 4, which
shows the power spectral density of a vibration signal, illustrates
this clearly.

5.3.1 Wavelet Codec Internals
We use an optimized implementation for the motes due to mem-

ory and computation constraints. For this reason, many design
choices that we make are simpler than other progressive codecs
such as JPEG2000. The component diagram of our implementa-
tion is shown in Figure 5. We now describe the individual system
components in more detail.

Integer-Integer Wavelet decomposition:Our implementation
uses the bi-orthogonal Cohen-Daubechies-Feauveau (2,2) (CDF(2,2))
integer wavelet lifting transform that relies solely on integer addi-
tion and bit shifting operations. Wavelet lifting involves two steps:
(a) a prediction step when the odd values of the time-series are pre-
dicted from the even values, and (b) an update step when the even
values are updated to capture the error in the prediction step. The
predict and update operations for the CDF(2,2) lifting transform
are:

di ← di −
1

2
(si + si+1)

si ← si −
1

4
(−di−1 − di)

The choice of the above lifting transform over other kernels was
based on two factors: computation overhead and compression per-
formance. Using longer wavelet filters involves more computation
overhead but does not provide significant compression improve-
ment over the chosen filter, at least for the building vibration dataset
that we studied ([8]).

Figure 6: Wavelet Decomposition

Figure 7: Quantization and Thresholding

While the lifting transform itself is very efficient, normalization
of coefficients at various subbands involves floating point opera-
tions. The normalization coefficients for the CDF(2,2) transform
are:

nH =
√

2 (1)

nL =
1√
2

wherenH is the higher frequency subband andnL is the lower fre-
quency subband. We perform the normalization operations during
the wavelet thresholding step rather than during wavelet decompo-
sition to be more computationally efficient.

The wavelet codec operates on buffers of length2n, wheren is
a positive integer. To avoid blocking artifacts at the buffer bound-
aries, we pad each buffer with a few samples at either end.

Quantization: Quantization involves representing a range of
values in a signal by a single value. This reduces the number of
symbols that are required to represent a signal, and hence makes
the signal more compressible. We implemented a simple uniform
quantizer that can be used to reduce the resolution of data depend-
ing on the range of the signal and the number of bits allocated to
each sample. Figure 7 shows the quantized and thresholded version
of the signal in Figure 6.

Signal Thresholding: Thresholding is a technique used to mod-
ify the wavelet decomposed signal such that the resulting signal
contains long sequences of zeros that can be efficiently compressed
by an entropy coding scheme. We use a hard thresholding scheme
in which if the absolute value of any wavelet falls below the thresh-
old, it is set to zero (shown in Figure 7). We maintain a probability

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

C
om

pr
es

si
on

 R
at

io

Number of Bits Per Sample

Figure 8: Compression Ratios

2 3 4 5 6 7
2

3

4

5

6

7

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 (
R

M
S

)

Number of Bits Per Sample

Figure 9: Root Mean Square Error

density function (PDF) of the signal to facilitate the selection of an
appropriate threshold. The user specifies what percentage of the
signal need to be zeros in the lossy version, and the PDF can be
used to determine the appropriate threshold.

The thresholds for different subbands are normalized using the
coefficients shown in Equation 1. This operation needs to be done
only once, hence, it reduces the computation requirements of nor-
malizing the signal.

Run-length encoding:Wavelet decomposition, quantization and
thresholding process the signal to make it more amenable for com-
pression by an entropy coding scheme, but no compression has yet
occurred. An entropy coding scheme is typically designed such
that the symbols that occur most frequently use the least amount
of bits. Run length coding is the simplest of such schemes that ex-
ploits runsof a particular value in the signal. The thresholded and
quantized signal in Figure 7 shows many runs of zeros that can be
exploited by such an encoding scheme.

BitStream: The run-length encoded signal is a series of sym-
bols of different lengths depending on the number of bits used in
quantization and the lengths of the special symbols used in the run
length encoding process. A bitstream module is used to pack these
variable length symbols into the data segment of a TinyOS message
packet. Each time the data segment of a packet is filled up, it can
be scheduled for transmission to the base station using our reliable
transport mechanism (Section 4).

5.3.2 Operation Description
The progressive transmission operation involves three steps: event

detection, local data storage, and progressive coding. The event
detection scheme that we described in Section 5.2 runs continu-
ally, and triggers when an event is detected. The event signal then
undergoes wavelet decomposition, and the decomposed signal is
written to the persistent external flash memory on the mote. Until
this point, no compression has occurred, hence, the lossless event
data is available on flash.

A separate periodic task reads the flash memory and compresses
the signal using the five step process described in Section 5.3.1, af-
ter which it transmits the bitstream to the base-station. The choice
of signal threshold and number of quantization bins is assumed to
be determined by a priori analyis of training data to obtain maxi-
mum compression benefit within the specified error bounds.

A user at the base-station can analyze the low-resolution signal in
real-time and request either the raw data or additional detail in the
signal. Since the raw data is stored on flash, the difference between
the previously transmitted resolution and the requested resolution is
coded by the steps described in Section 5.3.1 and transmitted to the
base-station. This progressive transmission procedure should be
completed before the data on flash is overwritten by future events.

This implementation is currently not integrated into the rest of
our system due to the need for significant memory optimization.
Our evaluation of these ideas is based on a standalone implementa-
tion; we intend to integrate this implementation into Wisden within
the next few months.

Computation
Time

Memory Uti-
lization

Wavelet Decomposition 6.44ms 288bytes
Uniform Quantizer 0.32ms 7bytes
Run-length Encoder 6.30ms 20bytes

Table 1: Performance of 128-sample 4-level transform

5.3.3 Performance Evaluation
We evaluate the performance of our system on two fronts: (a) the

computation and memory overhead of doing the wavelet compres-
sion in real-time on a mote, and (b) the compression gain by using
our scheme, which translates to the latency of data acquisition. We
used data from shaker table tests at CUREE-Kajima [8]8.

Table 1 shows the computation and memory requirements of the
core components of our compression system. The computation
time is low, and enables us to perform the entire operation in real-
time. We were able to perform sensor data sampling, 128 sample
CDF(2,2) wavelet lifting transform as well as writing the decom-
posed buffer to the EEPROM for sampling rates upto 250Hz. As
can be seen in Table 1, the memory requirements are low as well,
making it easier to integrate with other components of the system.

The compression and error results from using such a scheme are
shown in Figure 8 and Figure 9 respectively. Both graphs use a
threshold that sets 80% of the decomposed signal to zero. The
trends of both graphs are as expected; as the number of quanti-
zation bits increases, both the compression ratio and the RMS error
reduce. One sweet spot that emerges from these two graphs is a 4-
bit quantization scheme. This choice gives us about 20-fold reduc-
tion in data size with very low RMS error of 3.1. The peak-to-peak
8While this represents only vibration data from a single structure,
we don’t expect the results to be different for other large struc-
tures for the reason discussed above. The vibration data collected
by Wisden and reported in Section 7 arrived too late for analyzing
here.

signal to noise ratio (PSNR) for the above choice of parameters is
30dB.

These results are very promising are indicate that such an ap-
proach can be used to allow near real-time structural data acquisi-
tion from tens of sensors. We expect to more directly validate the
latency benefits when we integrate our implementation into Wis-
den.

6. TIMESTAMPING THE DATA
Most data loggers provide the ability to time-stamp samples col-

lected by different sensors. Samples need to be accurately time-
stamped in order to correlate readings from different sensors. Even
if the data sets are used only for frequency analysis, it is necessary
to timestamp the samples in order to distinguish responses due to
different events.

What level of time-stamping accuracy does Wisden need? To be
consistent with the abstraction we attempt to provide, we have con-
servatively assumed that individualsamplesfrom different sensors
need to be time-stampedconsistently. By this we mean that if two
sensors generate a sample at global timeT in response to the same
event, Wisden must assign that sample a timestampT at the base
station, regardless of what the local clock readings are.

Clearly, if GPS devices were available at every node, this would
not be a problem, but the unsuitability of GPS for wireless sen-
sor networks has been well documented [3]. Sensor network time
synchronization schemes [3, 4] are sufficient to solve this problem.

Wisden uses a light-weight approach in that it focuses on time-
stamping the data consistentlyat the base station, rather than syn-
chronizing clocks network-wide. This approach requires the ad-
dition of a small number of bytes to each packet, but otherwise
incurs no messaging costs. In this section, we describe Wisden’s
approach.

6.1 Related Work
Most relevant to our work is the class of time synchronization

schemes that have been recently studied in the context of wireless
sensor networks. Most of the proposed schemes address pairwise
clock synchronization between nodes, and network-wide synchro-
nization to a reference clock.

RBS [3] is a receiver-receiver scheme where receivers can syn-
chronize with each other using a reference broadcast from a sender.
By contrast, sender-receiver synchronization schemes like TPSN [4]
use pairwise message exchanges, much like NTP [11] to calculate
clock offsets. Both these schemes measure, and compensate for,
clock drift. These approaches, as well as that discussed by Rabaey
et al. [15], propose to achieve network-wide synchronization by
recursively synchronizing clock pairwise.

Our approach is much closer in spirit to the post-facto synchro-
nization proposed by Elsonet al. [2]. In this scheme, nodes’ clocks
are kept unsynchronized. Events are synchronizedpost-factousing
simple beaconing messages.

6.2 Basic Design
In Wisden, each node calculates the amount of time spent by a

sample at that particular node using its local clock. This amount is
added to anresidence timefield attached to a packet (for simplicity,
Wisden associates offsets with the first sample in a packet), as the
packet leaves the node. Thus, the delay from the time of genera-
tion of the sample to the time it is received by the base station (or
any node) is stored in the packet as the sample travels through dif-
ferent nodes in the network. This is the time the packet resides in
the network. The base station (or any node) can thus calculate the
time of generation of the sample by subtracting the residence time

A

B

A2 A3
A1

B1
B2

S

t t
t

t

t

t

t

t

t
t

t

t
t

p p

p

p p
p

p

n n
n

n

n ntn

1 2

3

4

3
21

B

A

A

B

A

A

A
A

B

B

0

0

B
2

32

A

1

1B

A

Figure 10: Time synchronization example.

from its local time. If the base station is GPS synchronized, this
approach gives a good approximation. If the residence time field
is updated as close to the radio and the accelerometers as possible,
then, assuming packet propagation times are negligible in dense
sensor deployments, this approach can successfully timestamp the
sample.

We illustrate this through an example. In Figure 10 lettiA
n be the

residence time at theith hop node and lettiA
p be the propagation

delay for theith hop. Then, the residence time of the sample from
A is given by:

TA =

i=3∑
i=0

tiA
n +

i=4∑
i=1

tiA
p . (2)

Noting that propagation delay (of radio waves) incurred over
several hundred meters (path distance to sink) is on the order of
nanoseconds, we neglect the second summation in Equation 2. The
time spent at a node is generally on the order of milliseconds and
cannot be neglected. Under this assumption,TA can be calculated
by summing up the times spent at each node. As this packet reaches
the base stationS, the base station notes the time (its own local
time) at which it received this packet sayτA. Hence, the sample
must have been generated atτA − TA (TA is obtained from the
packet header) in the local time of the sink. The same procedure
is applied for samplesB . Now sA andsB can be aligned since
τA − TA = τB − TB .

Our scheme eliminates many of the errors that time synchro-
nization schemes have to contend with since we compute residence
times close to the device [3, 4]. However, perhaps to a greater ex-
tent than those schemes, our scheme is impacted by clock drift.
There are two problems brought about by clock drift. First, if
the residence times are long (as they can be with our compres-
sion schemes, Section 5), then the timestamp can be significantly
skewed. Second, clock drift can change the sample clocking,i.e.,
individual samples may not be exactly 10ms apart when sampling
at 100 Hz. The latter “problem” might be considered unimpor-
tant, since the device would be sampling the phenomenon correctly
(when it happens), just not at the frequency it was supposed to. We
return later to discuss the former problem.

In summary, our data time-stamping scheme incurs little over-
head (a residence time field in every packet) and can be imple-
mented easily as we now discuss.

6.3 Implementation
We have implemented this scheme on the Mica-2 platform. This

section discusses the details of our implementation.
Since the default timer in TinyOS [6] doesn’t provide an inter-

face to read a 64-bit clock, we modified the Timer component in
TinyOS to export a function (getSysTime()) to do this. Our
modified timer component uses the “real-time clock” which ticks
at a nominal rate of 32 Khz. Our 64-bit clock ticks at a 4Khz sam-
pling rate (basically downsampling the real-time clock). This reso-

Figure 11: Time Stamping

 98360

 98380

 98400

 98420

 98440

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

A
ss

ig
ne

d
P

ac
ke

t G
en

er
at

io
n

tim
e

(in
 m

s)

Residence Time (in ms)

Single hop

Figure 12: Time Drift - Single hop

lution is sufficient for our application, where the inter-sample time
is on the order of 10ms.

We also modified the radio related components in TinyOS to
timestamp the packet close to the source. We timestamp an in-
coming packet just after the reception of start symbol (for received
packets) and just after the transmission of the timing bits (for trans-
mitted packets) as shown in Figure 11. This brings the time-stamping
as close as possible to the first byte transmission and the first byte
reception of the packet. As others have observed [4], this elimi-
nates the send, access, transmission, and reception time delay for
the packet.

When a packet is being transmitted, just after it is timestamped,
the radio layer makes an upcall to an application provided handler.
In our case, this upcall allows Wisden to update the residence time
(by adding the current value of the residence time, the difference
between the current timestamp, and the time when the packet was
received) of the packet, but our implementation is generic enough
to allow other applications to do quick application-specific process-
ing.

Finally, we also timestamp samples received from the vibration
card. The vibration card periodically sends data samples in a mes-
sage to mica2 motes over the UART. For samples received from the
vibration card the time-stamping is done on mica2 at the reception
of first byte of the packet9.

9There are a couple of subtle issues with this. First, there may
be some on-board latency on the vibration card that our scheme
misses. Second, the vibration card uses its own clock for sampling,
not the Mica2’s clock, and the relative drift between them might
induce error. We need to investigate these issues more carefully, but

 218800

 218820

 218840

 218860

 218880

 218900

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

A
ss

ig
ne

d
P

ac
ke

t G
en

er
at

io
n

tim
e

(in
 m

s)

Residence Time (in ms)

Multi-hop

Figure 13: Time Drift - Multi hop

Rather than associate each sample in a packet (we use 80 byte
packets which allow up to 18 samples) with a residence time, we
only maintain the residence time of thefirst sample, and add an
inter-sample time field so the base station can compute the time-
stamp of the other samples.

6.4 Performance Evaluation
As we have discussed above, the primary determinant of accu-

racy in our system is clock drift. Our compression schemes sup-
press silence periods. During times of no activity, samples are
not transmitted to the base station and remain within the network.
Thus, their residence times are large, and the timestamps assigned
to them can be affected by drift.

How much is the drift of the real-time clock on the Mica-2s?
We used an oscilloscope to extract the clock signal from 7 different
Mica-2s, then analyzed the dominant frequency in the signal. Ta-
ble 2 shows the measured frequency of these Mica-2s. We see that
the worst-case drift from the nominal clock rate is approximately
36 ppm and is consistent with the specifications in the clock chip’s
data-sheet [1]. However the relative drift between the motes is on
the order of 10 ppm which matches with the value obtained in the
next experiment.

Mote Crystal Frequency
A 32766.8
B 32766.8
C 32767.1
D 32766.8
E 32766.7
F 32767.1
G 32766.7

Table 2: Measured frequency of MICA2 motes clock

To analyze the effect of clock drift of a single mote we performed
the following experiment. We built a single hop network consisting
of the base station and one mote. The mote time-stamps a sam-
ple at start up. It then sendsexactlythe same sample repeatedly.
This computes the time-stamp assigned to a packet were it to be
assigned different residence times in a one-hop network. Figure 12
plots the assigned packet generation time at the base station as a
function of residence time. In the absence of drift, we would have
expected a horizontal line. The slope of the line corresponds to a
drift of 10ppm, which matches the relative drift we measured using

believe that because our timestamping requirements are relatively
coarse (order of ms), they will not affect Wisden significantly.

an oscilloscope. We performed this experiment on five different
sets of motes and obtained similar results.

Finally, we evaluate the impact of multi-hopping on our time-
stamping technique. For this we repeated the previous experiment,
but with 3 intermediate nodes between the sender and the base sta-
tion. Each intermediate node delays the packet by 4 seconds before
forwarding it (this mimics the behavior of Wisden, where interme-
diate nodes store a packet in an in-memory cache that is of fixed
size). Figure 13 plots the assigned packet generation time at the
base station as a function of residence time. Here, too, we find that
the assigned sample generation time drifts with residence time by
approximately 10 ppm.

If we assume 10 ppm to be a reasonable drift for the Mica-2s,
this means that a sample can stay in the network for at most 1000
seconds (about 15 mins) before its timestamp accumulates more
than 10ms error. This means that our run-length encoding must not
accumulate silence periods longer than a few minutes. But there
is another, more subtle, problem. If there is a long-lasting struc-
tural vibration event (say for several minutes), rate-limiting will
cause these samples to accumulate significant residence times. To
avoid this, we propose to piggyback on outgoing packets, one or
two stored samples, so that their generation time can be accurately
timestamped at the base station inadvance. Wisden does not yet
implement this. Finally, we’ll note that our wavelet compression
scheme is less susceptible to this drift because the low-resolution
coefficients are sent immediately and incur low residence times.

7. DEPLOYMENT EXPERIENCE
Finally, as a proof-of-concept, we deployed a 10 node Wisden

system on a test structure. This structure (Figure 14) resembles the
frame of a hospital ceiling, about 40 ft. long and 20 ft. wide. When
completed, this structure will have a shaker to impart forced vibra-
tions, but it does not have one currently10. We instrumented this
structure by affixing the accelerometers with heavy-duty double-
sided tape (on the advice of a local structural engineer), and wrapped
the rest of the assembly with gaffer tape. We then repeatedly hit the
structure with a 2-by-411 for 20 seconds, also on the advice of our
local expert.

Figure 15 is a screenshot of the collected sample data, aligned
at the base station. The 10 motes formed a multi-hop network
and transmitted all of the recorded vibration data back to base sta-
tion within 5 minutes. The average residence time incurred by a
packet in our experiment was 142 seconds; some of the delay can
be attributed to the sustained excitation, and some to packet loss.
Finally, testifying to the performance of the time synchronization
scheme, we found that theonsettime of one of our forced vibra-
tions was within one sample time (actually 8ms) across all our ac-
celerometers.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have described the design of a wireless structural

data acquisition system called Wisden. The system mimics wired
data acquisition systems, and incorporates novel reliable transport,
time synchronization, and compression algorithms. In the next few
months, we hope to gain significant experience with the system’s
overall accuracy and performance, by deploying it on several large

10For testing the efficacy of our reliability scheme, we used our de-
partment office building in order to obtain realistic radio propaga-
tion. For the deployment test, where we needed to impart vibra-
tions, it was more convenient to use this structure.

11Structural engineers have been known to use equally elegant
methods (e.g.,driving a truck off a platform) to induce vibrations!

Figure 14: The Ceiling Structure

Figure 15: Data collected from the ceiling structure

structures at different scales. We intend to use this experience to
evolve the system.

9. ACKNOWLEDGEMENT
We thank our shepherd Gul Agha and the anonymous referees

for their constructive suggestions that improved the paper’s presen-
tation. We’re grateful to Profs. John Caffrey and Sami Masri for
providing access to the ceiling structure, Omprakash Gnawali for
help during various stages of implementation, and to the members
of the USC Embedded Networks Laboratory for feedback on the
design of Wisden.

10. REFERENCES
[1] Thin SMD Low/Medium Frequency crystal unit.
[2] ELSON, J.,AND ESTRIN, D. Time synchronization for wireless

sensor networks. InProceedings of the 15th International Parallel &
Distributed Processing Symposium(2001), IEEE Computer Society,
p. 186.

[3] ELSON, J., GIROD, L., AND ESTRIN, D. Fine-grained network time
synchronization using reference broadcasts. InProceedings of the
Fifth Symposium on Operating Systems Design and Implementation
(OSDI 2002)(Boston, MA, December 2002).

[4] GANERIWAL , S., KUMAR , R., AND SRIVASTAVA , M. B.
Timing-sync protocol for sensor networks. InProceedings of the first
international conference on Embedded networked sensor systems
(2003), ACM Press, pp. 138–149.

[5] GANESAN, D., GREENSTEIN, B., PERELYUBSKIY, D., ESTRIN,
D., AND HEIDEMANN , J. An evaluation of multi-resolution search
and storage in resource-constrained sensor networks. InProceedings
of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys).(2003).

[6] HILL , J., SZEWCZYK, R., WOO, A., HOLLAR , S., CULLER, D.,
AND PISTER, K. System archtecture directions for networked
sensors.SIGPLAN Not. 35, 11 (2000), 93–104.

[7] INTANAGONWIWAT, C., GOVINDAN , R., AND ESTRIN, D. Directed
diffusion: A scalable and robust communication paradigm for sensor
networks. InProceedings of the Sixth Annual International
Conference on Mobile Computing and Networking(Boston, MA,
August 2000), ACM Press, pp. 56–67.

[8] KANG, T. H., RHA , C., AND WALLACE , J. W. Seismic
performance assessment of flat plate floor systems. CUREE-Kajima
Joint Research Program.

[9] LYNCH, J. P., SUNDARARAJAN, A., LAW, K. H., KIREMIDJIAN ,
A. S., AND CARRYER, E. Power-efficient data management for a
wireless structural monitoring system. InProceedings of the 4th
International Workshop on Structural Health Monitoring(Stanford,
CA, September 15-17 2003), vol. 1.

[10] MAINWARING , A., POLASTRE, J., SZEWCZYK, R., CULLER, D.,
AND ANDERSON, J. Wireless sensor networks for habitat
monitoring. InProceedings of the 1st ACM international workshop
on Wireless sensor networks and applications(Atlanta, GA, 2002),
pp. 88–97.

[11] M ILLS , D. L. Internet time synchronization: The network time
protocol, 1989.

[12] SANKARASUBRAMANIAM , Y., AKAN , O. B., AND AKYILDIZ ,
I. F. Esrt: event-to-sink reliable transport in wireless sensor
networks. InProceedings of the 4th ACM international symposium
on Mobile ad hoc networking and computing(Annapolis, Maryland,
USA, June 2003), pp. 177–188.

[13] STANN , F., AND HEIDEMANN , J. Rmst: Reliable data transport in
sensor networks. InProceedings of the First International Workshop
on Sensor Net Protocols and Applications(Anchorage, Alaska, USA,
April 2003), IEEE, pp. 102–112.

[14] TAUBMAN , D. S.,AND MARCELLIN , M. W. JPEG 2000: Image
Compression Fundamentals, Standards, and Practices. Kluwer
Academic Publishers, 2001.

[15] VAN GREUNEN, J.,AND RABAEY, J. Lightweight time
synchronization for sensor networks. InProceedings WSNA, San
Diego, California, USA.(2003).

[16] VETTERLI, M., AND KOVACEVIC, J.Wavelets and Subband coding.
Prentice Hall, New Jersey, 1995.

[17] WAN , C.-Y., CAMPBELL , A. T., AND KRISHNAMURTHY, L. Psfq:
A reliable transport protocol for wireless sensor networks. In
Proceeding of First ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA 2002)(Atlanta, September 2002),
pp. 1–11.

[18] WAN , C.-Y., EISENMAN, S. B.,AND CAMPBELL , A. T. Coda:
Congestion detection and avoidance in sensor networks. In
Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003).(Los Angeles, November 2003),
pp. 266–279.

[19] WOO, A., AND CULLER, D. A Transmission Control Scheme for
Media Access In Sensor Networks. InProceedings of the Seventh
Annual ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom 2001)(2001).

[20] WOO, A., TONG, T., AND CULLER, D. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks. In
Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003).(Los Angeles, CA, November 2003).

[21] ZHAO, J.,AND GOVINDAN , R. Understanding Packet Delivery
Performance In Dense Wireless Sensor Networks. InProceedings of
the First ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003).(Los Angeles, CA, November 2003).

