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ABSTRACT
Existing energy-efficient approaches to in-network aggrega-
tion in sensor networks can be classified into two categories,
tree-based and multipath-based, with each having unique
strengths and weaknesses. In this paper, we introduce Tribu-
tary-Delta, a novel approach that combines the advantages
of both the existing approaches by running them simulta-
neously in different parts of the network. We study this
new approach, present schemes for adjusting the balance
between different components of the aggregation topology
in response to changes in network conditions, and show that
many useful aggregates can be readily computed within this
new framework. We then show how a difficult aggregate
for this context—finding frequent items—can be efficiently
computed within the Tributary-Delta framework. To this
end, we devise the first algorithm for frequent items (and
for quantiles) that provably minimizes the worst case total
communication for non-regular trees. In addition, we give a
multi-path algorithm for frequent items that is considerably
more accurate than previous approaches. Through extensive
simulation with real-world and synthetic data, we show the
significant advantages of our techniques. For example, in
computing Count under realistic loss rates, our techniques
can reduce errors by up to a factor of 3 compared to any
existing techniques.

1. INTRODUCTION
Networked collections of smart sensors are increasingly

being used to monitor and query the physical world. These
small sensor motes are typically battery-powered, possess
limited CPUs and memory, and organize themselves into ad
hoc multi-hop wireless networks around more capable base
stations. A paramount concern in these sensor networks is to
conserve the limited battery power, as it is usually imprac-
tical to install new batteries in a deployed sensor network.
Because the battery drain for sending a message between two
neighboring sensors exceeds by several orders of magnitude
the drain for local operations within a sensor mote, minimiz-
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Figure 1: Tributaries and Deltas

ing sensor communication is a primary means for conserving
battery power [1, 20]. Thus for aggregation queries (e.g., the
average temperature reading across the sensor network), it
is now accepted practice [11, 12, 24, 25] that aggregates are
computed in-network whenever possible—this avoids the ex-
cessive communication required to route all the sensor read-
ings to the base station. With the in-network approach,
sensor readings are accumulated into partial results that are
combined as messages propagate toward the base station.
In many common cases (such as Sum, Count, Average, Min,
Max), each sensor node transmits only one short message
during the aggregation—a considerable energy savings over
the route-all approach.

Existing energy-efficient approaches to in-network aggre-
gation can be classified into two categories: tree-based and
multi-path-based. In the tree-based approach (such as in
TAG [11], TinyDB [12], and Cougar [24]), a spanning tree,
rooted at the base station, is constructed for use in answer-
ing queries. Subsequently, each query answer is generated by
performing in-network aggregation along the tree, proceed-
ing level-by-level from its leaves to its root. Many aggregates
(including those given above) can be computed exactly and
with minimal communication on a tree topology, assuming
no communication failures. However, wireless sensor net-
works have high communication failure rates (up to 30%
loss rate is common [11]), and each dropped message results
in an entire subtree of readings being dropped from the ag-
gregate answer. As a result, it is not uncommon to lose
85% of the readings in a multi-hop sensor network, causing
significant answer inaccuracy [17].

To overcome the severe robustness problems of the tree
approach, Considine et al. [5] and Nath et al. [17] recently
proposed using multi-path routing for in-network aggrega-
tion. Instead of having each node send its accumulated par-
tial result to its single parent in an aggregation tree, the
multi-path approach exploits the wireless broadcast medium
by having each node broadcast its partial result to multiple
neighbors. Both papers recommend a topology called rings,



Energy Components Error Components Latency
Number of Message Communica- Approximation
messages size tion error error

Aggregate: any Count Freq.Items any Count Freq.Items any
Tree [11, 12, 24, 25] minimal small medium very large none small minimal

Multi-path (rings) [5, 17] minimal small large very small small small minimal
Tributary-Delta [this paper] minimal small medium very small very small small minimal

Table 1: Comparison of previous in-network aggregation approaches and the Tributary-Delta approach. The total

energy consumption is given by its two components. The total error is given by the sum of the communication error

produced by message losses within the network and the approximation error coming from the aggregation algorithm

(independent of message loss). Because the message size and approximation error depend on the aggregate, these

metrics are shown for two representative aggregates: Count and Frequent Items.

in which the nodes are divided into levels according to their
hop count from the base station, and the multi-path aggre-
gation is performed level-by-level toward the base station.
This approach sends the same minimal number of messages
as the tree approach (i.e., one transmission per node), mak-
ing it energy-efficient. It is also very robust to communica-
tion failures because each reading is accounted for in many
paths to the base station, and all would have to fail for
the reading to be lost. However, there are two drawbacks
to the multi-path approach: (1) for many aggregates (e.g.,
Count, Sum, Average) the known energy-efficient techniques
provide only an approximate answer (with accuracy guaran-
tees), and (2) for some aggregates, the message size is longer
than when using the tree approach, thereby consuming more
energy.

The first two rows of Table 1 provide a qualitative com-
parison of the previous in-network aggregation approaches.
As the table shows, the tree approach suffers from very
high communication error while the multi-path approach
can have larger message sizes and approximation errors.

Tributary-Delta. In this paper we present a new approach
to in-network aggregation that combines the advantages of
both the tree and multi-path approaches, by dynamically
adapting the aggregation scheme to the current message loss
rate. Under low loss rates, trees are used for their low or
zero approximation error and their short message size. Un-
der higher loss rates or when transmitting partial results
accumulated from many sensor readings, multi-path is used
for its robustness. We call our approach Tributary-Delta be-
cause of the visual analogy to a river flowing to a gulf: when
far from the gulf, the merging of river tributaries forms a
tree-like shape, whereas near the gulf, the river branches
out into a multi-path delta in order to reach the gulf despite
the increased obstacles (see Figure 1).

We show that our Tributary-Delta approach significantly
outperforms both previous approaches. An example result
is shown in Figure 2 (full details in Section 7). As expected,
the tree approach is more accurate than the multi-path ap-
proach at very low loss rates, because of its lower approx-
imation error (0% versus 12%). However, at loss rates 0.1
or higher, tree is much worse than multi-path because of its
high communication error. On the other hand, Tributary-
Delta is able to provide not just the best of both (e.g., by
running either tree or multipath in the whole network), but
in fact a significant accuracy improvement over the best,
across a wide range of loss rates—thus demonstrating the
synergies of using both in tandem. The last row of Table 1
summarizes the benefits of Tributary-Delta.

To enable simultaneous use of the tree and multi-path
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Figure 2: Accuracy of a Count query under varying

message loss rates. The experimental setup and the full

graph are provided in Section 7.

aggregation approaches, we must resolve several challenges.
For example, how do the nodes decide whether to use the
tree or the multi-path aggregation approach? How do the
nodes using different approaches communicate with each
other? How do the nodes convert partial results when transi-
tioning between approaches? We identify and address these
and other challenges and issues in this paper, through a
careful system design and algorithmic study. We also dis-
cuss how a large number of aggregates can be computed
within the Tributary-Delta framework.

Our most significant algorithmic result is a new Tributary-
Delta algorithm for finding frequent items. For this result,
we devise a new tree-based algorithm, a new multi-path-
based algorithm, and a new (combined) Tributary-Delta
algorithm. Previous tree-based frequent items algorithms
worked only for balanced, regular trees [14] and/or used too
much communication [8, 14]. We present the first frequent
items algorithm that provably minimizes the worst case to-
tal communication for non-regular trees with certain prop-
erties common to typical sensor network deployments. In
addition, our new multi-path algorithm uses low total com-
munication while providing high accuracy; the only previous
approach [17], based on sampling, is far less accurate.

In summary, the main contributions of this paper are:

• We introduce the Tributary-Delta approach to in-net-
work aggregation in sensor networks, for adapting the
aggregation scheme to current message loss rates. We
show that many aggregates can be readily computed
in this framework.

• We present schemes for adjusting the balance between
tributaries and deltas in response to changes in net-
work conditions.



• We show how a difficult aggregate for this context—
finding frequent items—can be efficiently computed in
the framework. To this end, we devise the first al-
gorithm for frequent items (and for quantiles) that
provably minimizes worst case total communication for
non-regular trees. The algorithm’s guarantees hold for
a class of trees that arise naturally in sensor networks;
we also present a new tree construction algorithm well-
suited to generating trees in this class. In addition, we
give a multi-path algorithm for frequent items that
is considerably more accurate than the previous ap-
proach.

• We provide an extensive evaluation of Tributary-Delta
aggregation on a realistic sensor network simulator, us-
ing real world and synthetic data sets, confirming the
significant advantages of our techniques. For example,
in computing Count under a typical loss rate (0−40%),
Tributary-Delta can reduce errors by up to a factor of
3 compared to an oracle that can dynamically choose
the best existing approach (tree-based or multi-path-
based) for a given loss rate. Moreover, Tributary-Delta
never performs worse than such an oracle.

Although the general framework encompasses optimizing
many possible metrics based on the criteria in Table 1, in
this paper we focus on the following setting. Users provide
target thresholds on both the communication error (e.g., at
least 90% of the nodes should be accounted for in the an-
swer) and the approximation error (e.g., the answer should
be within 10% of the actual answer on those nodes). Our
goal is to achieve these thresholds while incurring minimal
latency, minimal number of messages, and minimizing the
message size.

Roadmap. Section 2 describes background information
and related work. Section 3 overviews our Tributary-Delta
approach. Section 4 presents our adaptation design. Sec-
tion 5 discusses Tributary-Delta algorithms for many aggre-
gates. Section 6 presents our frequent items algorithm. Sec-
tion 7 presents our experimental results. Finally, Section 8
presents conclusions.

2. PRELIMINARIES AND RELATED WORK
There has been a flurry of recent papers on energy-efficient,

in-network computation of aggregate queries in sensor net-
works [5, 6, 8, 11, 12, 13, 17, 19, 21, 24, 25]. As discussed
in Section 1, this previous work can be classified according
to the aggregation topology used: tree-based or multi-path-
based. In this section, we describe these two approaches
in more detail and survey the related work. We begin by
describing the general set-up used in this paper.

Aggregation Set-up. We have m sensor nodes each gen-
erating a stream of sensor readings. The sensor nodes are
connected (either directly or via other sensor nodes) to a
base station. Aggregate queries, which may be one-time or
continuous, are sent from the base station to all the nodes.
Queries may aggregate over a single value at each sensor
(e.g., the most recent reading) or over a window of values
from each sensor’s stream of readings. Each sensor node
evaluates the query locally (including any predicates), and
produces a local result. There is an aggregation topology
(e.g., tree or rings) that is used to route these local results to
the base station, combining them along the way into concise

partial results. For continuous queries, the process of com-
puting, routing and combining local results repeats itself at
regular intervals, possibly in a pipelined fashion within the
network [11].

We consider the realistic setting where the communica-
tion between sensors maybe lossy, and network conditions
change over time. In evaluating the quality of an answer, we
consider both the communication error, which results from
message losses in the network, and the approximation error,
which results from lossy data reduction performed to reduce
message lengths [17].

Tree-Based. In the tree-based approach [6, 8, 11, 12, 13,
19, 21, 24, 25], a spanning tree rooted at the base station is
constructed for use in answering queries. Each node com-
putes its level (i.e., hops from the root) in the tree during
this construction by adding one to the level of its parent.
In-network aggregation proceeds level-by-level toward the
root, starting with the nodes at the highest level. To co-
ordinate the sending and receiving of messages, nodes are
loosely time synchronized and are allotted specific time in-
tervals (according to their level) when they should be awake
to send and receive messages. In this way, level i nodes are
listening when level i + 1 nodes are sending. The period of
time allotted for exchanging messages between two levels is
called an epoch [11]. Epochs must be sufficiently long such
that each sensor in a level can transmit its message once
without interference from other sensors’ transmissions. The
latency of a query result is dominated by the product of the
epoch duration and the number of levels.

To adapt the tree to changing network conditions, each
node monitors the link quality to and from its neighbors [25].
This is done less frequently than aggregation, in order to
conserve energy. If the relative link qualities warrant it, a
node will switch to a new parent with better link quality, in
order to make the tree more robust [25]. However, because
each lost message drops an entire subtree, even trees with
high link quality produce very inaccurate answers once the
tree is beyond a certain size. This inaccuracy can be seen
in Figure 2.

A key advantage of using a tree topology is that aggregat-
ing within the network is often straightforward, using min-
imal resources and incurring no approximation error. For
example, for a Sum query, each node transmits the sum of
the readings in its subtree, by listening for its children’s sub-
tree sums, adding them to its own readings, and sending the
result to its parent. In the absence of communication error,
the resulting sum would be exact.

Multi-Path-Based. The multi-path-based approach [5,
17] allows for arbitrary aggregation topologies, beyond a
tree. In this paper, we focus on the rings topology, be-
cause it provides a good energy-robustness trade-off [5, 17].
To construct a rings topology, first the base station trans-
mits and any node hearing the transmission is in ring 1.
At each subsequent step, nodes in ring i transmit and any
node hearing the transmission—but not already in a ring—
is in ring i + 1. The ring number defines the level of a
node, and the aggregation proceeds level-by-level, with level
i + 1 nodes transmitting while level i nodes are listening.
In contrast to trees, the rings topology exploits the wireless
broadcast medium by having all level i nodes that hear a
level i + 1 partial result incorporate that result into their
own. This significantly increases robustness because each
reading is accounted for in many paths to the base station,



and all would have to fail for the reading to be unaccounted
for in the query result. As with trees, nodes can monitor
link quality and change levels as warranted.

A key advantage of using a rings topology is that the com-
munication error is typically very low, in stark contrast with
trees. This can be seen in Figure 2, where the accuracy of
multi-path decreases very slowly with increasing loss rates
(the approximation error is around 12% in this experiment,
independent of the loss rate). Moreover, the rings approach
uses the same minimal number of messages as the tree ap-
proach (i.e., one per node), making it energy-efficient.

However, because each partial result is accounted for in
multiple other partial results, special techniques are required
to avoid double-counting. Previous work has shown how
to avoid double-counting in computing Count, Sum [5] and
many other aggregates [17]. For this paper, we adopt the
terminology of [17], where the multi-path approach is called
synopsis diffusion.1 There are three functions used to com-
pute an aggregate: (1) A synopsis generation (SG) function
that takes a stream of local sensor readings at a node and
produces a partial result, called a synopsis; this function is
applied by each sensor on its local readings. (2) A synopsis
fusion (SF) function that takes two synopses and generates a
new synopsis that summarizes both; this function is applied
when combining partial results in-network. (3) A synopsis
evaluation (SE) function that translates a synopsis into a
query answer; this function is applied at the base station.
We next illustrate these functions using the Count aggre-
gate; this example highlights one of the clever techniques
used to avoid double-counting in the multi-path approach.

Example 1. Consider answering a Count query request-
ing the number of live sensors. To avoid double-counting,
we view the Count query as a Count Distinct sensor-id

query, and use a well-known distributed distinct-values count-
ing algorithm [7], as follows [5, 17]. Let n be a (possibly
loose) upper bound on the total number of sensors. The
synopsis is a bit vector of log(n) bits. Let h() be a hash
function from sensor-ids to [1.. log(n)] such that a random
1
2

of the domain maps to 1, 1
4

maps to 2, 1
8

maps to 3,
etc. The SG function creates a bit vector of all 0’s and
then sets the h(i)’th bit to 1, where i is the sensor node’s
unique sensor-id. The SF function takes two bit vectors and
outputs their bit-wise OR. The SE function takes a bit vec-
tor and outputs 2j−1/0.77351, where j is the index of the
lowest-order unset bit. The approximation guarantees are
provided in [7]—intuitively, if no node sets the jth bit then
there are probably less than 2j nodes. The algorithm avoids
double-counting, intuitively, because each sensor i is asso-
ciated with the h(i)’th bit being set and ORing that bit in
multiple times is identical to ORing it in just once. The ac-
curacy of this algorithm can be improved by using multiple
bit vectors based on different hash functions, at a cost of
sending longer messages [5, 17].

Other Related Work. Many papers have presented tech-
niques for computing aggregates over data streams, includ-
ing distributed data streams (see [2, 16] for surveys). Several
recent papers [10, 23] have proposed duplicate-insensitive

1For readers familiar with the synopsis diffusion framework,
note that we will deviate slightly from [17] for some of the
aggregates discussed in the paper (Frequent Items, Quan-
tiles), by relaxing the requirement that the same synopsis
be generated regardless of the aggregation topology.
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for computing Count in the Tributary-Delta framework.

multi-path in-network aggregation techniques for peer-to-
peer networks or mobile environments. None of their tech-
niques are suitable for the sensor network setting in which
reducing energy consumption is of paramount importance.

In summary, none of the previous work has proposed and
studied combining the complementary strengths of the two
approaches in order to obtain the best of both (and more).

3. TRIBUTARY-DELTA APPROACH
In our Tributary-Delta aggregation scheme, we leverage

the synergies between the existing energy-efficient schemes,
by combining the efficiency and accuracy of (small) trees un-
der low loss rates with the robustness of multi-path schemes.
Specifically, part of the network runs a multi-path scheme
while at the same time the rest of the network runs tree
schemes. In the extreme, all nodes might either run a multi-
path or a tree scheme. We dynamically adjust the use of
trees and multi-path, based on current message loss rates.
In this section we provide an overview of our Tributary-Delta
scheme. We begin with the following observation.

Observation 1. A Tributary-Delta aggregation process
can be viewed as a directed graph G (representing the ag-
gregation topology), where the sensors and the base station
form the set of vertices, and there is a directed edge for each
successful transmission. Each vertex is labeled either M (for
multi-path) or T (for tree) depending on whether it runs a
multi-path aggregation algorithm or a tree-based aggregation
algorithm. An edge is assigned the same label as that of its
source vertex. Note that both the set of edges and the labels
of individual vertices and edges may change over time.

Figure 1 depicts an example graph G, where the edges are
directed to the right in the figure. Figure 3 depicts a portion
of another example graph, where T1–T5 are T vertices and
M1–M4 are M vertices.

There are many ways to construct an aggregation topol-
ogy with both M and T vertices. The basic correctness
criteria is that no two M vertices with partial results rep-
resenting an overlapping set of sensors are connected to
T vertices. This is necessary, since otherwise the corre-
sponding T vertices, whose local aggregation algorithm is
duplicate-sensitive, may double-count the same sensor data
and provide incorrect answer. Formally, for every maximal
subgraph G′ consisting of M vertices, there is exactly one
vertex m ∈ G′ directly connected to a T vertex in G − G′

and every vertex v ∈ G′ has a path to m. Ensuring this re-
quires electing a suitable leader (m) within G′. This general
construction, although achievable, thwarts our objectives: it
restricts the amount of available redundancy an M vertex
can exploit and the leader election process complicates the
aggregation process.



We therefore restrict ourselves to a simpler model where
a sensor receiving a partial result from an M vertex uses a
multi-path aggregation scheme. This ensures that a partial
result from an M vertex never reaches a T vertex down-
stream towards the base station, and therefore a T node
never gets the chance to double-count sensor data. In terms
of the graph, this correctness condition can be formulated
as either an Edge Correctness property (Property 1) or a
Path Correctness property (Property 2). The two proper-
ties are equivalent—both formulations are useful depending
on the context.

Property 1. Edge Correctness: AnM edge can never
be incident on a T vertex, i.e., an M edge is always between
two M vertices.

Property 2. Path Correctness: In any directed path
in G, a T edge can never appear after an M edge.

An implication of path correctness is that the M vertices
will form a subgraph (a multi-path “delta”) that includes
the base station, which is fed by trees of T vertices (“tribu-
taries”), as depicted in Figure 1. Let the delta region of G
be the set of M vertices. Coincidentally, graphs satisfying
path correctness are also desirable for high accuracy—partial
results near the base station account for larger numbers of
sensor readings than partial results near the leaves of G, and
hence the additional robustness provided by the delta region
significantly improves the accuracy.

Our Tributary-Delta approach requires multi-path algo-
rithms that can operate on (approximate or exact) partial
results from both tree and multi-path schemes. For exam-
ple, M3 in Figure 3 receives inputs from both a T vertex
and two M vertices. We address this algorithmic challenge
in Section 5.

Dynamic Adaptation. Our goal is to dynamically adapt
where in the sensor network we use trees versus where we
use multi-path, based on current message loss rates in vari-
ous regions of the network. However, an implication of edge
correctness is that individual vertices cannot switch between
the two modes independently. We say anM vertex is switch-
able if all its incoming edges are T edges or it has no incom-
ing edges. Similarly, a T vertex is switchable if its parent is
an M vertex or it has no parent. In Figure 3, vertices T3,
T4, T5, M1, and M2 are switchable. Based on these two
definitions, we make the following observation.

Observation 2. All children of a switchable M vertex
are switchable T vertices.

Note that a delta region uniquely defines the set of switch-
able M and T vertices in G. The next lemma implies that
by considering only the switchable T and M vertices, it is
always possible to expand (or shrink) the delta region if it
makes sense to do so. Let G′ be the connected component of
G that includes the base station. Then expanding (shrink-
ing) the delta region only makes sense if there is a T vertex
(an M vertex, respectively) in G′. A simple induction proof
yields the following result:

Lemma 1. If the set of T vertices in G′ is not empty, at
least one of them is switchable. If the set of M vertices in
G′ is not empty, at least one of them is switchable.

In the next section, we study strategies for adjusting the
tributaries and deltas for responding to changing network

conditions and the synchronization issues arising due to dy-
namically switching between generating a T partial result
and an M partial result. We defer to Section 5 the dis-
cussion of algorithmic challenges arising out of the dynamic
network conditions.

4. ADAPTING TO NETWORK CONDITIONS
In this section we study in detail how our Tributary-Delta

scheme dynamically adapts to changing network conditions.

4.1 Adaptation Design and Synchronization
Recall from Section 3 that the only possible ways to adapt

to changing network conditions are to shrink the delta re-
gion by switching switchable multi-path (M) nodes to tree
(T ) nodes or to expand the delta region by switching switch-
able T nodes to M nodes. However, because of the differ-
ent types of errors introduced by the tree and multi-path
schemes (recall Table 1), it is unclear how switching one
or more nodes impacts the answer accuracy. Therefore, we
require users to specify a threshold on the minimum per-
centage of nodes that should contribute to the aggregate
answer. It then becomes natural for the base station to
be involved in the decision process: depending on the % of
nodes contributing to the current result, the base station de-
cides whether to shrink or expand the delta region for future
results. Because there is only minimal communication error
in multi-path schemes (recall Figure 2), increasing the delta
region always increases the % contributing. Similarly, de-
creasing the delta region always decreases the % contribut-
ing. The system seeks to match the target % contributing,
in order to take advantage of the smaller approximation er-
ror in tree aggregation. Because this design does not rely on
the specifics of any one query, the resulting delta region is
effective for a variety of concurrently running queries. De-
signs specialized to particular queries are part of our future
work.

A key concern in switching individual nodes from tree
aggregation to multi-path aggregation (and vice-versa) is
how to ensure that nodes that should be communicating af-
ter the switch are indeed sending and receiving during the
same epoch. When a node switches from M to T , it needs
to change its sending epoch to match its new parent’s lis-
tening epoch and change its new children’s sending epoch
to match its listening epoch, etc. Conversely, when a node
switches from T to M, it needs to change its sending epoch
to match the listening epoch of its neighboring nodes in the
next level and change its children’s sending epoch to match
its listening epoch, etc. This re-synchronization overhead
would arise, for example, if TAG [11], a popular tree aggre-
gation approach, were used in conjunction with using rings
for multi-path, and it could be a large deterrent to switch-
ing between tree and multi-path schemes. To ensure that
no such re-synchronization is necessary, we make a simpli-
fying design choice: a node in level i when switching from
M to T must choose its parents from one of its neighbors
in level i− 1. Similarly, when the node switches from T to
M, it transmits to all its neighbors, including its parent, in
level i − 1. In other words, all tree links should be a sub-
set of the links in the ring. This ensures that the switched
node can retain its current epoch, since the new parent in
level (i−1) is already synchronized to receive data from the
node in level i. Trees constructed with this restriction may
have lessened link quality; however, this is mitigated with



Tributary-Delta because (1) we use multi-path to overcome
poor link quality and (2) our tree construction algorithm
(see Section 6.1.3), which guarantees that tree links are sub-
sets of rings links, produces bushy trees that are effective in
reducing total communication errors.

4.2 Adaptation Strategies
In this section, we present two alternative strategies to

shrink and expand the delta region. In both strategies, we
augment the messages being sent between sensor nodes with
an (approximate) Count of the number of nodes that con-
tributed to the partial result being sent. Assuming that the
base station knows the total number of sensors in the net-
work, it can compute the % of sensors that contributed to
the current result.

Strategy TD-Coarse. In the first strategy, TD-Coarse, if
the % contributing is below the user-specified threshold, the
base station expands the delta region by broadcasting a mes-
sage asking all the current switchable T nodes to switch
to M nodes. This effectively widens the delta region by
one level. Similarly, if the % contributing is well above
the threshold, it shrinks the delta region by one level by
switching all current switchable M nodes to T nodes. The
coarse-grained control of TD-Coarse is well-suited to quickly
adapting the size of the delta region to network-wide fluctu-
ations. However, it can not adapt well to different conditions
in different parts of the network; for this, we introduce the
following more fine-grained strategy.

Strategy TD. In the second strategy, TD, we use the exis-
tence of the parent-child relationship among switchable M
nodes and switchable T nodes (Observation 2), as follows.
Each switchable M node includes in its outgoing messages
an additional field that contains the number of nodes in its
subtree that did not contribute.2 As the multi-path ag-
gregation is done, the maximum, max, and the minimum,
min, of such numbers are maintained. If the % contribut-
ing is below the user-specified threshold, the base station
expands the delta region by switching from T to M all chil-
dren of switchable M nodes belonging to a subtree that has
max nodes not contributing. In this way, subtrees with the
greatest robustness problems are targeted for increased use
of multi-path. Shrinking is done by switching each switch-
able M node whose subtree has only min nodes not con-
tributing. The fine-grained control of TD facilitates adapt-
ing to non-uniform network conditions, at a cost of higher
convergence time and additional message overhead because
the base station needs to send one message every time it
switches a small number of nodes. Note that there are many
possible heuristics to improve the adaptivity of TD, such as
using max/2 instead of max or maintaining the top-k values
instead of just the top-1 value (max). We leave exploration
of optimal heuristics for future work.

5. COMPUTING SIMPLE AGGREGATES
To compute an aggregate in our Tributary-Delta frame-

work, we need a corresponding tree algorithm, a multi-path
algorithm, and a conversion function that takes a partial re-
sult generated by the tree algorithm and outputs a synopsis
that can be used by the multi-path algorithm. For example,

2Note that there is no double-counting here because it fol-
lows from the path correctness property that the node is the
root of a unique subtree.

in Figure 3, the node M3 receives two multi-path outputs
(denoted as bv) and one tree output (3). The conversion
function needs to transform the tree output to a synopsis so
that M3 can use its synopsis fusion function to combine it.

The synopsis generated by the conversion function must
be valid over the inputs from which the partial result has
been generated by the tree algorithm. For example, the
conversion function for the Count aggregate should take a
partial aggregate C and generate a synopsis whose evalua-
tion would produce the value C. This can be done by ap-
plying the Count synopsis generation function C times, or
directly applying the Sum synopsis generation function [5]
once. Intuitively, this enables a node running a multi-path
algorithm to become oblivious to whether an input synopsis
is generated by a node running the multi-path algorithm or
by a node running the tree algorithm followed by applying
the conversion function.

Many other aggregates (e.g., Sum, Min, Max, Average,
Uniform sample, etc.) with known efficient multi-path [17]
and tree algorithms have simple conversion functions (de-
tails omitted due to page limitations). Therefore, they can
be efficiently computed in our Tributary-Delta framework.
Moreover, the Uniform sample algorithm can be used to
compute various other aggregates (e.g., Quantiles, Statisti-
cal moments) using the framework.

However, no efficient multi-path algorithm exists to com-
pute an important aggregate: finding frequent items in the
sensor network. This is an important aggregate, in par-
ticular in the context of biological and chemical sensors,
where individual readings can be highly unreliable and it
is necessary to get a consensus measure [21]. In the next
section, we present an algorithm to do so, as well as an effi-
cient tree algorithm and the corresponding conversion func-
tion. Together, these enable computing frequent items in
our Tributary-Delta framework.

6. IDENTIFYING FREQUENT ITEMS
In this section we present the first energy-efficient Tribut-

ary-Delta algorithm for finding frequent items, describing
first the tree scheme (Section 6.1), then the multi-path scheme
(Section 6.2), and finally the conversion function (Section 6.3).

Following [15, 14], we consider the following formulation
of the frequent items problem. Each of the m sensor nodes
generates a collection of items. For example, an item can
be a value of a sensor reading at a particular point in time.
The same “item” may appear multiple times at one or more
sensor nodes. Let c(u) be the frequency of occurrence of item
u over all m nodes. Given a user-supplied error tolerance
ε, the goal is to obtain for each item u, an ε-deficient count
c̃(u) at the base station, where each c̃(u) satisfies

max {0, c(u)− ε·N} ≤ c̃(u) ≤ c(u)

and N denotes the sum of item occurrences across all items,
i.e., N =

P
u c(u). By computing ε-deficient counts, com-

munication is not wasted aggregating counts for rare items
(i.e., items with c(u) ≤ ε·N). Moreover, for small ε values,
little error is introduced by using ε-deficient counting for
frequent items (i.e., items with c(u) À εN). Given a user
specified support threshold s (s À ε), similar to [15, 14], we
report as frequent all items with ε-deficient counts greater
than (s−ε)N , thus ensuring that there are no false negatives,
and all false positives have frequency at least (s− ε)N .



Algorithm 1: Generate a ε(k)-summary (executed by all
nodes, where k is the height of the node)

Input: summaries Sj = 〈nj , εj , {(u, c̃j(u))}〉 from each child
j among the node’s children C, and its own summary S′ =
〈n′, 0, {(u, c̃′(u))}〉
Output: single ε(k)-summary S = 〈n, ε(k), {(u, c̃(u))}〉

1. Set n :=
P
j∈C

nj + n′

2. For each u ∈ ∪
j∈C

Sj ∪ S′, set c̃(u) :=
P
j∈C

c̃j(u) + c̃′(u)

3. For each u ∈ S, set c̃(u) := c̃(u) − (ε(k)·n −Pj∈C εj ·nj)

and if c̃(u) ≤ 0 remove (u, c̃(u)) from S

6.1 Tree Algorithm
In this subsection, we present our tree-based frequent items

algorithm, Min Total-load, the first algorithm for iden-
tifying frequent items that uses only O(m

ε
) words3 of total

communication, which is optimal. The algorithm’s guaran-
tees hold for a class of trees that arise naturally in sensor
networks. Previous tree-based frequent items algorithms [8,
14, 21] provided only a weak bound of O(m

ε
log m) on to-

tal communication, even for the simplified case of balanced,
regular trees.

6.1.1 Solution Approach and Challenges
A useful data structure encapsulating the partial result

sent by a node X to its parent is a summary, defined as
follows. A summary S = 〈N, ε, {(u, c̃(u))}〉 includes a (pos-
sibly empty) set of items u and their estimates c̃(u). Each
estimate c̃(u) satisfies max {0, c(u)− ε·N} ≤ c̃(u) ≤ c(u),
where N =

P
u c(u) such that c(u) is the frequency of item u

in the (multi-set) union of the multi-sets belonging to nodes
in the subtree rooted at X. The salient property of a sum-
mary is that items with frequency at most ε·N need not be
stored, resulting in a smaller-sized summary and therefore,
less communication.

Our approach (similar to [8, 14]) is to distribute the ε
error tolerance among intermediate nodes in the tree. We
make the error tolerance a function of the height of a node,
which is defined recursively as follows: the height of a leaf
node is 1; the height of any other node is one more than the
maximum height of its children. Let ε(i) denote the error
tolerance of a node with height i.

Algorithm 1 presents the steps to generate a summary
for a node X of height k, for a generic setting of the ε(i)’s.
Proceeding level-by-level up the tree, each node uses Algo-
rithm 1 to generate an ε(k)-summary, until at last the base
station outputs an ε(h)-deficient count for each item, where
h is the height of the base station. For correctness, we need
ε(1) ≤ ε(2) ≤ . . . ≤ ε(h). As long as ε(h) ≤ ε, the user-
specified guarantee is met. The sequence ε(1), . . . , ε(h) is
called the precision gradient [14], because the precision of
the data gradually decreases as it traverses the aggregation
tree.

Thus far the approach has been similar to [14]. The key
new challenge we address is how to set a precision gradient
that minimizes total communication and is not restricted to
balanced, regular trees. We seek a precision gradient that
minimizes worst case total communication over all possible
input instances, and is not limited by how many items or
what kind of items it can handle. Note that finding the

3We adopt the standard convention that a word holds one
item or one counter.

right setting is challenging even for a regular tree. When
minimizing the maximum load on a link, as considered in
previous approaches [8, 14], it suffices to bound the load on
each link. This is a local property: for a node of height k,
Step 3 of Algorithm 1 implies that estimates for at most

1
ε(k)−ε(k−1)

items will be present in the summary it sends on

its outgoing link. Total communication, however, is a global
property, and requires minimizing a sum. Indeed, it is not
obvious how to set the precision gradient to achieve optimal
worst case total communication.

6.1.2 Solution: TheMin Total-load Algorithm
Since any node at height k has at least one child of height

k − 1, for any given tree, the number of nodes at height k
can never be more than the number of nodes at height k−1.
In particular, for a balanced, regular tree of degree d, the
number of nodes at height k is 1

d
-th fraction of the corre-

sponding number at height k− 1. Moreover, from Step 3 of
Algorithm 1, we know that the maximum number of coun-
ters a node at height k can send on its outgoing link is pro-
portional to 1

ε(k)−ε(k−1)
. To minimize total communication,

it is then necessary to have large ε(k)− ε(k− 1) for small k
so that the total number of counters sent on the numerous
such links outgoing from nodes of small height remain small.
Care must be taken, however, to ensure that the product of

1
ε(k)−ε(k−1)

and 1
dk remains small even for large k. Our so-

lution Min Total-load balances the allocation by setting
ε(1) to be a constant fraction of the final ε, and then making

1
ε(k)−ε(k−1)

vary as ck for some c < d so that the total num-

ber of counters (product of 1
ε(k)−ε(k−1)

and 1
dk ) that could

be possibly sent by all nodes at height k still decreases with
increasing k. To extend our solution to non-regular trees,
we exploit the observation that the maximum possible total
communication of a tree (with our solution) can only de-
crease if nodes in an (initially balanced, regular) tree are
replaced by nodes of lesser height.

Our solution is based on the notion of a d-dominating tree,
which we define as follows. For any tree, let H(i) denote the
fraction of nodes having height at most i. Mathematically,
H(i) = 1

m

Pi
j=1 h(j), where h(j) denotes the number of

nodes at height j and m denotes the total number of nodes.

d-dominating tree: For any d ≥ 1, we say that a tree is d-
dominating if for any i ≥ 1, H(i) ≥ d−1

d
(1+ 1

d
+ . . .+ 1

di−1 ).

Note that for any tree, h(i) is monotonically non-decreasing
as i increases, so every tree is 1-dominating. From the def-
inition of a d-dominating tree, it follows that a tree that is
(d+ δ)-dominating is also d-dominating for any δ ≥ 0. Also,
given any tree and a precision δ1 > 0, we can always find
some d such that the tree is d-dominating, but not (d + δ1)-
dominating. We refer to such a d as the domination factor
for the tree.

Example 2. Consider a tree Te with height 4 and the h(i)
values shown in Table 2. The table also shows the h(i) and
the H(i) values of the two completely balanced, regular trees
T2 and T3 of degree 2 and 3 respectively. As the table shows,
H(i) of Te ≥ H(i) of T2, for all i. Therefore, the example
tree is 2-dominating. However, the tree is not 3-dominating,
since H(2) of Te < H(2) of T3. Assuming the granularity of
d is 0.05, it can be shown that Te has a domination factor of
2, since T2 is the highest degree tree that Te can dominate
(i.e., Te is not 2.05 dominating).



Example Tree Te Regular Tree T2 (d = 2) Regular Tree T3 (d = 3)
h 1 2 3 4 1 2 3 4 1 2 3 4
h(i) 37 10 6 1 8 4 2 1 27 9 3 1
H(i) 37/54 47/54 53/54 54/54 8/15 12/15 14/15 15/15 27/40 36/40 39/40 40/40

Table 2: Example of a 2-dominating tree.

We are now ready to present the precision gradient set-
tings for our Min Total-load algorithm:

Lemma 2. For any d-dominating tree of m nodes, where
d > 1, a precision gradient setting of ε(i) = ε ·(1 − t)(1 +
t + . . . + ti−1) with t = 1√

d
limits total communication to

(1 + 2√
d−1

)m
ε
.

Proof. In Step 3 of Algorithm 1, the frequency estimate
of each item u is decremented by at least n · (ε(i) − ε(i −
1)). Since

P
u∈S c̃(u) ≤ n, frequency estimates for at most

1
ε(i)−ε(i−1)

= di/2

ε · (
√

d−1)
items are sent by a node at height i

to its parent.
Furthermore, because the maximum number of possible

estimates a node at height i can send on its outgoing link in-
creases with its height (∝ di/2), the total communication for
a d-dominating tree is bounded by a (hypothetical) tree in
which exactly d−1

d
1

di−1 fraction of the nodes occur at height
i. Therefore, the total communication is bounded by:

m(d− 1)

d

∞X
i=1

1

(ε(i)− ε(i− 1))di−1
=

m(d− 1)

ε
√

d(
√

d− 1)

∞X
i=1

1

d(i−1)/2

≤ m

ε

d− 1

(
√

d− 1)2
=

m

ε

√
d + 1√
d− 1

=
m

ε

�
1 +

2√
d− 1

�

Observation 3. As the constant factor (1+ 2√
d−1

) shows,

total communication decreases as d increases. Therefore, it
is desirable to have aggregation trees which are d-dominating
for large d values.

A relatively straightforward induction proof yields the fol-
lowing result:

Lemma 3. A tree in which each internal node of height i
has at least d children of height i− 1 is d-dominating.

6.1.3 Trees with Large Domination Factors
As Lemma 2 shows, our Min Total-load algorithm works

especially well for trees that are d-dominating for high d val-
ues. The chief concern for guaranteeing low communication
is to ensure that the domination factor d is sufficiently far
from 1, say at least 2. In Section 7, we show that a real-
world sensor deployment has a domination factor of 2.25,
suggesting that while it may be infeasible to construct a
regular tree in a sensor network, it may be easy to generate
d-dominating trees for d ≥ 2. Moreover, we show next an
explicit tree construction algorithm that seeks to increase
the domination factor.

We modify the standard tree construction algorithm (de-
scribed in Section 2) with two optimizations. First, when a
node in level i chooses its parent, and even when it switches
parents, it selects a node only from level i− 1; the standard

algorithm [11] allows choosing a parent from the same level.
Second, we use the following opportunistic parent switching
technique, inspired by Lemma 3. Each node of height i + 1,
if has two or more children of height i, pins down any two of
its height i children, so that they cannot switch parents, and
then flags itself. Next, the non-pinned nodes in each level j
switch parents randomly to any other reachable non-flagged
node in level j − 1. As soon as a non-flagged node has at
least two flagged children of the same height, it pins both
of them and then flags itself. This local search technique
quickly makes the tree 2-dominating if there is an opportu-
nity to do so.

6.1.4 Extensions

Combining Objective Functions. Limiting total com-
munication places an upper bound on the energy usage of
all the sensors. However, in some cases, limiting the maxi-
mum load on a link is also very important [8, 14, 21]. We
now show how to obtain a precision gradient setting that
simultaneously achieves both optimal (within constant fac-
tors) maximum and optimal (within constant factors) total
communication, by combining solutions that are optimal for
each of the two individual metrics. Our combination tech-
nique can easily be generalized to multiple linear communi-
cation metrics, i.e., the communication metric is a weighted
sum, weighted min, or weighted max of the communication
load on the tree links. The following two observations are
the key insights that lead to our technique.

Observation 4. If each ε(i) in a precision gradient set-
ting is divided by some constant c ≥ 1, then the worst case
value of any linear communication metric is multiplied by c.

Observation 5. For some k ∈ [1, h], if the precision gra-
dient setting is changed so that ε(i) is increased for i ≥ k
and left unchanged otherwise, then the value of any linear
communication metric does not increase.

Lemma 4. Let εa = (ε(1)a, . . . , ε(h)a) and εb = (ε(1)b, . . . ,
ε(h)b) denote the precision gradient settings that respectively
minimize the total communication and the maximum load
on any link. Then ε∗ = (ε(1)∗, . . . , ε(h)∗) where ε(i)∗ =
1
2
(ε(i)a +ε(i)b) gives a simultaneous 2-approximation for to-

tal communication and maximum load on any link.

Proof. Follows from Observation 4 and Observation 5.

We call this variant of our algorithm Hybrid, because its
objective function includes both maximum and total com-
munication.

Computing Quantiles. The quantiles algorithm by Green-
wald and Khanna [8] can be extended to use our precision
gradients and hence to achieve useful bounds. For example,
our techniques above for bounding total communication to
O(m

ε
) words and for simultaneously bounding multiple com-

munication metrics can be easily extended to the problem



of finding quantiles. As such, they are the first quantiles
algorithms that achieve these bounds. We formally state
the technique analogous to Min Total-load for comput-
ing quantiles as Corollary 1.

Corollary 1. If the quantiles algorithm provided by Green-
wald and Khanna [8] is extended to use precision gradient,
for any d-dominating tree of m nodes, where d > 1, a pre-
cision gradient setting of ε(i) = ε·(1− t)(1 + t + . . . + ti−1)
with t = 1√

d
permits the computation of quantiles with total

communication at most (1 + 2√
d−1

)m
ε
.

6.2 Multi-path Algorithm
We are aware of two previous multi-path algorithms for

computing frequent items. The first algorithm, presented in
[17], performs multi-path counting of the items in the net-
work and keeps track of the items with high count values.
Since the multi-path counting algorithm is approximate, it
can find the frequent items only if they appear significantly
more than the non-frequent items. The second algorithm
computes a uniform sample of the items (which can be com-
puted over multi-path as shown in [17]) and then estimates
the frequent items over that sample. The accuracy of this
algorithm depends on the sample size and the data distribu-
tion. As we show in Section 7, these two algorithms suffer
from relatively high false positive and false negative rates
under a real sensor dataset. We address this problem with
a new multi-path algorithm for finding frequent items with
high accuracy.

Ideally, we would like to base our algorithm on our tree
algorithm (Algorithm 1), making it duplicate-insensitive so
that it will work correctly in the multi-path setting. Steps 1
and 2 of Algorithm 1 are no problem: we simply replace the
+ operator in those steps with a known duplicate-insensitive
addition operator. Step 3 is more problematic, however, be-
cause it uses a - operator and no duplicate-insensitive sub-
traction algorithms exist that combine high accuracy with
small synopses.

Overcoming the Duplicate-Insensitive Subtraction
Problem. Most duplicate-insensitive addition algorithms
(for positive numbers) guarantee that the error in their es-
timates is at most a constant factor of the actual value.
Specifically, for a user-specified relative error εc, 0 < εc < 1,
and confidence parameter δc, 0 < δc < 1, the estimate is
within a relative error εc of the actual sum with probabil-
ity at least 1 − δc. Because each added item increases the
actual sum, the allowed absolute error increases. If subtrac-
tion were allowed, the actual value would decrease and it
is not known how to achieve a corresponding reduction in
error while preserving a small synopsis.

Our solution is to avoid using subtraction altogether. First,
we note that the primary purpose of the subtraction in
Step 3 is to enable items with small estimated counts to be
dropped from the summary. Instead of subtracting at each
node and dropping the item if its estimate is negative, we
eliminate the subtraction and drop the item if its estimate
is below a rising threshold.

Second, we observe that we do not need highly accurate
duplicate-insensitive addition in our thresholding approach.
If we give ourselves some slack on the threshold, then we can
tolerate less accurate addition and will not drop items we
should not have dropped. We may fail to drop some items
that should be dropped, but this does not change the asymp-

Algorithm 2: Synopsis fusion function
Inputs: synopses S1 = 〈ñ1, {(u, c̃1(u))}〉 and S2 = 〈ñ2, {(u,
c̃2(u))}〉, of class i
Output: synopsis S = 〈ñ, {(u, c̃(u))}〉, of either class i or i + 1

1. Set ñ := ñ1 ⊕ ñ2

2. For each item u ∈ (S1 ∪ S2), add (u, c̃1(u)⊕ c̃2(u)) to S
3. If ñ > 2i+1, then increment the class of S from i to i + 1

and for each item u ∈ (S1 ∪ S2):

if ε·ñ
log N

≥ η · c̃(u), drop (u, c̃(u)) from S (We restrict η > 1)

totic communication bounds. The importance of making
use of less accurate addition arises from the fact that known
duplicate-insensitive addition algorithms [3, 4, 5, 17] require
synopses whose size is proportional to 1

ε2c
. When εc = 1

2
, this

equals 4; when εc = 1
100

, this equals 10, 000.
Finally, our algorithm adapts from [8] the concept of classes.

The idea is to have the error tolerance ε of a synopsis vary
linearly with its class, the logarithm of the number of items
it represents, and only combine synopses having the same
class. Assuming there are no duplicates, doing so ensures
that there is always an opportunity for further pruning once
any two synopses are combined. Therefore, a synopsis never
becomes too large. Even with duplicates, as our analysis
later shows, the size of a synopsis does not grow beyond a
constant factor of the case when there are no duplicates.
Also, since the count for the total number of items repre-
sented by a synopsis is approximate, we assign the class of
a synopsis as the logarithm of the synopsis’s estimate of the
total number of items it represents. As long as εc, the rel-
ative error parameter of ⊕ is less than 1, there are at most
log N + 1 classes of synopses varying from i = 0, . . . , log N .

We now describe the different components of our multi-
path algorithm, using the terminology presented in Sec-
tion 2.

Synopsis Generation. Each sensor node processes its col-
lection of items by counting item frequencies and discarding
(pruning) all items u whose frequency is less than or equal

to in′ε
log N

, where n′ is the total number of items in its col-

lection and i = blog n′c. Then the node generates a class i
synopsis by using a duplicate-insensitive addition algorithm
to compute a frequency estimate of each remaining item. If
the node is a leaf node, it forwards the synopsis to its parent.

Synopsis Fusion. Each intermediate node, in general, re-
ceives from each of its children at most a single synopsis of
each class. After receiving all synopses from its children, be-
ginning with the smallest class for which the node has a syn-
opsis, the node starts combining two synopses of the same
class using Algorithm 2 (the ⊕ operator denotes duplicate-
insensitive addition), until it is left with at most one synopsis
of each class. It then transmits the resulting collection of
synopses to its parent. The parameter η controls the ac-
cepted slack in the thresholding procedure, as a function of
the error parameter εc.

Synopsis Evaluation. Finally, at the base station, the
frequency estimates corresponding to an item are simply
added (again using ⊕) across all the different log N classes.

Accuracy and Communication Bounds. The accuracy
and communication bounds of our algorithm are summa-
rized in the following theorem. The bounds are in terms of
the number of sensors m, the total number of items N , the
user-specified error tolerance ε and confidence parameter δ,



and the relative error parameter εc of ⊕, where ε, δ, and εc

are each between 0 and 1. In addition, the bound assumes
the following accuracy preserving duplicate-insensitive sum
operator ⊕.

Definition 1. Suppose X(εc,δc) denotes an (εc, δc)-estimate
of a scalar X, with a relative error of εc, and a confidence
parameter of δc. Then, the operator ⊕ is called an accuracy
preserving duplicate-insensitive sum operator if X(εc,δc) ⊕
Y(εc,δc) = Z(εc,δc), where Z = X + Y .

An example of accuracy preserving duplicate-insensitive
sum operator can be found in [3].

Theorem 1. When ⊕ is a accuracy preserving duplicate-
insensitive sum operator, then with probability at least 1−δ,
for all item u, the algorithm produces estimated frequencies
c̃(u) such that (1 − εc)(c(u) − εN) ≤ c̃(u) ≤ (1 + εc)c(u).

Moreover, the maximum load on a link is O( log2 N
ε

· 1
ε2c
·

log(m log N
εδ

)) memory words.

The proof is provided in Appendix A.

6.3 Tributary-Delta Algorithm
Recall from the discussion in Section 5 that to combine

tree and multi-path algorithms, we need a conversion func-
tion that takes a partial result generated by the tree al-
gorithm and outputs a synopsis that can be used by the
multi-path algorithm. For frequent items, when using our
tree and multi-path algorithms provided in Section 6.1 and
Section 6.2 respectively, this conversion function can simply
be the synopsis generation (SG) function of our multi-path
algorithm, applied to the estimated frequencies of the tree
algorithm. Specifically, we take the summary 〈n, ε(k), {(u,
c̃(u))}〉 from Algorithm 1 and view c̃(u) as the actual fre-
quency to which we apply the thresholding test of SG (Sec-
tion 6.2), letting the n′ in SG be the n from the summary,
in order to create the synopsis. In this way, the final er-
ror in estimating the frequency of an item is at most the
sum of the errors in the tree and the multi-path algorithm.
So, given a user-specified error ε, we can obtain (approxi-
mate) ε-deficient counts in the Tributary-Delta framework,
by running our tree-algorithm with error tolerance εa (where
ε(k) ≤ εa) and our multi-path algorithm with error tolerance
εb, such that εa + εb = ε.

7. EXPERIMENTAL RESULTS
In this section we evaluate our two proposed Tributary-

Delta approaches, TD-Coarse and TD, in varying network
conditions, using existing tree and multi-path approaches
as baselines. We begin in Section 7.1 by describing the
real-world data and the simulation environment we used.
Then, in Section 7.2, we show the different ways in which
TD-Coarse and TD adapt to changes in network conditions.
Using a simple aggregate (Sum), we report the accuracy im-
provements of our proposed approaches over the baseline
approaches in Section 7.3. Finally, in Section 7.4, we pro-
vide measurements of communication load for our frequent
items algorithm Min Total-load and evaluate TD-Coarse

and TD for this more complex aggregate.

7.1 Methodology
We implement TAG [11], SD [17] and our proposed Tributary-

Delta approaches, TD-Coarse and TD, within the TAG simu-
lator [11]. TAG is a tree-based aggregation approach used by
TinyDB [11], whereas SD (for Synopsis Diffusion) is a multi-
path aggregation approach over Rings [17]. In each simula-
tion run, we collect a single aggregate value every epoch for
100 epochs, unless noted otherwise. We begin data collec-
tion only after the underlying aggregation topologies become
stable. Unless otherwise stated, we use Sum as the aggre-
gate. In all the experiments, we use a variant of [7] (as in [5])
for achieving duplicate insensitive addition. We allow the
Tributary-Delta approaches to adapt their topologies every
10 epochs. Recall from Section 4 that the adaptivity deci-
sions in our proposed approaches are guided by a threshold
on the percentage of nodes contributing to the aggregate.
We use 90% as the threshold. We use 48-byte messages, as
used by the TinyDB system. This allows us to fit 40 32-
bit Sum synopses (with the help of run-length encoding [18])
within a single message, and produce an approximate Sum
based on the average of these 40 estimates.

Scenarios. We use LabData, a scenario reconstructing a
real deployment, and Synthetic, a synthetic scenario with
several failure models, for our experiments. Using actual
sensor locations and knowledge of communication loss rates
among sensors, LabData simulates a deployment of 54 sen-
sors recording light conditions in the Intel Research Berkeley
laboratory [9]. The dataset contains around 2.3 million sen-
sor readings. The Synthetic scenario is a deployment of
600 sensors placed randomly in a 20 ft × 20 ft grid, with a
base station at location (10, 10). We study two failure mod-
els for Synthetic: Global(p), in which all nodes have a
message loss rate of p, and Regional(p1, p2), in which all
nodes within the rectangular region {(0, 0), (10, 10)} of the
20 × 20 deployment area experience a message loss rate of
p1 while other nodes have a message loss rate of p2.

7.2 Adaptivity of TD-Coarse and TD

To demonstrate the different ways in which our two strate-
gies adapt to changes in network conditions, we study the
Synthetic scenario under the two failure models. First, we
apply the Global(p) failure model with increasing values
of p. Figure 4(a) and Figure 4(b) show snapshots of the
TD-Coarse approach when the loss rates are 0.2 and 0.3 re-
spectively. As expected, the delta region expands as the loss
rate p increases—depicted by an increase in the number of
larger dots from Figure 4(a) to Figure 4(b). The snapshots
for the TD approach are similar, except that the delta region
increases gradually, instead of expanding by all switchable
nodes at a time.

Second, we apply the Regional(p1, p2) failure model with
increasing p1 and a fixed p2 = 0.05. In TD-Coarse, because
the delta region expands uniformly around the base station,
all nodes near the base station are switched to multi-path,
even those experiencing small message loss. In TD, this prob-
lem does not arise because the delta region expands only in
the direction of the failure region. Figure 4(c) and Fig-
ure 4(d) capture pictorially the response of TD to such lo-
calized failures. Even at a high loss rate, in TD, the delta
region mostly consists of nodes actually experiencing high
loss rate.
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7.3 Evaluation using a Simple Aggregate
In this section we evaluate the accuracy of our two pro-

posed approaches in varying network conditions, using the
TAG and SD approaches as baselines. We restrict ourselves
to simple aggregates like Count and Sum for which the par-
tial results can fit in a single TinyDB packet for both TAG

and SD. To ensure that all approaches use comparable en-
ergy levels, we disallow retransmissions (as in the original
TinyDB implementation).

For measuring accuracy, we use the relative root mean

square (RMS) error—defined as 1
V

qPT
t=1(Vt − V )2/T , where

V is the actual value and Vt is the aggregate computed at
time t. The closer this value is to zero the closer the ag-
gregate is to the actual value. We define accuracy to be 1
minus the RMS error.

Real scenario: LabData. We measure the accuracy of
evaluating the Sum aggregate on LabData. We find the
RMS error to be 0.5 for TAG and 0.12 for SD. Both TD and
TD-Coarse can dynamically determine that running synopsis
diffusion over most of the nodes gives a better accuracy and
provides an RMS error of 0.1.

Synthetic scenarios. For the remainder of this section,
we use Synthetic scenarios. Figure 5 presents the accuracy
of the different schemes under varying failure scenarios, for
the Count aggregate. In Figure 5(a) and Figure 5(b), we use
the models Global(p) and Regional(p, 0.05), respectively,
with varying p. (Figure 5(a) is the full graph correspond-
ing to Figure 2 in Section 1.) At all loss rates in both cases,
both TD-Coarse and TD are at least as accurate as TAG or SD.
As Figure 5(a) shows, at loss rates (0 ≤ p ≤ 0.05) where the
accuracy of TAG and SD are comparable, TD and TD-Coarse

provide slightly better accuracy than either of the two ap-
proaches. This is a consequence of the delta region being
small enough at those loss rates that some of the nodes gen-

erating tree aggregates can directly communicate with the
base station, thereby avoiding the approximation errors of
multi-path aggregation. The advantage of the TD scheme is
more pronounced under the Regional failure model. Un-
der regional failures, the accuracy of TD is strictly better
than that of TAG because TD uses multi-path aggregation in
the failure region. It is also better than TD-Coarse and SD

because the delta region is extended in only one direction
to encompass the failure region (akin to Figure 4(d)) and
hence a significant portion of the tree nodes, with no com-
munication loss, can directly talk to the base station without
incurring the approximation error of multi-path aggregation.

Next, we evaluate our Tributary-Delta schemes under a
dynamic scenario that uses the Global and Regional fail-
ure models at different instances of time. The goal is to
demonstrate how well the schemes adapt with the underly-
ing dynamics. We start with the Global(0) failure model.
At time t = 100, we introduce the Regional(0.3, 0) failure
model. Then at time t = 200, we switch to the Global(0.3)
failure model. Finally, at time t = 300, we restore the failure
model to be Global(0).

Figure 6 shows the relative errors of the answers provided
by different schemes over time. We use relative error instead
of RMS error because each data point corresponds to just a
single aggregate answer. Figure 6(a) shows the performance
of two existing approaches, TAG and SD. As expected, TAG

provides better accuracy when the loss rate is small (i.e., for
t ∈ [0, 100] or t ∈ [300, 400]) while SD is more accurate when
the loss rate is higher (i.e., for t ∈ [100, 300]).

Figure 6(b) and Figure 6(c) compare the relative errors
of TD-Coarse and TD with the smallest of the errors given
by TAG and SD. At a high level, both TD-Coarse and TD,
when converged, have at most the error given by any of
the two existing approaches. However, the graphs reveal
a number of subtle differences between the two Tributary-
Delta schemes. First, because TD can adjust its delta region
in a finer granularity, it can converge to provide a more
accurate result. Second, the coarse granularity of TD-Coarse
has an adverse effect on its convergence. The delta region
can continue expanding and shrinking around the optimal
point (e.g., for t ∈ [100, 150] in Figure 6(b)). The base
station can use simple heuristics to stop the oscillation (e.g.,
at t = 150), but even then it may end up using a delta
region larger than what is necessary. Finally, the benefits of
TD comes at the cost of a convergence time higher than that
of TD-Coarse. As shown in Figure 6(c), TD takes around 50
epochs to converge after the network condition changes. The
time can be reduced by carefully choosing some parameters
(e.g., how often the topology is adapted), a full exploration
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Figure 6: Timeline showing the relative errors of different aggregation schemes. (Note the changing y-axis scale.)

of which is beyond the scope of this paper.

7.4 Evaluation With Frequent Items
We begin in Section 7.4.1 by evaluating our tree construc-

tion algorithm presented in Section 6.1.3. Then, in Sec-
tion 7.4.2, we evaluate Min Total-load, our efficient fre-
quent items algorithm for trees. In Section 7.4.3, we com-
pare our multi-path algorithm with two related algorithms.
Finally, in Section 7.4.4, we evaluate TD-Coarse and TD for
the frequent items aggregate.

7.4.1 Evaluation of Tree Construction Algorithm
As mentioned in Section 6.1.3, our Min Total-load al-

gorithm has smaller overhead (by constant factors) if the
aggregation tree is d-dominating for large d values. We note
that, in practice, typical sensor deployments tend to have
this property. For example, Figure 7(a) plots the cumulative
number of nodes versus height for the aggregation tree of the
LabData dataset. The distribution is lower bounded by the
cumulative number of nodes of a balanced, regular tree with
degree 2.25 (denoted as Regular(2.25)). Thus, that the ag-
gregation tree of the LabData dataset is 2.25-dominating,
which implies low overhead (the constant factor is 3 in this
case).

Figure 7(b) and Figure 7(c) show the domination factors
of the aggregation trees in different Synthetic scenarios.
In Figure 7(b), while keeping the deployment area fixed at
20× 20, we vary the sensor density. In Figure 7(c), we keep
the sensor density fixed (1 sensor per square unit area) and
vary the size of the deployment area by changing its width
(the height remains 20 across all experiments). The graphs
show that our tree construction algorithm (Section 6.1.3)
significantly improves the domination factor d. This is par-
ticularly useful when the domination factor of the tree is low
because of low sensor density or narrow deployment area,
since even a slight improvement in the d value greatly re-
duces the constant factor in Min Total-load (which is
proportional to 1√

d−1
).

7.4.2 Frequent Items over Tree
Figure 8 compares our two frequent items algorithms Min

Total-load (Section 6.1.2) and Hybrid, the 2-approxima-
tion algorithm presented in Section 6.1.4, against the two
best known existing algorithms: Min Max-load [14] and
Quantiles-based4 [8]. We report the average and maxi-
mum load (number of integer values transmitted) of a node,
under no message loss, on two sets of data. The first two sets

4Frequent items can be computed from quantiles.
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Figure 8: Average and maximum load of a sensor in a

tree topology.

of bars in the graph represent the results with the LabData
dataset. The graph shows that even though the communica-
tion load of our Hybrid algorithm is only guaranteed to be
within a factor of 2 of the best of Min Total-load and Min
Max-load, with our real world data set it performs signif-
icantly better. Specifically, Hybrid is 4% and 30% better
than the best of Min Max-load and Min Total-load for
average load and maximum load, respectively. It also shows
that even though our Min Total-load algorithm does not
aim to reduce maximum load of a node, in practice it per-
forms very close to Min Max-load. The Quantiles-based
algorithm performs significantly worse than the other algo-
rithms because it is not optimized for the bushy tree we
encounter in LabData.

As discussed in Section 6.1, the average load for our Min
Total-load and Hybrid algorithms is upper bounded by
a constant for any dataset (recall Lemma 2 and Lemma 4,
noting that the average load is the total communication di-
vided by the number of nodes), whereas it is logarithmic in
the number of nodes for Min Max-load and Quantiles-
based. Therefore, we can always construct a stream of items
for which the improvement of Min Total-load and Hy-
brid over Min Max-load and Quantiles-based is signif-
icant (e.g., zero vs. nonzero). As an example, in the last
two sets of bars in Figure 8, we present results over a syn-
thetic dataset, in which every sensor node receives a stream
of items such that (1) the same item never occurs in multi-
ple streams and (2) within a stream the items are uniformly
distributed. As shown, Min Total-load incurs only half
the total communication required for the Min Max-load
algorithm (note the log-scale on the y-axis).

7.4.3 Frequent Items over multi-path
To understand the performance of our multi-path based
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Algorithm False positive False negative
Min Total-load 2.3% 0
Counting-based 33.3% 30.3%
Sampling-based 15.4% 12.1%

Table 3: Average false positives and false negatives in

the frequent items estimated by different multi-path al-

gorithms.

Min Total-load algorithm, we compare it with the two
existing algorithms mentioned in Section 6.2. We denote
the first algorithm as Counting-based and the second al-
gorithm as Sampling-based.

We use the Synthetic topology for this evaluation, with
the brightness data stream of the LabData dataset evenly
partitioned among the sensors. The real-valued sensor data
are discretized with a bucket-size of 5 and Frequent Items
are computed over these discrete values. In all cases, we
aim to find all the items appearing more than 1% of the to-
tal number of item occurrences in the LabData. For a fair
comparison, we use the sample size of Sampling-based and
the synopsis size of Counting-based equal to the average
message size (≈ 1000) of Min Total-load, so that they all
have the same communication overhead. We measure the
accuracy of the algorithms with their false positive (number
of non-frequent items reported as frequent) and false nega-
tive (number of frequent items not reported) rates. Similar
to the methodology in [14, 15], we use Min Total-load
with error margin ε = 0.1% to report all items with fre-
quency more than the support threshold s = 1% of the total
number of item occurrences in the LabData. However, be-
cause the count provided is ε-deficient, we actually report all
the items whose estimated counts are more than (s − ε) of
the total count. This introduces false positives in the result.

Table 3 shows the false positive and the false negative
rates in the frequent items estimated by different algorithms.
Each data point represents the average error over 100 exper-
iments (each experiment has a random placement of sensors,
and hence potentially a different topology). As shown, our
Min Total-load algorithm has no false negative and has
only a very small false positive rate. Counting-based suf-
fers from large false positive and false negative rates since
the distribution of the sensor data in LabData is not op-
timal for Counting-based—i.e., the frequent items do not
appear significantly more than the non-frequent items. The
false positive and the false negative rates of Sampling-based
is higher than Min Total-load, implying that for this ex-
periment, a sample size of 1000 is not sufficient for Sampling-
based to achieve the accuracy provided by Min Total-

load.

7.4.4 Frequent Items over Tributary-Delta
We now evaluate how well our Tributary-Delta algorithm

finds frequent items. As mentioned in the previous section,
Min Total-load has a small (< 3%) false positive rate with
no communication failure. Communication failures further
reduces the false positive rate, but introduces false negatives
in the estimated results. This is also because some of the
items with frequency above the support threshold s% are
not reported due to under estimation resulting from message
loss.

Figure 9(a) and Figure 9(b) show the false negative rates
of different aggregation schemes under the Global(p) and
Regional(p, 0.05) failure models, respectively. As in our
previous results, TD performs as well as (for Global) or
better than (for Regional) the TAG or SD schemes alone.

In contrast to the Sum or Count aggregate studied in Sec-
tion 7.3, with the Frequent Items aggregate, a multi-path
partial result can consist of more TinyDB messages (3 times
on average in this experiment) than a tree partial result.
Therefore, to make both approaches use comparable energy
(i.e., a node transmits roughly the same number of bytes
whether it is using a tree or a multi-path algorithm), we
let the tree nodes retransmit their messages twice. The re-
sults are shown in Figure 9(c). As expected, retransmission
significantly reduces the false negatives of the tree result.
We argue that, even with retransmission, the TD approach is
preferable. First, at a high loss rate (> 0.5 for Min Total-
load), the multi-path algorithm still outperforms the tree
algorithm and TD can effectively combine the benefits of both
the algorithms. Second, epochs have to be longer to allow
sufficient time for retransmissions, and hence the query la-
tency increases linearly with the number of allowed retrans-
missions. The increased latency may be unacceptable to
many real-time monitoring and control applications [22].

7.5 Summary of Results
Our results have quantified a number of advantages of our

techniques. First, we have shown that our TD-Coarse and
TD constructions can run tree and multi-path based aggrega-
tion simultaneously in different parts of the network and can
dynamically balance between the tree and multi-path com-
ponents as the operating conditions (e.g., loss rate) change.
Second, Tributary-Delta is able to provide not just the best
of the accuracies provided by tree or multi-path (e.g., by run-
ning either on them in the whole network), but in fact a sig-
nificant accuracy improvement over the best, across a wide
range of practical loss rates (0− 40%)—thus demonstrating
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Figure 9: False negatives in the estimated frequent items. (False positives are < 3%)

the synergies of using both in tandem. For example, in com-
puting Count under such loss rates, Tributary-Delta can re-
duce errors by up to a factor of 3 compared to an oracle that
can dynamically choose the best existing approach (tree-
based or multi-path-based) for a given loss rate. Moreover,
Tributary-Delta never performs worse than such an oracle.
Third, for complex queries (e.g., Frequent Items), Tributary-
Delta may use larger messages than a tree-based algorithm
do. However, Tributary-Delta can provide higher accuracy
than a tree that retransmits messages on loss and hence
consumes the same amount of communication energy.5 For
example, with our Frequent Items algorithm and within the
loss rates 0 − 40%, Tributary-Delta reduces false-negatives
by a factor of 4 compared to the best of TAG and SD. Thus,
Tributary-Delta provides a sweet spot between communica-
tion overhead and approximation error, as shown in Table 1.
Finally, we have shown that our tree-based and multi-path-
based Frequent Items algorithms perform significantly bet-
ter than the existing algorithms (Table 3).

8. CONCLUSIONS
In this paper, we have presented Tributary-Delta, a novel

energy-efficient approach to in-network aggregation in sen-
sor networks. Tributary-Delta combines the advantages of
the existing tree- and multi-path-based approaches by run-
ning them simultaneously in different parts of the network.
We have studied this new approach and presented schemes
for adjusting the balance between tributaries and deltas in
response to changes in network conditions. We have also
shown how a difficult aggregate for this context—finding fre-
quent items—can be efficiently computed in the Tributary-
Delta framework. Our simulation results on real-world and
synthetic data showed that our techniques are greatly supe-
rior to the existing tree- and multi-path-based approaches.
For example, in computing Count under realistic loss rates,
our techniques can reduce errors by up to a factor of 3 com-
pared to any existing techniques.
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APPENDIX

A. PROOF OF THEOREM 1
Before stating and proving Theorem 1, we provide bounds

on the accuracy of the synopsis generated at any node (Lemma 5),
the accuracy of the synopses resulting from Synopsis Fusion
(Lemma 6, Lemma 7 and Lemma 8), and bounds on the
communication load on a link (Lemma 9, Lemma 10 and
Lemma 11). Recall that all bounds are in terms of the num-
ber of sensors m, the total number of items N , the overall
user-specified error tolerance ε and confidence parameter δ,
and the relative error parameter εc of ⊕, where ε, δ, and
εc are each between 0 and 1, and ⊕ is the constant error
duplicate-insensitive sum operator defined in Definition 1.

We start with Lemma 5 which bounds the accuracy of the
synopses generated by the nodes.

Lemma 5. With probability at least 1− δ, for any synop-
sis S generated at the nodes, and for any item u in S, the
following bounds hold:

• (1− εc)S.n ≤ S.ñ ≤ (1 + εc)S.n

• (1− εc)S.c(u) ≤ S.c̃(u) ≤ (1 + εc)S.c(u)

Proof. At each of the m sensor nodes, after the Syn-
opsis Generation process, at most log S.n

ε
locally frequent

items remain. The union bound suggests that setting the
confidence parameter for the duplicate-insensitive sum algo-
rithm as δc = εδ

m log N
is sufficient to have Lemma 5 hold.

Lemma 6. With probability at least 1−δ, for any synopsis
S, (1 − εc)S.n ≤ S.ñ ≤ (1 + εc)S.n. Moreover, if the class
of S is i, (1− εc)2

i < S.ñ ≤ (1 + εc)2
i+1.

Proof. Simple proof using induction.

Lemma 7. With probability at least 1− δ, for any synop-
sis S, the estimated frequency c̃(u) of any item u satisfies:
S.c̃(u) ≤ (1 + εc)c(u).

Proof. By induction on S.ñ.
Base step (S.ñ): Such synopsis can only be generated by

Synopsis Generation. If the item is not pruned, Lemma 5
applies. Or else, the lemma trivially holds.
Induction step: Either the synopsis is generated locally,
or the synopsis is a result of invoking Synopsis Fusion. In

case of the former, the base step argument applies. For the
latter, Lemma 7 holds because ⊕ is constant error duplicate-
insensitive sum and because of the induction assumption.

Lemma 8. With probability 1 − δ, for any synopsis S of
class i, the estimated frequency c̃(u) of any item u satisfies:
(1− εc)(c(u)− iεS.n

log N
) ≤ S.c̃(u)

Proof. By Induction on S.ñ.
Base step (S.ñ of class i): If u is pruned, c(u) < iεS.n

log N

and S.c̃(u) = 0. Or else, Lemma 5 can be applied. In either
case, Lemma 8 holds.

Induction step: If the synopsis is generated locally, the
base step argument applies. Otherwise, it is a result of
the synopsis fusion function. Let the two inputs to Syn-
opsis Fusion be synopses S1 and S2 of class k. By induc-
tion assumption, (1 − εc)(S1.c(u) − kεS1.n

log N
) ≤ S1.c̃(u) and

(1 − εc)(S2.c(u) − kεS2.n
log N

) ≤ S2.c̃(u). Let ĉ(u) denote the
frequency estimate of an item u before the pruning step. It

follows that (1 − εc)(Sf .c(u) − kεSf .n

log N
) ≤ ĉ(u). If item u is

not pruned, Sf .c̃(u) = ĉ(u) and Lemma 8 holds (irrespec-
tive of whether the class of S increases or not). Or else, the

class of Sf is k + 1 and ĉ(u) < ε(1−εc)S.ñ
(1+εc) log N

. Using Lemma 5,

ĉ(u) < ε(1−εc)S.n
log N

. Hence, Lemma 8 holds.

Lemma 9. For a synopsis S of class i, S.n < 2i+1

1−εc
with

probability at least (1− δ).

Proof. Follows from Step (3) of Algorithm 2.

Lemma 10. For any item u belonging to a class i synopsis

S, S.c̃(u) ≥ (1−εc)ε2i

(1+εc) log N
with probability at least (1− δ).

Proof. After synopsis generation, S.c̃(u) ≥ iε2i

log N
. In

synopsis fusion, the class of a synopsis increases only in

Step (3) and S.c̃(u) ≥ (1−εc)ε2i

(1+εc) log N
holds immediately after

that.

Lemma 11. The maximum number of (non-zero) frequency

estimates in any class i synopsis S is 2(1+εc)2 log N

(1−εc)2ε
.

Proof. Follows from Lemma 9 and Lemma 10.

Proof of Theorem 1. Lemma 5, Lemma 7 and Lemma 8
provide accuracy bounds on the synopses generated by the
synopsis fusion function. Since ⊕ is constant error duplicate-
insensitive sum, the same bounds hold after synopsis evalu-
ation too. The bound on communication load follows from
Lemma 11.


