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Abstract Optimizing user experience for streaming video applications on handheld devices
is a significant research challenge. In this chapter, we propose an integrated end-
to-end power management approach that unifies low level architectural optimiza-
tions(CPU, memory, registers), OS power-saving mechanisms(dynamic voltage
scaling) and adaptive middleware techniques(admission control, transcoding, net-
work traffic regulation). Specifically, we identify interaction parameters between
the different levels and optimize them to reduce power consumption. With knowl-
edge of device configurations, dynamic device parameters and changing system
conditions, the middleware layer selects an appropriate video quality and fine
tunes the architecture for optimized delivery of video. Performance results in-
dicate that architectural optimizations that are cognizant of user level parame-
ters(e.g. transcoded video quality) can provide energy gains as high as 57.5%
for the CPU and memory, when compared to the baseline case that does not
employ any energy optimization. Middleware adaptations to changing network
noise levels can save as much as 70% of energy consumed by the wireless net-
work interface. Our approach to multiple-level and end-to-end management of
power/performance has been implemented in a framework, called FORGE. We
show how FORGE can substantially enhance the user experience in a mobile
multimedia application.

Keywords: low-power optimization, cross-layer adaptation, power-aware middleware, FORGE
project

14.1 MOTIVATION

Limiting the energy consumption is an important design goal for mobile
devices. Designers have explored techniques for minimizing energy usage of
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most components, from CPU, network, display to peripherals of a mobile sys-
tem platform. On the other hand, rapid advances in processor and wireless
networking technology are ushering in a new class of multimedia applications
(e.g. video streaming/conferencing) for mobile handheld devices. Multimedia
applications have distinctive Quality of Service(QoS) and processing require-
ments which tend to make them extremely resource-hungry. Moreover, the
device specific attributes(e.g form factor of handhelds) significantly influence
the human perception of multimedia quality. As a result delivering high qual-
ity realtime multimedia content to mobile handheld devices remains a difficult
challenge.

The difficulty here is due to the fact that energy efficient delivery of media
content with good quality attributes requires tradeoffs across various layers of
system implementation and functionality - from application to system software
to networking. Since the optimal energy conditions can change dynamically,
these optimizations should also allow for dynamic adaption of system func-
tionality and its performance. In order to dynamically adapt to device mobility,
systems need to have a high degree of “network awareness" (e.g. congestion
rates, mobility patterns etc.) and need to be cognizant of a constantly changing
global system state. Efforts are underway to exploit multimedia specific char-
acteristics to enable a range of energy optimization techniques that adapt to, and
optimize for, changes in application data (video stream), OS/Hardware (CPU,
Memory, Reconfigurable logic), network (congestion, noise, node mobility),
residual energy (battery) and even the user environment (ambient light, sound).

These issues have been aggressively pursued by researchers and numerous
interesting power optimization solutions have been proposed at various cross
computational levels. For instance, a sampling of optimizations across design
domains are: system cache and external memory access optimizations [1, 15],
dynamic voltage scaling(DVS) [29, 4], of the CPU, dynamic power manage-
ment of disks and network interfaces(NICs) [8, 3], efficient compilers and ap-
plication/middleware based adaptations for power management [22]. Interest-
ingly, power optimization techniques developed for individual components of
a device have remained seemingly incognizant of the strategies employed for
other components. While focussing their attention to a single component, re-
searchers make a general assumption that no other power optimization schemes
are operational for other components. However, the cumulative power gains for
incorporating multiple techniques can be potentially significant. This requires
careful evaluation of the trade-offs involved and the customizations required for
unified operation [21]. The interaction between different layers is even more
important in distributed applications where a combination of local and global
information helps and improves the control decisions (power, performance and
QoS trade-offs) made at runtime.
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For the mobile multimedia applications, Fig. 14.1 presents the different com-
putation levels in a typical handheld computer and shows the cross layer inter-
actions for optimized power and performance deliverance.
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Figure 14.1. Abstraction Layers in Distributed Multimedia Streaming

The FORGE project aims to study the tradeoffs between power, performance
and Quality of Service requirements across the various computational layers [6].
The goal of FORGE is to develop and integrate hardware based architectural
optimization techniques with high level operating system and middleware ap-
proaches (Fig. 14.1), for improvements in power savings and the overall user
experience, in the context of video streaming to a low-power handheld device.
Multimedia applications heavily utilize the biggest power consumers in mod-
ern computers: the CPU, the network and the display(Fig. 14.1). Therefore, in
FORGE, we aggregate the hardware and software techniques that lead to power
savings for these resources. To maximize power gains for a CPU architecture,
we identify the predominant internal units of the architecture that contribute to
power consumption. We use higher-level knowledge of the application such as
quality and encoding parameters of the video stream to optimize internal cache
configurations, CPU registers and the external memory accesses. Similarly,
we utilize hardware/design level data (e.g. cache configuration) and user-level
information (video quality perception) to optimize middleware and OS compo-
nents for improved performance and power savings - through effective video
transcoding, power-aware admission control and efficient network transmis-
sion. We reduce the power consumption of the network card by switching it
to the “sleep" mode during periods of inactivity. An efficient middleware is
used to control network traffic for optimal power management of the network
interface. To maximize the user experience, we have studied video quality and
power trade-offs for handheld computers. These results drive our optimization
efforts in FORGE at each computing level.

14.2 RELATED WORK

Let us briefly review the optimization techniques used at various levels, such
as architecture, OS, middleware and application in the context of multimedia
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applications. We then examine the relationship of FORGE with prior and
ongoing approaches in power aware middleware.

14.2.1 Architectural Adaptations

To provide acceptable video performance at the hardware level, efforts have
concentrated on analyzing the behavior of the decoder software and devising
either architectural enhancements or software improvements for the decoding
algorithm. Until recently it was believed that caches can bring no potential
benefit in the context of MPEG (video) decoding. In fact, due to the poor lo-
cality of the data stream, many MPEG implementations viewed video data as
“un-cacheable" and completely disabled the internal caches during playback.
However, Soderquist and Leeser showed that video data has sufficient locality
that can be exploited to reduce cache-memory traffic by 50 percent or more
through simple architectural changes [28]. A different way of improving cache
performance by reordering frame traversal was proposed in [9]. Register file
reconfiguration was applied in [1]. [16] proposes a technique for combining two
hardware adaptations (architecture adaptation and dynamic voltage scaling) to
reduce energy in multimedia workloads. The algorithm presented chooses be-
tween one of the two adaptations or a combination, depending on their relative
performance. This approach is similar to ours, in that architectural optimiza-
tions are combined with dynamic voltage scaling (DVS). However, instead of a
frame-based adaption founded on profiling and prediction, we target tuning an
architecture through available architectural parameters to specific video quality
requirements. We apply the optimizations globally (for the entire period that a
media of constant quality levels are played), rather than at frame granularity.

14.2.2 Operating System & Middleware Adaptations

Most power optimization efforts at the operating system level, have been fo-
cussed on techniques like dynamic voltage scaling(DVS) [29, 25, 18], and
dynamic power management (DPM) [17, 7]. DVS exploits the fact the CMOS
logic used in most current processors has a voltage dependent maximum operat-
ing frequency. So when used at lower frequencies, the processor can operate at
a correspondingly lower voltage, thereby saving battery power. The challenge
here is to accurately predict workload execution times for future jobs. While
workloads can be predicted heuristically for best-effort applications [29], or
based on worst case execution times of real-time applications [25], worst-case
based approaches will almost certainly result in sub-optimal solutions, whereas
heuristic predictions can cause timing violations for multimedia tasks. In the
GRACE project, the authors suggest using an aggregate statistical demand of
applications to adjust frequency/voltage for the processor [31]. DVS techniques
for reducing energy in MPEG decoding has been studied in [20]. Additionally,
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scheduling techniques like DSRT [5] have been studied to deliver real-time
guarantees.

At the OS/middleware levels, another primary focus has been to optimize
network interface power consumption [8, 2, 3]. A thorough analysis of power
consumption of wireless network interfaces has been presented in [8]. ECOSys-
tem [32] is an OS level prototype that incorporates energy allocation and ac-
counting mechanisms for various power consuming devices. ECOSystem uses
the Currentcy [33] model which is an abstraction for formulating energy aware
policies.

Chandra et al. [2] have explored the wireless network energy consumption
of streaming video formats like Windows Media, Real media and Apple Quick
Time. Chandra and Vahdat have explored the effectiveness of energy aware
traffic shaping closer to a mobile client [3]. In [26], Shenoy suggests performing
power friendly proxy based video transformations to reduce video quality in
real-time for energy savings. They also suggest an intelligent network streaming
strategy for saving power on the network interface. FORGE uses a similar
approach, but models a noisy channel. Caching streams of multiple qualities
for efficient performance has been suggested in [10].

PowerScope [12] is an interesting tool that maps energy consumption to pro-
gram structure. It first profiles the power consumption and system activity of
a computer and then generates an energy profile from this data. Odyssey [22]
presents an applications aware adaptation scheme for mobile applications. In
this approach the system monitors resource levels, enforces resource alloca-
tion and provides feedback to the applications. The application then decides
on the best possible adaptation strategy. In our approach we try to integrate
the the positive aspects of all the three levels: OS, middleware and applica-
tion. Application based adaptation will therefore enhance the performance of
our framework. However, applications have to be specifically designed for
the framework. JouleTrack [27] is a web-based energy measurement tool for
profiling software energy consumption of applications based on StrongArm
processor.

14.2.3 Cross-Layer Adaptation Frameworks

For efficient coordination and management of cross-layer adaptations, it is cru-
cial to develop efficient resource allocation mechanisms. Q-RAM [19] models
QoS management as a constraint optimization problem for maximizing sys-
tem utility while guaranteeing minimum resources to each application. Pup-
peteer [11] presents a middleware framework that uses transcoding to achieve
energy gains. Using the well defined interface of applications, the framework
presents a distilled version of the application to the user, in order to draw en-
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ergy gains. EQoS [24] formulates energy-aware QoS adaptation as a constraint
optimization problem and solves it using heuristic algorithms.

The GRACE project [31, 30] uses cross-layer adaptations for maximizing
system utility at lower energy costs. They suggest both coarse grained and fine
grained tuning through global co-ordination and local adaptation of hardware,
OS and application layers. The coarse/global adaptations are expensive and
less frequent and occur only when global system changes are triggered (e.g
task-set changes). The local adaptations are for the local variation in the ex-
ecution of tasks. In GRACE, the global and local coordinators exist on the
local device and perform the necessary adaptations. GRACE first tries to de-
liver highest utility for each application and then optimizes the energy using
dynamic voltage scaling. In contrast, FORGE uses a proxy based distributed
middleware approach, that integrates cross-layer(architecture, OS, middleware,
application) adaptations on the local device with distributed adaptations such
as adaptive traffic shaping and transcoding at the proxy for energy gains. While
adaptations in GRACE are limited to the local mobile device, our framework
design uses a distributed middleware layer to exploit global system knowledge
(e.g. device mobility patterns, network noise levels etc.) to facilitate effective
power management (e.g. wireless NIC). Moreover, we adopt an end-to-end ap-
proach to power optimization, where residual battery power of a mobile device
also drives the adaptations. GRACE on the other hand provides a best-effort
approach to energy optimization. Additionally, FORGE tries to tune architec-
tural level parameters (e.g. cache configurations) to perform optimally for the
currently executing application. The distributed middleware co-ordinates the
adaptations at each level based on a rule-base and control information from the
proxy.

14.3 SYSTEM MODEL

Our system model for a wireless mobile multimedia distributed system is shown
in Fig. 14.2. The system entities include a multimedia server, a proxy server
that utilizes a directory service, a rule base for specific devices and a video
transcoder, an ethernet switch, the wireless access point and users with low-
power wireless devices. The multimedia servers store the multimedia content
and stream videos to clients upon receipt of a request. The users issue requests
for video streams on their handheld devices. All communication between the
handheld device and the servers are routed through the proxy server, that can
transcode the video stream in realtime. The middleware executes on both the
handheld device and the proxy, and performs two important functions. On the
device, it obtains residual energy availability information from the underlying
architecture and feeds it back to the proxy and relates the video stream parame-
ters and network related control information to lower abstraction layers. On the
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proxy, it performs feedback based power aware admission control and realtime
transcoding of the video stream, based on the feedback from the device. It also
regulates the video transmission over the network based on the noise level and
the video stream quality. Additionally, the middleware exploits dynamic global
state information(e.g mobility info, noise level etc.) available at the directory
service and static device specific knowledge (architecture, OS, video quality
levels) from the static rule base, to optimally perform its functions. The rate
at which feedback are sent by the device is dictated by administrative policies
(e.g. periodic feedback). Moreover, we assume that network connectivity is
maintained at all times.
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Figure 14.2. System Model

In the rest of the chapter, we present important research challenges encoun-
tered at each level and discuss approaches that involve both distributed proxy
based adaptations coupled with coordinated cross-layer energy optimizations
at the device.

14.4 HARDWARE/ARCHITECTURAL LEVEL
OPTIMIZATIONS

The architectural optimizations are particularly important because of the use
of microelectronic system-on-chip components used in multimedia platforms.
Since most multimedia applications spend a significant amount of time access-
ing and transforming audio and video data, the design of the memory subsystem
architecture, and compiler support for exploiting the specialized memory struc-
tures are critical for meeting the performance, power and cost budgets of such
applications.

Since the memory subsystem will dominate the cost (area), performance and
power, we have to pay special attention to how it can benefit from customiza-
tion. For example, the memory can be selectively cached; the cache line size
can be determined by the application; the designer can opt to discard the cache
completely and choose specialized memory configurations such as FIFOs and
stream buffers. The exploration space of different possible memory architec-
tures is vast, and there have been attempts to automate or semi-automate this
exploration process [13].
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Figure 14.3. Main Components of a Handheld Device (a) and CPU Detail (b)

14.4.1 Hardware-level Optimizations for Handheld
Devices

There are three major sources of power consumption in a handheld device
such as a Compaq iPAQ 3650 for which we indicate the corresponding power
numbers: display (approximately 1W for full backlight), network hardware
(1.4W) and CPU/memory (1-3W, with the additional board circuits). Each of
these subsystems also provide opportunities for controlling the power dissi-
pation. In case of the display (LCD), the main energy drain comes from the
backlight, which is a predefined user setting and therefore has a limited degree
of controllability by the system (without affecting the final utility). The network
interface allows for efficient power savings if cognizant of the higher level pro-
tocol’s behavior and will be explored in a subsequent section. Out of the three
components mentioned above, the CPU coupled with the memory subsystem
poses the biggest challenge. The dependence on the input data to be processed,
the quality of the code generated by the compiler and the organization of its
internal architecture make predicting its power consumption profile very hard
in general; nevertheless, very good power saving results can be obtained by
utilizing the knowledge of the application running on it and through extensive
profiling of a representative data input set from the application’s domain. In
the rest of this section, we focus our attention on the possible optimizations at
the CPU level for a multimedia streaming application (e.g MPEG-1).

We identified the subcomponents of the CPU (Fig. 14.3(b)) that consume
the most power and observed the power distribution inside the CPU for MPEG
decoding. By running the decoder process in a power simulator (Wattch) for
videos of various types and by measuring the relative power consumption of
each unit in the CPU we generate the internal processor power distribution. We
conclude that:

• The relative power contribution of the internal units of the CPU do not vary
significantly with the nature or quality of the video played. A possible reason
for this is the symmetrical and repetitive nature of MPEG decoding, whose
processing is done on fixed size blocks or macroblocks.
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• The units that show an important contribution to the overall power con-
sumption and are amenable for power optimization are: caches, register files
and functional units. Cache behavior greatly affects the memory performance
and hence power consumption, so we optimize the entire memory subsystem
in an integrated way.

We briefly discuss these components, their impact on overall power con-
sumption and how it can be affected by these architectural choices:
• Caches/Memory: cache configurations are determined by their size, number
of sets, and associativity. The size specifies how large a cache should be, while
the associativity/number of sets control its internal structure. We identify that
most power gains for MPEG are possible through reconfiguration of the data
cache and its effect on the memory traffic, thus amplifying the effect of power
optimizations through cache reconfiguration.
• Frame Traversal: Decompressing MPEG video in its implied order does
not leave space for exploiting the limited locality existent between dependent
macroblocks. By just changing the frame traversal order algorithm based on
the existing locality, faster decompression rates and higher power savings are
achieved via reduced memory accesses [9]. Our proxy-based approach allows
for a transparent on-the fly traversal reordering at the proxy server. In addition
dynamic voltage scaling provides further savings for MPEG streaming as it
allows tradeoffs for transforming the frame decoding slack time (CPU idle time)
into important power savings. We discuss DVS and investigate the implications
of DVS on other power optimizations in the system. All these parameters when
fine-tuned for a specific video quality, will provide the best operating point(for
power and performance) for a specific video stream.

14.4.2 Quality-driven Cache Reconfiguration

Power consumption for the cache depends on the runtime access counts:
while hits result in only a cache access, misses add the penalty of accessing
the main memory (external). Fortunately, in most applications the inherent lo-
cality of data means that cache miss rate is relatively low and so are accesses
to external memory. However, MPEG decoding exhibits a relatively poor data
locality, which, when combined with the large data sets exercised by the algo-
rithm, leads to an increase in the cache memory-traffic. In order to find the best
solution point, we resort to extensive simulation and profiling with data that is
representative of the video domain. Internal CPU caches are characterized by
their size(S), number of sets(NS), line size(LS) and associativity(A). Our
cache reconfiguration goal is optimizing energy consumption for a particular
video quality level Qk. In general, cache power consumption for a particular
configuration and video quality is given by the function Ecache,k(S, A). By
profiling this function for the entire search space (S, A) of available cache
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Figure 14.4. Cache Energy Variation on Size and Associativity

configurations, we generate a cache energy variation graph shown in Fig. 14.4.
Depending on the video quality Qk played, there will be one optimal operating
point for that video quality: (Sopt

k , Aopt
k ). We found out that for all video

qualities an optimized operating point exists and it improves cache power con-
sumption by up to 10-20% (as opposed to a suboptimized configuration). This
technique effectively fine-tunes the organization of the cache so that it perfectly
matches the application and the data sets to be processed, yielding important
power savings.

14.5 OS/MIDDLEWARE LEVEL OPTIMIZATIONS

Gains in power reduction and performance improvement from architectural
optimizations can be further amplified if the low-level architecture is cognizant
of the exact characteristics of the streamed video. An adaptive middleware
software at a proxy can dynamically intercept and doctor a video stream to
exactly match the video characteristics for which the target architecture has
been optimized. It can also regulate the network traffic to induce maximal
power savings in a network interface. Additionally, with knowledge of the
video stream the operating system can employ an optimized dynamic voltage
scaling of the CPU.

14.5.1 Integrated Dynamic Voltage Scaling

For a given supply voltage, V, and clock frequency f, the dynamic power
due to digital CMOS varies linearly with frequency and quadratically with the
supply voltage (which is also the switching voltage). This relationship can be
used at the application level [4]. In our case, for MPEG decoding, frames are
processed in a fraction of the frame delay (Fd = 1/frame rate). The actual
frame decoding time D depends on the type of MPEG frame being processed
(I, P, B) and is also influenced by the cache configuration (S, A) and DVS
setting (f, V ). We assume a buffer based decoding, where the decoded frames
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are placed in a temporary buffer and are only read when the frame is displayed.
This allows us to decouple the decoding of the frame from the displaying part;
decoding time is still different for different frames, we therefore assume an
average D for a particular video stream/quality. The difference between the
average frame delay and actual frame decoding time gives us the slack time
θ = Fd − D. We can then perform DVS, where we slow down the CPU to
use up the slack time. Cache configuration also slightly influences the frame
decoding time (due to the cache misses, which translate into external memory
traffic), extreme values proving very inefficient. An optimized cache combined
with DVS yields the best power saving results. Determination of the best
operating point for the DVS/cache reconfiguration requires simulation of the
application with the power aware system software that has direct influence on
the technology parameters. This is discussed next.

14.5.2 Power Aware Operating System Architecture

We view the notion of power ’awareness’ in the application and OS as a
capability to carry out a continuous dialogue between the application, the OS,
and the underlying hardware. This dialogue establishes the functionality and
performance expectations (or even contracts, as in real-time sense) within the
available energy constraints. We describe here our implementation of a specific
service, namely the task scheduler, that makes the OS power aware. The sched-
uler architecture is composed of two software layers and the OS kernel. One
layer interfaces applications with operating system and the other layer makes
power related hardware “knobs” available to the operating system. Both layers
are connected by means of corresponding power aware operating system ser-
vices as shown in Figure 14.5. At the topmost level, embedded applications
call the API level interface functions to make use of a range of services that
ultimately makes the application energy efficient in the context of its specific
functionality. The API level is separated into two sub-layers. The PA-API layer
provides all the functions available to the applications, while the other layer pro-
vides access to operating system services and power aware modified operating
system services (PA OS Services). Active entities that are not implemented
within the OS kernel are also be implemented at this level (threads created with
the sole purpose of assisting the power management of an operating system
service).

We call this layer the power aware operating system layer (PA-OSL). To
interface the modified operating system level and the underlying hardware level,
we define a power aware hardware abstraction layer (PA-HAL). The PA-HAL
provides access to the power related hardware parameters in a way that makes
it independent of the hardware.
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Figure 14.5. Power Aware Operating System Architecture

14.5.3 Middleware based Network Traffic Regulation

We now describe a proxy-based traffic regulation mechanism to reduce energy
consumption by the device network interface. Our mechanism (a) dynami-
cally adapts to changing network(e.g noise) and device conditions(e.g. residual
battery energy). (b) accounts for attributes of the wireless access points (e.g.
buffering capabilities) and the underlying network protocol (e.g. packet size).
(c) uses the proxy to buffer and transmit optimized bursts of video along with
control information to the device. However, even though packets are transmit-
ted in bursts by the proxy, the device receives packets that are skewed over time
Fig. 14.6; this cuts power savings, as the net sleep time of the interface is re-
duced. The skew is caused due to the ethernet access protocol(e.g CSMA/CD)
and/or the fair queueing algorithms implemented at the wireless access points.
Our mechanism optimizes the stream, such that optimal video bursts sizes are
sent for a given noise level, thus maximizing energy savings without perfor-
mance costs.

Wireless network interface(WNIC) cards typically operate in four modes:
transmit, receive, sleep and idle. We estimated the power consumption of
the Cisco Aironet 350 series WLAN card to have the following power con-
sumption characteristics: transmit(1.68W), receive(1.435W), idle (1.34W) and
sleep(0.184W) which agree with the measurements made by Havinga et al.
in [14]. This observation suggests that considerable energy savings can be
achieved by transitioning the network interface from idle to sleep mode during
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periods of inactivity. The use of bursty traffic was first suggested by Chan-
dra [2, 3] and control information was used for adaptation in [26].

We analyze the above power saving approach using a realistic network frame-
work(Fig. 14.6), in the presence of noise and AP limitations [21]. The proxy
middleware buffers the transcoded video and transmits I seconds of video in a
single burst along with the time τ=I for the next transmission as control infor-
mation. The device then uses this control information to switch the interface to
the active/idle mode at time τ + γ × DEtoE, where γ is an estimate between
zero and one and DEtoE is the end-to-end network delay with no noise.
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Figure 14.6. Wireless Network

We acknowledge that a QoS aware preferential service algorithm at the access
point can impact power management significantly. The above analysis can be
used by an adaptive middleware to calculate an optimal I(burst length) for any
given video stream and noise level. Note that energy overhead for buffering the
video packets is not affected by using our strategy because the number of read
and write memory operations remain unchanged irrespective of the memory
buffer size.

In the previous section, we demonstrated how low level architecture can
be optimized using high level information. In this section, we presented two
middleware techniques that can be used to compliment the low-level hardware
optimizations, lower energy consumption of the NIC and improve the overall
utility of the system. We now introduce a middleware based adaptation scheme
for backlight power savings in handheld devices.

14.5.4 Reducing Backlight Power Consumption

The backlight accounts for considerable energy overheads in a low-power
device. However, potentially large energy savings are realizable by operating
the device at a lower backlight intensity levels. We explore a more aggressive
approach to brightness compensation and device backlight control for stream-
ing video. Furthermore, the adaptation is shifted away from the low-power
device and performed at a network proxy server, obviating the need for the
decoder on the device to be modified. We have found that aggressive bright-
ness compensation is possible for streaming video as compared to still images,
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without considerably impacting the video quality. This is because small defects
(introduced due to aggressive compensation) that might be noticeable in a still
image are less discernable in streaming video where several frames (images) are
displayed on the screen every second. We also propose an effective brightness
compensation algorithm for optimized power savings [23]. In this approach,
we introduce middleware based adaptation schemes which integrate our com-
pensation algorithm to achieve low power backlight operation for streaming
video content to mobile handheld devices. Our experiments indicate that this
approach can provide power reductions of up to 60% of the power consumption
attributed to the backlight, depending on the chosen adaptation scheme and the
characteristics of the streamed video.

We assume that the proxy server has access to a database of profiled lumi-
nosity values for various video streams and device specific parameters (e.g.
number of backlight levels, average luminosity at each level etc.), a rule base
to determine compensation values and a video transcoder(Fig. 14.7); and low-
power wireless devices capable of displaying streaming MPEG video content.
All communication between the handhelds and the multimedia server are routed
through the proxy server that can change the video stream in real-time.

Figure 14.7. Model for Backlight Adaptation

Each device/client has an application layer where the video stream is de-
coded and a middleware layer which routes the information flowing to and
from the video decoder application. The client middleware layer has access
to system parameters such as the backlight levels, the current battery level and
information identifying the type and make of the handheld (e.g. iPAQ, Jor-
nada etc). In addition to accessing these system parameters, the middleware
layer on the client can change these parameters (e.g. operating backlight level)
through API calls to the underlying OS. The middleware on the proxy performs
the dynamic adaptation of the streaming video content (brightness compensa-
tion) and communicates control information to the client middleware (operating
backlight levels) through the low bandwidth control stream. The proxy main-
tains a database of information about the videos available at the server and
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information specific to different handheld types such as the number, luminous
intensity and average power consumption of the backlight levels. Additionally,
the proxy also employs a static rule base which specifies conditions which de-
termine values for backlight and video compensation. The database and certain
parameters of the rule base are populated by extensive profiling and subjective
assessment of videos on different handhelds.

14.6 APPLICATION LAYER ADAPTATION

Improving the service lifetimes of low-power mobile devices through effective
power management strategies can facilitate optimization of user experience for
streaming video on to handheld devices. To achieve this, a system should be
able to dynamically adapt to global system changes, so that the entire duration of
a requested video is streamed to the user at the highest possible quality, while
meeting the power constraints of the user’s low-power device. We achieve
such an optimal balance between power and performance, by introducing a
notion of “Utility Factor UF " for a system, and optimizing the UF for the
system. This approach precludes the system from aggressively optimizing for
power at the expense of performance and vice-versa; thereby providing an
optimized operating point for the system at all times. UF is a measure of “user
satisfaction" and we specify it as follows: given the residual energy Eres on
a handheld device, a threshold video quality level (QA : QMAX ≥ QA ≥
QMIN) acceptable to the user, and the time of the video playback T, the UF

of the system is non-negative, if the system can stream the highest possible
quality of video to the user such that the time, quality and the power constraints
are satisfied; otherwise UF is negative. Let PV ID denote the average power
consumption rate of the video playback at the handheld and QPLAY be the
quality of video streamed to the user by the system. Using the above notation,
we define UF as follows:

UF =

⎧⎨
⎩

QPLAY − QMIN IFF PV ID ∗ T < ERES

QPLAY ≥ QA

−1 Otherwise
Our experiments to determine video transcoding levels that affect the video

quality against increased energy consumption indicate the following major con-
clusions:
• It is hard to programmatically identify video quality parameters( a combina-
tion of bit rate, frame rate and video resolution) that produced a user perceptible
change in video quality and/or a noticeable shift in power consumption in hand-
helds.

• For all the video streams on handheld devices, it was enough to use just
three standard intermediate formats(e.g SIF(320x240), Half SIF(340x160) and
Quarter SIF(160x120)) for frame resolution values. Other resolutions did not
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Table 14.1. Energy-Aware Transformations for Compaq Ipaq 3650 with bright backlight, Cisco
350 Series Aironet WNIC card. (Q1) Terrible, (Q2) Bad, (Q3) Poor, (Q4) Fair, (Q5) Good, (Q6)
Very Good, (Q7) Excellent, (Q8) Like Original

Quality Parameters Avg. Power Avg. Power
(WinCE) (Linux)

(Q8) SIF, 30fps, 650Kbps 4.42W 6.07W
(Q7) SIF, 25fps,450Kbps 4.37W 5.99W
(Q6) SIF, 25fps, 350Kbs 4.31W 5.86W
(Q5) HSIF, 24fps, 350Kbps 4.24W 5.81W
(Q4) HSIF, 24fps, 200Kbps 4.15W 5.73W
(Q3) HSIF, 24fps, 150Kbps 4.06W 5.63W
(Q2) QSIF, 20fps, 150Kbps 3.95W 5.5W
(Q1) QSIF, 20fps, 100kbps 3.88W 5.38W

produce a perceptible quality change or power uptake compared to the nearest
SIF encoded video with similar bit and frame rates.

Based on these conclusions, we identified eight dynamic video stream trans-
formation parameters (Table 14.1) for our proxy-based realtime transcoding and
use the profiled average power consumption values to perform our adaptations.

14.7 SUMMARY

It has been pointed out by several researchers that power optimization across
various levels of system functionality and implementation (architecture, OS,
middleware, application) can lead to much greater savings than the case when
these are individually optimized for power. The challenge is how these op-
timizations can be coordinated across layers; what is the right architectural
framework that allows this optimization to occur simultaneously and even dy-
namically? To answer this question, this paper proposes a proxy-based middle-
ware solution to accommodate optimizations across diverse clients with limited
computation and battery power by controlling the amount of needed computa-
tion and communication to the client device. We showed how such adaptation in
the middleware can be used to improve energy efficient delivery of multimedia
content in the case of streaming video. User perception of video also plays a
vital role in deciding the proxy-based video transformations and in identifying
architectural tuning “knobs". However, identifying the various video qualities
remains a highly subjective aspect of the study. Identifying video quality levels
objectively/programmatically still remains an open research challenge. In prac-
tice however, the widespread deployment of such a unified power management
framework for mobile devices would require a set of APIs (programming inter-
faces) to be implemented at the various computational layers; this API should fa-
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cilitate effective communication between the various levels. Recent approaches
towards power management suggest a more open and flexible architecture for
mobile devices that allows higher layers to make informed adaptations at lower
layers and vice-versa. A prototype implementation of the framework is cur-
rently underway as a part of the FORGE(http://www.ics.uci.edu/ f̃orge) project.
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