
Cost-Effective Sensor Data Collection from Internet-of-Things
Zones Using Existing Transportation Fleets

Fangqi Liu1, Quixi Zhu1, Md Yusuf Sarwar Uddin1, Cheng-Hsin Hsu2, and Nalini Venkatasubramanian1
1Department of Computer Science, University of California Irvine, CA

2Department of Computer Science, National Tsing Hua University, Taiwan

Abstract—Modern IoT devices are equipped with media-rich
sensors that generate a heavy burden to local access networks.
To improve the efficiency of data collection, we introduce the
concept of “IoT zones” as geographically-correlated clusters of
local IoT devices with well connected wireless networks that
may have limited access to the Internet. We develop techniques
to create a cost-effective data collection network using existing
transportation fleets with predefined schedules to collect sensor
data from IoT zones and upload them at locations with better
network connectivity. Specifically, we provide solutions to the
upload point placement and upload path planning problems
given tradeoffs between collection quality, timing needs (QoS),
and installation cost. We evaluate our approaches using a
real-world bus network in Orange County, CA and study the
applicability and efficiency of the proposed method as compared
to several other approaches. The trace-driven simulations reveal
that our best-performing algorithm: upload point selection (UPS)
algorithm significantly outperforms others, e.g., in one of the
scenarios with 160 total cost, it achieves sub-21 sec data transfer
time (15+ times improvement), sub 3.2% late delivery ratio
(about 12 times improvement), and above 96% data delivery
ratio (about 50% improvement). In addition, it achieves the above
performance without excessive installation cost: even when a cost
limit of 640 is given, UPS algorithm opts for a solution with about
160 total cost (versus 640 from others).

Index Terms—IoT zones, data collection, transportation fleet,
upload point placement, upload path planning

I. INTRODUCTION

Internet-of-Things (IoT) deployments are giving rise to
smart cities and communities worldwide. The next generation
of urban planning is moving towards the design of smart
instrumented spaces beneficial to citizens. For example, the
City of Barcelona is exploring the concept of superblocks to
limit transportation within cityblocks [1]. A large number of
interesting urban smart greenspaces efforts are being initiated
in cities throughout the US [2], the goal is to support increased
environmental sustainability and improved quality of life for
citizens. Studies [3] also point out that the market for short-
range IoT wireless technologies (Wi-Fi, BlueTooth, Zigbee)
has overtaken those for long-range connectivity (LoRa, Sigfox)
which can probably be attributed to the lower hardware and
spectrum costs associated with the short-range networks. In the
future, we envision that such innovative design will give rise to
localized IoT zones, where geographically-correlated clusters
of IoT devices are interconnected via a variety of wireless
networks (short and long-range).

Modern IoT devices are often equipped with media-rich
sensors, such as microphones, cameras, and Radar/Lidar sen-

sors, which generate tremendous volumes of sensor data.
Data obtained from these devices must be fused, analyzed
and interpreted – solutions that require onboard storage,
computation, and communication for complex analytics in
every device is prohibitively expensive. The ability to create
local collection points is plausible within a zone using M2M
technologies and simple analytics can be executed at these
network edges. Enabling high bandwidth networks to backhaul
data at the device level to big data processing backends for
more comprehensive analysis is both expensive and difficult.
Communications of large IoT sensor data, such as surveillance
camera footage (for further analysis or archival) or real-time
social media sharing is challenging since access networks
usually have limited bandwidth and are vulnerable to network
congestion. This paper deals with the problem of getting data
from local edges to the backend in a cost-effective manner.

Our proposed solution is to create a hierarchy where end-
devices communicate to a local node that we refer to as
a Rendezvous Point (RP). Creation of such local edge
components or RPs is becoming increasingly possible, e.g.
through smart streetlights, smart transit stops, etc. Data make
their way from the local RP to a larger processing backend
through intermediate Upload Points (UPs) located at suitable
places where better network connectivity and bandwidths
are available. Two key questions need to be answered: (a)
where should Upload Points (UPs) be located (upload point
placement problem) and (b) how do “data to be uploaded” get
from local RPs to UPs (upload path planning problem)?

Our key intuition is to exploit existing transport possibilities
to implement this hierarchy, i.e. by leveraging city transit
infrastructures that currently transport people to now transport
data from devices to a big data processing backend. Such
traffic fleets with predefined schedules (routes and times) are
common in urban communities today, which include buses,
mail vehicles, and garbage trucks with regular schedules and
stops. We plan to leverage fixed city transit infrastructures, in
particular, bus stops (or traffic lights) as potential RPs and UPs
in our hierarchy. Since existing transportation fleets (e.g. city
buses) have predefined schedules and paths, we will design
solutions where data gathering (from RPs), transport (to UPs),
and upload (from UPs to backend) can be made to occur along
these paths. A rational solution is to colocate RPs and UPs
with transit stops, because vehicles are typically required to
stop at these points, providing the needed time for reliable
wireless transmission of data to/from vehicles.

The following are key contributions of this paper.
• We develop an integrated approach to address the prob-

lems of upload point placement and upload path planning
(Sec. II).

• We develop a modeling framework and formulate the
upload point placement problem, which is NP-hard
(Sec. III).

• We propose four upload point placement algorithms for
optimized upload point deployment considering the trades
of the spatial coverage, upload deadlines, and deployment
feasibility for the target IoT zones under an installation
cost limit. (Sec. IV).

• We develop two upload path planning algorithms in
which Delay Minimization (DM) algorithm utilizes the
upload point placement map generated in the previous
step for minimizing delay, given an IoT deployment
with data generation patterns, communication needs, and
vehicle schedules (Sec. IV).

• We validate our approaches and compare them using real-
world transportation networks– i.e. road map and transit
schedules for Orange County, CA (Sec. V).

II. SAMPLE SCENARIO AND PROBLEM STATEMENTS

RP

IoT Zones

UPC

UPC/UP

Data
Processing

Center

Fig. 1: Sensor data collection with scheduled fleets.

Fig. 1 is a simplified usage scenario with two IoT zones
(park, business district) each with devices that are well
connected, and communicate sensor data to local RPs. RPs
possess sufficient storage to buffer incoming sensor data until
a scheduled pickup vehicle on a trip arrives. Sensor data items
are associated with a delay tolerance, i.e. a tolerable time
difference between arriving at RPs and at a data processing
center. Each vehicle contains a computing device with storage;
vehicles in transit pick up data buffered at RPs and transport
them to an Upload Point (UP) from where sensor data is
delivered to the data processing center. Differently from RPs,
whose locations are given, UPs can be set up at various
locations, such as bus stops, road intersections, street lamps,
and roadside buildings. We refer to the possible locations for
setting up UPs as Upload Point Candidates (UPCs). Every
UPC has its own installation cost, which depends on practical
factors, such as type of access network technologies, distance
to Internet access points, and availability of power supply. We
address two core research problems in this setting:

• Upload point placement. Selection of a subset of UPs
from all possible UPCs to ensure spatial coverage and

satisfy delay tolerance, under a budget of UP installation
cost.

• Upload path planning. Plan for each vehicle and RP that
schedules for pick-up and drop-off of data gathered at
RPs, given the transportation fleet schedules.

In Fig. 1, among the three potential UPCs, the center candi-
date maximizes the number of RPs served with lower delays
and is hence selected as an upload point. In practice, the choice
of a upload point will take into consideration installation costs
of individual UPCs and transit vehicle paths and schedules.
Several usage scenarios of this infrastructure can be envi-
sioned. Consider public parks instrumented with surveillance
cameras and environmental sensors that communicate data to
a local collection point; data are transported to suitable upload
points for further analysis to provide live situational awareness
of public spaces (e.g., occupancy), detect public safety threats
(e.g., fires, protests) or to promote community recreational
events. Similarly, residents in assisted living facilities can send
personal health and community activity related information to
data processing centers via mail/carrier trucks.

Related Work: We discuss key related work in delay toler-
ant networking (DTN), wireless mesh networks, vehicular nets
and community-scale data collection. Clustering formations
and energy-efficient resource allocation methods for wireless
IoT devices have been explored in [4], [5]; DTNs and data
mules have exploited mobility for data transfer [6], [7], [8];
these approaches often assume very limited access to commu-
nication infrastructure and aim to meet data transfer deadlines
using multi-hop networks [9]. Techniques for proactive and
adaptive data transmission in this setting have been designed
with crowdsensing applications and energy efficiency [10],
[11], [12], [13], [14]. Similar work in the context of WSN
makes use of mobile sinks [15], [16], [17] for improved com-
munication. Techniques to exploit public bus transportation
for DTN-based data dissemination include utilizing busline
patterns [18], accounting for encounter frequency of bus
routes [19] and using bus stops as communication relays.

Planning and deployment are often network specific; tech-
niques for AP and gateway placement in wireless mesh
networks [20], [21] are useful for community scale network-
ing. Modeling using set cover based formulation [22], and
techniques for network deployment [23] and performance [24]
have been explored. Facility placement mechanisms for data
upload in delay-tolerant crowdsensing and content distribution
have been formulated and studied [25], [26]. Combining
facility placement with transport logistics [27] for an integrated
provisioning is an approach similar to ours, albeit for goods
transport. Related literature from the vehicular networking
community includes work on deployment and operation of
vehicular networks [28], their graph properties [29], and meth-
ods for more realistic modeling of mobility [30], [31], [32].
More recent efforts have explored the use of public transport
to collect IoT data in cities [33], [34]. Other related efforts
include approaches to utilize Wi-Fi-enabled buses for non-
urgent communications [35] and geocast based mechanisms to
improve delivery reliability and timing [36], [37] and monitor

the urban environment [38].
Much of the earlier literature uses statistical estimates

of traffic flow and encounter probabilities. In contrast, we
leverage the knowledge of exact routes and transit schedules
(especially in urban settings) to generate data routing plans
and handle the heterogeneity of IoT traffic while satisfying
communication QoS needs.

III. PROBLEM FORMULATION

In this section, we formulate our upload point placement
and upload path planning into one combined formulation.

A. Symbols and Notations

The transportation/transit fleet is described by a set of trips,
V with |V|= V , where each trip v denotes a bus/vehicle
moving through a sequence of stop points (i.e., bus stops).
When a vehicle reaches its terminal stop and starts again, it is
considered as a different trip. Let N, with |N|= N , be the set
of all the N stops that any of these trips go by. We assume
all data gets accumulated in these stop points and also gets
uploaded via them. Thus set N is the superset of all RPs and
UPCs as well. We, in fact, can eliminate those stops from N
that are neither RPs nor UPCs because their presences do not
affect our placement and planning. In that, N becomes the
set of all RPs and UPCs. For each stop point n, let Rn and
Dn denote the data arrival rate and the data delay tolerance
at n. Let Cn be the cost for installing a UP at n, respectively
(Rn > 0 and Dn > 0 if n is an RP, or both equal to 0, and
Cn = 1 if n is not a UPC).

We assume that the schedules of all trips are known apriori.
Hence, we denote An,v as the arrival time of trip v at stop
point n (An,v = �1 if trip v does not go by n). The schedule
matrix, A = [An,v] contains the complete schedule of all trips.
The schedule holds for a certain duration (e.g., for a day) and
then perhaps repeats itself. We assume that IoT data collection
happens sometime within this interval and let Ts and Te be
the start and end time of this data collection interval.

For the upload point placement problem, we define a binary
array Y = {y1, y2, . . . , yN} to denote UP placement. In
particular, stop point m 2 N is chosen as a UP iff ym = 1.
For the upload path planning problem, we define a three-
dimensional auxiliary matrix X of size N ⇥ (V + 1) ⇥ N ,
where xn,v,m = 1 iff trip v 2 V is used to carry data from stop
point (RP) n to another stop point (UP) m; and xn,v,m = 0
otherwise. Moreover, we use index v = 0 to capture the corner
cases where an RP/UPC is selected as a UP. In that case,
the sensor data are directly uploaded by the UP whenever
they reach the RP. Concretely, we let xn,0,m = 1 iff n = m
and ym = 1; xn,0,m = 0 otherwise. In the following, if not
otherwise stated, we use n to denote an RP stop point, v for
a trip, and m for a UPC stop point.

We note that m 2 N should be selected as a UP in Y, if
at least one vehicle trip decides to dump sensor data at m in
X. This is, ym = 1 if and only if there exists at least one
xn,v,m = 1 for some n and v. Moreover, each vehicle trip

that picks up data at n uploads the data at a single UP. That
is,

P
m xn,v,m 2 {0, 1} for each n and v.

Data Transfer Time: As data chunks are moved from an
RP to a UP via a trip, the chunk experiences some delay. For
each xn,v,m = 1, there is an associated data transfer time,
dn,v,m, that denotes the amount of time it takes to transfer
data from RP n to UP m via trip v. The transfer time is a
function of X and it has two parts: wait time (waiting for the
bus to arrive at the RP) and travel time (the time to reach the
planned UP). The wait time depends on when was the last time
data was carried by any trip passing by this stop point (since
then, the RP is waiting for a bus to show up). Let Bn,v(X)
be the last pick up time preceding trip v. This is:

Bn,v(X) = max{An,v0

X

m

xn,v0,m|An,v0 < An,v}. (1)

If no preceding trip exists, Bn,v is set to Ts. So, the wait time
becomes An,v � Bn,v(X). Once loaded into bus trip v, the
travel time to each UP m is given by: Am,v�An,v . Adding the
above two terms and canceling the common term, we obtained
the data transfer time as follows:

dn,v,m(X) = Am,v �Bn,v(X). (2)
Data volume: The volume of data carried by each vehicle

trip affects the decisions, in the sense that the on-time delivery
of a vehicle trip carrying more data should be more critical.
We let Sn,v(X) be the data volume carried by vehicle trip v
from stop point n, which can be written as:

Sn,v(X) = Rn[min(Te,max(An,v, Ts))

�min(Te, Bn,v(X))]
X

m

xn,v,m. (3)

Here, min(Te,max(An,v, Ts)) and min(Te, Bn,v(X)) repre-
sent the arrival time of the last and first sensor data bits that
are buffered at RP n, which will be picked up by vehicle trip
v. The right-most summation is a binary value indicating if
trip v picks up sensor data at stop point n or not.

Penalty function: The overall objective of data collection
and transfer is to upload as much data as possible with lower
transfer delay. Hence, we introduce the notion of a penalty
function that accounts for both the volume of data as well
as the delay the transfer experiences. That is, the data chunks
transferred with larger delays incur more penalty than the ones
that are transferred with smaller delays. There is also a penalty
for data being not uploaded at all at the end of the operation
(after Te). Therefore, the overall penalty, denoted as P̂ (X),
measures how good a certain upload plan X is and thereby
quantifies the service quality of sensor data collection. The
penalty function is the sum of the following two terms:

Penalty due to transfer delay: This part measures the total
accumulated transfer delay weighted by the respective volume
of data, which is defined as:

Pl(X) =
1

V

X

n,v,m

fn(dn,v,m(X)) · Sn,v(X) · xn,v,m, (4)

where V = (Te � Ts)
P

n Rn is the total volume of data
generated and fn(d) is used to normalize delay within [0, 1],

which is defined as fn(d) = 1� exp
⇣

d
Dn

⌘3
with fn(0) = 0

and fn(1) ! 1.

Penalty due to data not being uploaded: This part accounts
for sensor data being left on RPs beyond the end of each
schedule (say, overnight). Let Ln be the last time (within Te)
when data is carried from stop point n by any trip. That is,
Ln(X) = max{An,v

P
m xn,v,m}. We have:

Pu(X) =
1

V

X

n

Rn · (Te � Ln(X)) · (1� xn,0,n). (5)

The term (1�xn,0,n) takes care of the corner cases where an
RP is also chosen as a UP.

B. Formulation
We write the upload point placement and upload path plan-

ning problem (finding Y and X simultaneously) as follows:

min P̂ (X) = Pl(X) + Pu(X) (6a)
s.t. xn,v,m ym, 8n 2 N, v 2 V [{0},m 2 N; (6b)

An,vxn,v,m � 0, 8n,m 2 N, v 2 V; (6c)
Am,vxn,v,m � 0, 8n,m 2 N, v 2 V; (6d)

(Am,v �An,v)xn,v,m � 0, 8n,m 2 N, v 2 V; (6e)X

m2N

xn,v,m 1, 8n 2 N, v 2 V; (6f)

X

m2N

ymCm ⇥; (6g)

xn,v,m and yn 2 {0, 1}, 8n 2 N, v 2 V [{0},m 2 N. (6h)

The objective function in Eq. (6a) is to minimize the penalty
function value. The constraints in Eq. (6b) connect Y with
X, so that ym = 1 if at least a vehicle trip v 2 V [{0} is
determined to pick up sensor data at n, i.e., xn,v,m = 1; ym =
0 otherwise. The constraints in Eqs. (6c) and (6d) prevent any
vehicle trip v that doesn’t pass stop point n (An,v = �1)
from retrieving sensor data from n. The constraints in Eq. (6e)
guarantee that vehicle trip v always picks up sensor data before
dropping off them. Eq. (6f) makes sure that if RP n sends
data to vehicle trip v, v only drops off the data at a single UP.
Eq. (6g) caps the UP installation cost at ⇥, which is an input.

Our problem is NP-hard, which can be shown through a
polynomial-time reduction from the knapsack problem [39]
to it. The knapsack problem aims to pick items, each with
associated a profit and a weight, to get the maximal total profit
subjects to the total weight limitation. We can map weight
limitation to our cost limitation ⇥, items to our UPCs, and
total profit to the negative of our penalty value, although our
problem is more comprehensive, e.g., the benefit of choosing a
UPC as UP is not just a fixed profit, which is impacted by the
trip assignments denoted by X and even other chosen UPCs.
Details of the proof are omitted due to the space limitation.

IV. SOLUTION APPROACH AND ALGORITHMS

We propose to iteratively solve the problems using two
alternative algorithms:

• Upload point placement algorithm, which produces the
upload point placement Y based on multiple invocations
of the next algorithm.

• Upload path planning algorithm, which is invoked by the
above algorithm to compute the upload path plan X for
a given UP set Y.

...

..
.

3

1

Upload Point
Placement
Algorithm

Upload Path
Planning
Algorithm

Start from
Empty
Up Set

Return Best
UP Set if

 Exceeding
 Cost Limit

Save the
Best UP
on Obj.

Func. Values

Potential UP Set

Best Path Plan for
 Potential UP Set 2

Fig. 2: Our approach with two collaborating algorithms.

Algorithm 1 Upload Point Selection Algorithm
Input:
— UPC set N, schedule A, rate R, cost C, delay D, Cost limit ⇥
— RP set {n | n 2 N, Rn > 0}
Output:
— UP placement Y and upload path plan X

1: Y {0}N ; X {0}N⇥(V +1)⇥N
2: N0 = {n | yn = 0, Cn +

P
i2N Ciyi ⇥, n 2 N}

3: while
P

i2N Ciyi < ⇥ and N0 6= ; do
4: for all n 2 N0 do
5: Y0(n) Y; let y0n 1
6: X0(n) Assign(A,Y0(n))
7: calculate the cost-effectiveness for n

E(n) =
P̂ (X)� P̂ (X0(n))

Cn
.

8: if max(E(n) for n 2 N0) == 0 then
9: break

10: i arg max
n2N0

E(n)

11: Y Y0(i)
12: X X0(i)
13: N0 = {n | yn = 0, Cn +

P
i2N Ciyi ⇥, n 2 N}

14: return Y and X

Fig. 2 illustrates the interactions between these two algorithms.
The algorithm systematically tries different potential UP sets,
which do not exceed the cost limitation. It only sees the
high-level picture (set Y), and relies on the upload path
planning algorithm to compute the low-level details (plan X).
In particular, for each iteration, the upload point placement
algorithm generates multiple potential UP sets and invokes
the upload path planning algorithm multiple times (step 1).
The upload path planning algorithm computes the best plan for
each potential set (step 2). Towards the end of each iteration,
the upload point placement algorithm selects the best UP set
based on the objective function values (step 3). If the cost
limit is exceeded (Eq. (6g)), the algorithms stop; otherwise the
upload point placement algorithm moves to the next iteration.

A. Upload Point Placement Algorithms
We propose four upload point placement algorithms below.

Intuitively, selecting UPCs with more passing trips from RPs
will increase the chance of data uploads which in turn can
decrease data loss and data transfer time. Based on this obser-
vation, we propose coverage maximization (COV) algorithm,
in which we greedily select UPCs based on their coverage of
RPs. UP m is said to cover RP n if there are at least one
trip v passing by n and arrives at m later, i.e., arrival time
An,v < Am,v and An,v 6= �1. According to transit schedule
A, we get RP cover set Covm for each UPC m. We then

greedily choose the UPCs in the decreasing order of their
|Covm|
Cm

until the cost exceeds the cost limit ⇥.
Volume-maximization (VOL) algorithm adopts the same

heuristic method but uses the sum of the data rates of all
those RPs instead of using only the count. The method then
chooses UPCs in the decreasing order of volume to installation
cost ratio until the cost hits the limit.

We also propose a genetic algorithm (GA) based solution
where we create the initial populations using the solutions
of COV and VOL. For each individual (a subset of UPC),
we get its corresponding trip assignment using our Assign
Algorithm and calculate the penalty value according to Eq. (4)
and (5). We use the negative of penalty value as the fitness
score to rank all populations. Then, we use three basic rules
to create the next generation: (i) selection rules select a subset
of individuals with highest fitness value as parents for the next
generation, (ii) crossover rules combine two parents to form
children, and (iii) mutation rules apply random changes to
individual parents to form children. We also set the constraint
of GA as the total cost of individuals shouldn’t exceed the
cost limit. In our work, we set the population size as 50 and
the maximum number of iterations as 200.

The upload point selection (UPS) algorithm, as outlined in
Algorithm 1, greedily finds UPs according to their reduction
in penalty per unit of cost. More specifically, in each iteration,
the algorithm computes the predicted upload path plan X0(n)
after adding each candidate n into the current UP set by using
the subroutine Assign(A,Y0(n)) (line 6). It then calculates
the cost-effectiveness of this assignment (line 7) which is the
ratio between the decrease of the total setting penalty after
adding n and the cost of n. We add the UPC that maximizes
the cost-effectiveness to the UP set and go to the next iteration
if the cost limit has not been reached.

B. Upload Path Planning Algorithms

We propose two upload path planning algorithms: (i) First
Contact (FC): every RP sends buffered data through all
passing-by vehicles that then drop the data to the first UPs
they encounter, and (ii) Delay Minimization (DM) algorithm,
which performs the local search for optimal upload path plans.
The algorithm works as follows (shown in Algorithm 2). For
each RP, the algorithm produces the subset of trips that should
carry data and upload them to the nearest UP they encounter.
One can argue that an RP can send data through all passing
trips and transfer a little chunk of data at each encounter. But
it turns out that choosing all trips may not be the best, rather
skipping some trips can generate better results (produce lower
total transfer time/delay). Particularly, the trips that take long
travel time to reach their nearest UPs can be skipped. The
following lemma establishes the condition.

Lemma 1 (Removing Trips). Let RP n see two successive
trips vi and vi+1 with the corresponding wait times as wi and
wi+1 and travel times to their respective nearest UPs as ti
and ti+1. If ti > 2⇥wi+1 + ti+1, then trip vi can be skipped
which will decrease the overall penalty of transfer delay.

Algorithm 2 Assign(A, Y) — DM algorithm
Input:
— Schedule A, UP placement Y, data rate R
Output:
— Upload Path Plan X
Step 1: Adding all available trips

1: X {0}N⇥(V +1)⇥N
2: for all UP m 2 {m | ym = 1} do
3: for all RP n 2 {n | n 2 N, Rn > 0} do
4: if n == m then
5: set xn,0,n 1
6: else
7: for all v 2 {v | v 2 V, Am,v 6= �1} do
8: if An,v 6= �1 and An,v < Am,v then
9: set xn,v,m 1

Step 2: Trimming
10: for all RP n 2 {n | n 2 N, Rn > 0} do
11: if xn,0,n == 1 then
12: set xn,v,m 0 8 v 6= 0

13: if
P

m2N xn,v,m > 1 then
14: for all m 2 {m | m 2 N, xn,v,m = 1} do
15: if m = arg min

m2N
Am,v then

16: xn,v,m 1
17: else
18: xn,v,m 0

Step 3: Removing trips
19: for RP n 2 {n | n 2 N, Rn > 0} do
20: get all trips passing n: Vn = {vn,v,m |

P
m xn,v,m = 1}

21: sort Vn = [vn[1], vn[2], ...] by arrival time An,v

22: for each trip in Vn: vn[i] do
23: get travel time tn[i] = Am,v �An,v

24: get arrival time an[i] = An,v

25: updated True
26: while updated do
27: updated False
28: for i = 1 to len(Vn)� 1 do
29: if tn[i] > 2⇥ (an[i+ 1]� an[i]) + tn[i+ 1] then
30: remove trip vn[i]: xn,v,m 0
31: updated True
32: return X

Proof. According to Eq.(4) we can infer that the penalty of
transfer delay is positively correlated to the weighted data
transfer delay, and whether RP n chooses trip vi to send data
only impacts the transfer delay of the data arriving at RP n
during wait time wi and wi+1. If RP n chooses to send data
through both trips vi and vi+1, the former trip transfers wiRn

volume of data with transfer delay wi + ti and the latter trip
carries wi+1Rn amount of data with delay wi+1 + ti+1. So,
the total weighted transfer delay of data arriving during wi

and wi+1 is wiRn ⇥ (wi + ti) +wi+1Rn ⇥ (wi+1 + ti+1). If
the first trip is skipped then the sum becomes (wi +wi+1)⇥
Rn⇥(wi+wi+1+ti+1), which will be smaller than the former
one if ti > 2wi+1 + ti+1 (the condition to remove vi).

Algorithm 2 shows the subroutine Assign(A,Y), which
is our DM algorithm. This algorithm includes three phases:
(i) adding all available assignments: find all trips going from
RPs to UPs in the current UP set; (ii) assignment trimming:
remove all useless trip assignments which map to the trips
passing stops contain both RP and UP, and the trips of multiple
uploading choices for data from one specific RP; and (iii)
reducing lateness: remove all trip assignments that have long
travel time to minimize the total penalty of transfer delay

according to Eq. (4) per Lemma 1.
According to the definition above, we can deduce that the

running time of DM algorithm depends on the number of
UPCs and trips with time complexity O(N2V). The running
time of UPS algorithm depends on the cost limitation and
the number of UPCs and trips. In the worst case, when cost
limitation is extremely high, the time complexity of UPS
algorithm with subroutine DM is O(N4V). It is acceptable
due to upload points placement and upload path planning are
one-time and offline tasks which are time-rich.

V. EVALUATIONS

We perform simulations to evaluate our proposed algo-
rithms. Our simulation setup consists of four components: (i)
data preprocessor, (ii) upload point placement algorithms, (iii)
upload path planning algorithms, and (iv) the ONE simulator.
The data preprocessor (in Python) converts open transportation
datasets into proper formats. We have implemented four up-
load point placement algorithm: COV, VOL, GA, and UPS
algorithms, and two upload path planning algorithms: FC
and DM algorithms (in Python). All considered algorithms
are summarized in Table I. Once the algorithms produce the
upload point placement and upload path planning solutions,
we put them into Opportunistic Network Environment (ONE)
simulator [31]. We modify the ONE simulator to route the
sensor data following the solutions from our algorithms and
keep track of statistics. We consider the following performance
metrics:

• Penalty value: The measurement of overall timelinesss.
• Data delivery ratio: The ratio between the sensor data

volumes delivered at UPs and sent by RPs.
• Late delivery ratio: The fraction of sensor data that

exceeds their delay tolerances.
• Data transfer time: The time difference between sensor

data arrives at an RP and a UP.
• Total cost: The total UP installation cost.
• Number of UPs: The number of placed UPs.
• Running time: The running time of algorithms.

TABLE I: Considered Algorithms

Upload Point Placement
Upload Path Planning COV VOL GA UPS

First Contact (FC) COVF VOLF GAF UPSF
Delay Minimization (DM) COVD VOLD GAD UPSD

A. Scenarios
We employ the public transit dataset made public by the

Orange County government [40]. The dataset contains bus
stop locations, trip schedules, and routes. We focus on the
seven bus routes around the UCI campus (shown in Fig 4).
In particular, our data preprocessor extracts the schedules and
bus stop locations for our simulations. The resulting schedule
spans over a weekday from 6:09 a.m. to 9:09 a.m., which
consists of 99 vehicle trips and 551 bus stops in total. The
average vehicle trip duration is 64 minutes, while the minimum
(maximum) duration is 18 (109) minutes. On average, each

vehicle trip traverses through 20.38 stops, and each stop has
35.01 vehicle trips passing by.

We take all the bus stops as our UPCs. The dataset,
however, does not contain RPs, nor their data arrival rate,
installation cost, and delay tolerance. For each simulation run,
we randomly select RPs from all bus stops. We then overlap
the dataset with OpenStreetMap to systematically determine
the parameters associated with each RP. In particular, for a
given RP, we set its data arrival rate to be positively related
to the density of surrounding public facilities which equals
Rn = len/(Î ⇥ e�facn/5) where facn is the number of
facilities within 300 metres of RP n, len is the length of data
packet and Î is the maximal data arrival interval. Consider-
ing the power supply, we set the installation cost of UPCs
depending on their distances to the closest public facilities as
Cn = Ĉ⇥(1�e�dtfn/500), where dtfn is the distance between
UPC n and its closest public facility and Ĉ is the maximal
cost. We prioritize the sensing data through setting the delay
tolerance to be positive correlated to the distances from RPs
to their closest critical infrastructure (e.g., police station and
hospital) following Dn = D̂⇥(1�e�dtcn/1000) where dtcn is
the shortest distance from RP n to critical infrastructures and
D̂ is the maximal delay tolerance. We vary the cost limitation
between 10 and 640. We consider a small scenario with 20 RPs
and a large one with 40 RPs. Simulations with the same inputs
and parameters are done with all compared algorithms. Each
data point in the figures represents the average of 5 repetitions.
In addition, we plot the 1st/3rd quartiles as errorbars whenever
possible. Table II lists the detailed simulation parameters.

TABLE II: Simulation Parameters

Parameter Value
Simulation time 3 hours

N Number of UPC 551
V Number of trips 99

Number of RP 20 & 40
Î Maximal data arrival interval 10 s
Ĉ Maximal installation cost 10

⇥ Cost limitation 10 to 640
D̂ Maximal delay tolerance 60 min
len The length of data packet 1 MB

Data transmit rate 1000 MB/s
Data transmit range 20 m

Buffer size of vehicles and RPs 2000 MB

B. Comparison Results
Our DM algorithm leads to better performance than

the FC algorithm with the same upload point placement
algorithms. We compare the two upload path planning algo-
rithms with GA and UPS upload point placement algorithms
under cost limitation between 10 and 640. We skip COV and
VOL algorithms here because they have the similar results
with GA and UPS algorithms. Sample results from 20 RPs
are reported; while results with more RPs are similar. We
plot the results in Fig. 3. We notice that the penalty value
is an output of the upload point placement algorithms, which
is common with either upload path planning algorithm. Hence
we do not report the penalty value (objective function value)

(a) (b) (c)

Fig. 3: Comparisons the performance between the FC and DM algorithms with GA and UPS algorithms under different cost
limitations (a) data delivery ratio, (b) late delivery ratio, and (c) data delivery ratio.

Fig. 4: Orange country bus routes and stops

in the figure. We make a few observations on this figure. First,
Fig. 3(a) gives the data delivery ratio, which show that our DM
algorithm always delivers more data: more than 20% increases
are observed. Next, we check if the delivered data are late by
looking into the late delivery ratio in Fig. 3(b). It can be seen
that our DM algorithm constantly results in the lower late
delivery ratio: 25+% average reduction is possible.

Last, the data transfer time of delivered data is given in
Fig. 3(c). This figure depict that the FC algorithm may lead
to shorter data transfer time than the DM algorithm. This
is because the FC algorithm makes greedy decisions without
proper planning, which may occasionally lead to shorter data
transfer time. Nonetheless, such difference doesn’t change the
fact that our DM algorithm delivers: (i) more data and (ii) less
late data than the FC algorithm, as shown above. Thus, we no
longer consider the FC algorithm in the rest of this paper.

Our UPS algorithm outperforms other upload point
placement algorithms under different cost limitations. We
plot sample results from the four upload point placement
algorithms with 20 RPs in Fig. 5. In Fig. 5(a), we observe
our proposed UPS algorithm significantly outperforms other
algorithms in terms of the objective function value: as high
as 20% gap, compared to the GA algorithm is observed.

Moreover, as the cost limit increases, UPS algorithm’s penalty
value descends at a much higher rate than other algorithms,
including the GA algorithm. We then check other performance
results from the simulators: data transfer time in Fig. 5(b),
late delivery ratio in Fig. 5(c), and data delivery ratio in
Fig. 5(d). In all these figures, our UPS algorithm outperforms
other algorithms, and the performance gap becomes nontrivial
even with a moderate cost limitation. For example, with a
cost limit of 160, compared to other algorithms, our UPS
algorithm achieves sub-21 sec data transfer time (15+ times
improvement), sub 3.2% late delivery ratio (about 12 times
improvement), and above 96% data delivery ratio (about 50%
improvement).

Our UPS algorithm results in cost-effective upload
point placement. We observe above that our UPS algorithm
achieves better performance with a rather small increase in cost
limitation. We next dig a bit deeper and plot the total cost of
the four algorithms from 20 RPs in Fig. 6(a). This figure shows
that our UPS algorithm only consumes a total cost of about
180, even when the cost limitation is beyond that. Fig. 6(b)
also demonstrates that the UP placement decisions are almost
frozen beyond the cost limitation of 160. These two figures
demonstrate that our UPS algorithm makes cost-effective
placement decisions; on top of its superior performance. In
contrast, three other algorithms continue to use up all the cost
limitation yet deliver inferior performance.

Our UPS algorithm has relatively shorter running time
compared with GA and better performance We next
compare the running time of four upload point placement
algorithms with 20 RPs in Fig. 6(c). It is shown that the
convergence time of GA is about twice the running time of
our UPS algorithm when cost limitation greater than 40, which
fluctuates between 200 to 600 minutes while the running time
of UPS is steady at about 100 minutes.

Our UPS algorithm delivers prominent performance
gains over other algorithms in larger/heavier scenarios. We
next report performance gain of our UPS algorithm over other
algorithms, which is defined as the performance improvement
normalized to UPS’ value. Notice that, our UPS algorithm
may achieve zero late delivery ratio. In that case, we put
0.01% in the denominator to be conservative. Fig. 7 shows the
sample performance gains from the larger scenario. This figure
confirms our above observations on the smaller scenario are
also applicable to larger scenario. Even through with more RPs

(a) (b) (c) (d)

Fig. 5: Performance of the four upload point placement algorithms under different cost limitations: (a) penalty value, (b) data
transfer time, (c) late delivery ratio, and (d) data delivery ratio.

(a) (b) (c)

Fig. 6: Installation cost and running time of the four upload point placement algorithms under different cost limitations: (a)
total cost, (b) number of UPs and (c) running time.

(a) (b) (c) (d)

Fig. 7: The performance gains of UPS comparing with the other algorithms on: (a) penalty value, (b) data transfer time, (c)
late delivery ratio, and (d) data delivery ratio under different cost limitations in the scenario with 40 RPs.

(i.e., heavier traffic), the performance gains remain significant
across the considered cost limitations. For example, at the cost
limitation of 160, our UPS algorithm gets at least 478% gain
in penalty value, 100% gain in data transfer time, 100% gain
in late delivery ratio, and 32% gain in data delivery ratio.

Hence, we recommend the combination of UPS and DM
algorithms for solving the upload point placement and
upload path planning problems.

VI. CONCLUSION

In this paper, we studied the use of scheduled transporta-
tion fleets to enable cost-effective, reliable and timely data
collection in urban IoT settings with limited backhaul con-
nectivity. We illustrated the value of a hierarchical approach
that includes: (a) the creation of locally connected “IoT zones”
with planned collection points (RPs), (b) careful positioning
of limited upload points from which data is uploaded to
backend data processing centers, and (c) intelligent planning
of data movement from RPs to UPs using already scheduled
transportation fleets. In the future, we plan to expand the range

of urban scenarios to include extreme conditions (e.g. fires,
earthquakes), which can damage the sensing, communication
and transport fabric in smart communities. The use of alternate
data transfer methods (e.g. drones) is a topic of further study as
well. We also plan to leverage the use of formal methods based
approaches to reason about the tradeoffs in reliability and
timeliness of combined mobile and in-situ sensing, especially
in mission-critical scenarios [41], [42]. Such analytics can be
incorporated into what-if analysis tools for urban planners.
Recent efforts have also demonstrated the utility of Software
Defined Networking (SDN) technologies in enabling hierar-
chical IoT platforms [43], [44], [45]. The flexibility offered
by such hierarchical approaches will become more crucial as
the data collection needs evolve.

ACKNOWLEDGMENT

This research work is supported by the National Insti-
tute of Standards and Technology (NIST) under award No.
70NANB17H285.

REFERENCES

[1] D. Roberts. (2017) “A Fascinating New Scheme to Create
Walkable Public Spaces in Barcelona”. [Online]. Available:
https://www.vox.com/2016/8/4/12342806/barcelona-superblocks.

[2] J. Parkman. (2016) “6 Urban Green Space Projects That Are Revitalizing
U.S. Cities”. [Online]. Available: https://smartgrowth.org/6-urban-green-
space-projects-that-are-revitalizing-u-s-cities/.

[3] Report Linker. (2017) “Internet of Things (IoT) Networks:
Technologies and Global Markets to 2022”. [Online]. Available:
https://www.reportlinker.com/p05273319.

[4] E. E. Tsiropoulou, S. T. Paruchuri, and J. S. Baras, “Interest, Energy and
Physical-Aware Coalition Formation and Resource Allocation in Smart
IoT Applications,” in CISS, Mar. 2017, pp. 1–6.

[5] C. R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless
Networks,” IEEE Journal on Selected Areas in Communications, vol. 15,
no. 7, pp. 1265–1275, Sep. 1997.

[6] T. Black, V. Mak, P. Pathirana, and S. Nahavandi, “Using Autonomous
Mobile Agents for Efficient Data Collection in Sensor Networks,” in
World Automation Congress (WAC), Aug. 2006.

[7] M. Zhao, Y. Yang, and C. Wang, “Mobile Data Gathering with Load
Balanced Clustering and Dual Data Uploading in Wireless Sensor
Networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 4,
pp. 770–785, Apr. 2015.

[8] W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying Approach
for Data Delivery in Sparse Mobile Ad Hoc Networks,” in International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
May 2004.

[9] D. Kim, R. N. Uma, B. H. Abay, W. Wu, W. Wang, and A. O. Tokuta,
“Minimum Latency Multiple Data Mule Trajectory Planning in Wireless
Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 13,
no. 4, May 2014.

[10] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding,
F. Zhao, and H. Cha, “Piggyback CrowdSensing (PCS): Energy Efficient
Crowdsourcing of Mobile Sensor Data by Exploiting Smartphone App
Opportunities,” in ACM Conference on Embedded Networked Sensor
Systems (SenSys), Nov. 2013.

[11] H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, “CrowdTasker:
Maximizing Coverage Quality in Piggyback Crowdsensing Under Bud-
get Constraint,” in International Conference on Pervasive Computing
and Communications (PerCom), Jul. 2015.

[12] J. Ma, N. Lu, and H. Zhang, “PSO-Based Proactive Routing in Delay
Tolerant Network,” in International Conference on Cyberspace Technol-
ogy (CCT), Nov. 2014, pp. 1–4.

[13] C. Raffelsberger and H. Hellwagner, “A Hybrid MANET-DTN Routing
Scheme for Emergency Response Scenarios,” in International Confer-
ence on Pervasive Computing and Communications (PerCom) Workshop,
Mar. 2013.

[14] A. Petz, J. Enderle, and C. Julien, “A Framework for Evaluating
DTN Mobility Models,” in IEEE International Conference on Software
Testing, Verification and Validation (ICST), May 2009, pp. 94:1–94:8.

[15] C. Konstantopoulos, G. Pantziou, and D. Gavalas, “A Rendezvous-
Based Approach Enabling Energy-Efficient Sensory Data Collection
with Mobile Sinks,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 23, no. 5, pp. 809–817, Sep. 2011.

[16] A. W. Khan, A. H. Abdullah, M. H. Anisi, and J. I. Bangash, “A
Comprehensive Study of Data Collection Schemes Using Mobile Sinks
in Wireless Sensor Networks,” Sensors, pp. 2510–2548, May 2014.

[17] P. Kuila and P. K. Jana, “Clustering and Routing Algorithms for Wireless
Sensor Networks: Energy Efficiency Approaches”. Chapman and
Hall/CRC, Sep. 2017.

[18] M. Sede, X. Li, D. Li, M. Wu, M. Li, and W. Shu, “Routing in Large-
Scale Buses Ad Hoc Networks,” in WCNC, Mar. 2008, pp. 2711–2716.

[19] L. Li, Y. Liu, Z. Li, and L. Sun, “R2R: Data Forwarding in Large-
Scale Bus-Based Delay Tolerant Sensor Networks,” in IET International
Conference on Wireless Sensor Network (IET-WSN), Nov. 2010, pp. 27
– 31.

[20] F. Xhafa, C. Sánchez, and L. Barolli, “Locals Search Algorithms
For Efficient Router Nodes Placement in Wireless Mesh Networks,”
in International Conference on Network-Based Information Systems
(NBiS), Aug. 2009.

[21] F. Xhafa, C. Sánchez, A. Barolli, and M. Takizawa, “Solving Mesh
Router Nodes Placement Problem in Wireless Mesh Networks by Tabu

Search Algorithm,” Journal of Computer and System Sciences, vol. 81,
no. 8, Dec. 2015.

[22] D. Buezas, “Constraint-Based Modeling of Minimum Set Covering:
Application to Species Differentation Constraint-Based Modeling of
Minimum Set Covering: Application to Species Differentation,” Ph.D.
dissertation, 2010.

[23] S. Chu, P. Wei, X. Zhong, X. Wang, and Y. Zhou, “Deployment of a
Connected Reinforced Backbone Network with a Limited Number of
Backbone Nodes,” IEEE Transactions on Mobile Computing, vol. 12,
no. 6, pp. 1188–1200, Apr. 2013.

[24] T. Oda, A. Barolli, E. Spaho, L. Barolli, and F. Xhafa, “Analysis of Mesh
Router Placement in Wireless Mesh Networks Using Friedman Test,” in
IEEE International Conference on Advanced Information Networking
and Applications (AINA), Jun. 2014, pp. 289–296.

[25] C. Song, J. Gu, and M. Liu, “Deployment Mechanism Design for
Cost-Effective Data Uploading in Delay-Tolerant Crowdsensing,” in
IEEE International Symposium on Parallel and Distributed Processing
with Applications and IEEE International Conference on Ubiquitous
Computing and Communications (ISPA/IUCC), Dec. 2017.

[26] B. Behsaz, M. R. Salavatipour, and Z. Svitkina, “New Approximation
Algorithms for the Unsplittable Capacitated Facility Location Problem,”
in Algorithm Theory - Scandinavian Symposium and Workshops, Jun.
2016, pp. 237–248.

[27] R. Ravi and A. Sinha, “Approximation Algorithms for Problems Com-
bining Facility Location and Network Design,” Operations Research,
vol. 54, no. 1, pp. 73–81, Feb. 2006.

[28] K. Xiong, “Solving the Performance Puzzle of DSRC Multi-Channel
Operations,” in IEEE International Conference on Communications
(ICC), Jun. 2014.

[29] L. Quintero-Cano, M. Wahba, and T. Sayed, “Bus Networks as Graphs:
New Connectivity Indicators with Operational Characteristics,” Cana-
dian Journal of Civil Engineering, Sep. 2014.

[30] P. Cao, Z. Fan, R. X. Gao, and J. Tang, “Solving Configuration
Optimization Problem with Multiple Hard Constraints: An Enhanced
Multi-Objective Simulated Annealing Approach,” Tech. Rep. 860, Jun.
2017.

[31] A. Keränen. (2008) “Opportunistic Network Environment Simulator”.
[Online]. Available: https://akeranen.github.io/the-one/.

[32] A. Ker and K. Teemu, “Simulating Mobility and DTNs with the ONE,”
Journal of Communications, vol. 5, no. 2, pp. 92–105, Sep. 2010.

[33] L. Kang, “A Public Transport Bus as a Flexible Mobile Smart En-
vironment Sensing Platform for IoT,” in International Conference on
Intelligent Environments (IE), Sep. 2016, pp. 1–8.

[34] N. Indra Er, K. Deep Singh, J.-M. Bonnin, N. E. Indra, and K. Deep
SINGH, “On the Performance of VDTN Routing Protocols with V2X
Communications for Data Delivery in Smart Cities,” in International
Workshop on System Safety & Security (IWSSS), Aug. 2017, pp. 1–2.

[35] U. Acer, P. Giaccone, D. Hay, G. Neglia, and S. Tarapiah, “Timely Data
Delivery in a Realistic Bus Network,” in IEEE International Conference
on Computer Communications (INFOCOM), Apr. 2011, pp. 446–450.

[36] F. Zhang, B. Jin, Z. Wang, H. Liu, J. Hu, and L. Zhang, “On Geo-
casting over Urban Bus-Based Networks by Mining Trajectories,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp.
1734–1747, Jun. 2016.

[37] F. Zhang, H. Liu, Y. Leung, X. Chu, and B. Jin, “CBS: Community-
Based Bus System as Routing Backbone for Vehicular Ad Hoc Net-
works,” IEEE Transactions on Mobile Computing, vol. 16, no. 8, pp.
2132–2146, Aug. 2017.

[38] L. Kang, S. Poslad, W. Wang, X. Li, Y. Zhang, and C. Wang, “A Public
Transport Bus as a Flexible Mobile Smart Environment Sensing Platform
for IoT,” in International Conference on Intelligent Environments (IE),
Sep. 2016, pp. 1–8.

[39] H. Kellerer, U. Pferschy, and D. Pisinger, “Introduction to NP-
Completeness of Knapsack Problems,” in Knapsack Problems, 2004,
pp. 483–493.

[40] J. Matute. (2018) “Publicly-Accessible Pub-
lic Transportation Data”. [Online]. Available:
https://www.transitwiki.org/TransitWiki/index.php/Publicly-
accessible˙public˙transportation˙datam.

[41] N. Venkatasubramanian, C. Talcott, and G. A. Agha, “A Formal Model
for Reasoning About Adaptive QoS-enabled Middleware,” ACM Trans.
Softw. Eng. Methodol., vol. 13, no. 1, pp. 86–147, Jan. 2004.

[42] Z. Qin, G. Denker, C. Talcott, and N. Venkatasubramanian, “Achieving
Resilience of Heterogeneous Networks Through Predictive, Formal

Analysis,” in International Conference on High Confidence Networked
Systems (HiCoNS), Apr. 2013, pp. 85–92.

[43] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G. Denker, and
N. Venkatasubramanian, “MINA: A Reflective Middleware for Man-
aging Dynamic Multinetwork Environments,” IEEE/IFIP Network Op-
erations and Management Symposium (NOMS), pp. 1–4, May 2014.

[44] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra,
I. Moscholios, and N. Venkatasubramanian, “FireDeX: A Prioritized IoT
Data Exchange Middleware for Emergency Response,” in ACM/IFIP
Middleware Conference (Middleware), Nov. 2018, pp. 279–292.

[45] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y.-J. Kim, “Ride:
A Resilient IoT Data Exchange Middleware Leveraging SDN and Edge
Cloud Resources,” in IEEE International Conference on Internet-of-
Things Design and Implementation (IoTDI), Apr. 2018, pp. 72–83.

