Energy-Efficient Forwarding Strategies for Geographic Routing in Lossy Wireless Sensor Networks

K. Seada, M.Zuniga, A. Helmy and B. Krishnamachari
Department of Electrical Engineering
University of Southern California
The Wake-up Call

- **Idealized assumptions about channel characteristics**
 - Perfect coverage within a circular radio
 - Neither circular nor convex and often non-contiguous
 - Distribution of packet reception over distance is uniform
 - Non-uniform
 - Losses happen at long distances from the transmitter
 - Short distances too
 - Reliable Symmetric (wireless) links
 - Extremely unreliable asymmetric links, specially at lower power settings
 - Connectivity graph
 - Losses due to fading and obstacles are common and vary over time

- **New observations**
 - 3 distinct reception regions
 - connected, transitional, disconnected
Reception Regions

Each circle represents the link quality of a directed edge in the topology. Edges with the same distance can have very different reliability.
Lognormal Shadowing Model

Packet reception probability

Distance between nodes

Prp(x) = 1, x ≤ R
Prp(x) = 0, x > R
Geographic Routing

- Nodes need only to know the location information of their direct neighbors in order to forward packets
 - Each node forwards a packet to the neighbor that is closest to the destination (greedy forwarding)

- Discovery floods and state propagation not required (multihop)

- Assumptions
 - Sufficient network density
 - Accurate localization
 - High link reliability
Greedy Forwarding is loop-free

- S knows only position of
 - Itself
 - Its neighbors
 - Destination D
- S forwards to neighbor B closest to D
- Assume A_1 closest to D
- A_2 sends to A_3
- Contradiction, A_1 is closer
Problematic

- Unreliable (weak) links increase packet drops
 - Reduce delivery rate
 - Increase energy consumption due to retransmissions

Rethink

- Neighbor classification based on link reliability
 - Neighbor blacklist
 - May lead to route disconnection and lower delivery rates, if not careful

Q:

- What is the most energy efficient forwarding strategy?
- How does such strategy draw the line between weak and good links
Distance-Hop Energy Tradeoff

- Minimizing number of hops (by maximizing the geographic distance covered at each hop) may lead to significant energy expenditure due to retransmissions.

- Maximizing per-hop reliability (by forwarding only to close neighbors with good links) may lead to greater energy expenditure due to the need for more transmission hops.

Goal

- Explore distance-hop tradeoff, in order to maximize the energy efficiency of the network during communication events.
The Model

- **Realistic channel model**
 - PRR over a relative small period of time is a good estimator of the channel’s condition
 - \(PRR(d) = (1 - \exp(-\gamma(d)/2*0.64)/2)\rho^8f \)
 - \(\gamma = SNR \)
 - \(\rho = 2 \) (encoding ratio)
 - \(f = \) frame length

- **Modulation**
 - Non-coherent frequency shift keying

- **Encoding**
 - Manchester

- **Metrics**
 - Delivery rate (\(r \))
 - Total number of retransmissions (\(t \))
 - Energy efficient (\(E_{eff} \)) = \(p_{src} * r/kt \)
 - \(K \) is a constant based on \(e_t = e_{tx} + e_{rx} + (n-1)e_{re} \) and conversion factor for energy units
Analytical Model

- **Q:** At each step along the path, how far should a packet be forwarded? (what is the optimal forwarding distance?)

- No network disconnections

- The source-destination path \((d_{\text{src-dest}}) \) can be described as a chain topology, where nodes are placed every \(\tau \) meters
 - Energy efficiency obtained if a distance \(d \) is traversed at each hop
 - \(Xd = e_{\text{eff}}(d) \)
 - Probability that the optimum forwarding distance is \(d \)
 - \(Qd = f_{xd}(x) \prod_{\forall j \in \psi, j \neq d} Fxj(x) \, dx \)

- Evaluated through numerical computation
Derivation of the chain topology
The Model – ARQ Case

- No a priori constraint on the maximum number of retransmissions \((r=1)\)
- At each hop the expected number of transmissions is \(p_{src}/\text{PRR}(d)\)
 - \(E_{\text{eff}} = \frac{\text{PRR}(d)d}{kd_{src-dest}}\)

- **Results**
 - Best reception neighbor (BR) consumes 100% more than optimal
 - Blacklist neighbors beyond connectivity region consumes 100% or more than optimal
 - Greedy forwarding with a low blacklist threshold consumes 500% more than optimal
Results – ARQ Case

- Probability Mass Function for Various τ
- Relative Energy Cost vs. Forwarding Strategy, with ARQ

Graphs showing the probability mass function and relative energy cost for different forwarding strategies and τ values.
The Model – No-ARQ Case

- The distance between the source and the destination influences the election of the optimal forwarding distance
 - The longer the distance, the higher the PRR of the chosen links should be

- \(X_d = \)
 - \(PRR(d)^h*(PRR(d)-1)/PRR(d)^h-1, \) if PRR < 1
 - \(1/p_{src}^h, \) if PRR = 1

- Rule of thumb
 - Best candidate neighbor for forwarding often lies in the transitional region
Results – No-ARQ Case

Probability Mass Function for Various $d_{\text{src-sink}}$:

- $d_{\text{src-sink}} = 200$ m
- $d_{\text{src-sink}} = 400$ m
- $d_{\text{src-sink}} = 800$ m
- $d_{\text{src-sink}} = 1600$ m

Relative Energy Cost vs. Forwarding Strategy, without ARQ:

- $d_{\text{src-sink}} = 200$ m
- $d_{\text{src-sink}} = 400$ m
- $d_{\text{src-sink}} = 800$ m
- $d_{\text{src-sink}} = 1600$ m
Forwarding Strategies for Lossy NW

- **Distance-based**
 - Original greedy
 - Distance-based blacklisting
 - Each node blacklists neighbors that are above a certain distance from itself

- **Reception-based**
 - Absolute blacklisting
 - Node blacklist neighbors that have a reception rate below threshold
 - Relative blacklisting
 - Node blacklist neighbors (that are closer to the destination) a percentage of nodes that have the lowest reception rate

- **Best reception neighbor**
 - Each node forwards to the neighbor with the highest PRR from the neighbors that are closer to the destination

- **Best PRRxdistance**
 - The neighbor with the highest value is chosen
Simulation Results

- Greedy disconnection is an important factor that was not captured in the model
 - Delivery rate is low at low densities because of greedy failures
- Strategies based on reception rate are better than those based only on distance
 - Relative blacklisting reduces disconnection by using the best available links independent of their quality or distance
 - PRRxdistance
 - Has the highest delivery rate
 - More robust and easier to implement
- ARQ becomes more important as the network size increases
Simulation Results

(a) Delivery Rate

(b) Energy Efficiency
Future Work

- Study face (perimeter) routing in lossy networks
- Explore inaccurate locations problem
- Take into account scenarios where link losses vary with time
- Consider MAC contention and their effect in the model and strategies