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ABSTRACT
Entity resolution is a very common Information Quality (IQ)
problem with many different applications. In digital libraries,
it is related to problems of citation matching and author
name disambiguation; in Natural Language Processing, it is
related to coreference matching and object identity; in Web
application, it is related to Web page disambiguation. The
problem of Entity Resolution arises because objects/entities
in real world datasets are often referred to by descriptions,
which might not be unique identifiers of these entities, lead-
ing to ambiguity. The goal is to group all the entity descrip-
tions that refer to the same real world entities. In this pa-
per we present a graphical approach for entity resolution. It
complements the traditional methodology with the analysis
of the entity-relationship graph constructed for the dataset
being analyzed. The paper demonstrates that a technique
that measures the degree of interconnectedness between var-
ious pairs of nodes in the graph can significantly improve the
quality of entity resolution. Furthermore, the paper presents
an algorithm for making that technique self-adaptive to the
underlying data, thus minimizing the required participation
from the domain-analyst and potentially further improving
the disambiguation quality.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.2.m [Database Management]: Miscella-
neous—data cleaning ; H.3.7 [Information Storage and
Retrieval]: Digital Libraries

General Terms
Algorithms, Management

Keywords
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1. INTRODUCTION
In digital libraries, a big challenge is to automatically

group bibliographic references that refer to the same publi-
cation. This problem is known as citation matching [24,33].
Not only publications, but also authors, venues, etc. are of-
ten referred to by different representations and need to be
disambiguated. For example, the dataset might describe
publications written by two people, John Smith and Jane
Smith, but refer to both of them as ‘J. Smith’, leading
to ambiguity. This is a more general disambiguation chal-
lenge known as entity resolution. It is also known as fuzzy
grouping [10] and object consolidation [2]. In the generic
settings of this disambiguation problem, a dataset D de-
scribes a set of entities E = {e1, e2, . . . , em} and the rela-
tionships in which they participate. Entities can be of dif-
ferent types, such as publications, authors, and venues. En-
tities in D are represented as a set of instantiated attributes
R = {r1, r2, . . . , rn} referred to as entity representations or
references. The goal is to correctly group the representations
in R that co-refer, that is, refer to the same entity.

Most of the traditional domain-independent entity resolu-
tion techniques are feature-based similarity (FBS) methods,
as they employ similarity functions that compare values of
entity features (or attributes) in order to determine if two
object descriptions co-refer. The similarity metrics of fea-
tures can be learned from the data by adaptive approaches
[9, 12, 30, 34, 36]. More recently, techniques have been de-
veloped that in addition to analyzing object features can
also analyze the information derived from the object con-
text, which is usually the directly associated entities/records,
when computing reference similarities [3, 5, 15, 31]. For ex-
ample, in a publication database, the authors are usually
represented by names (either full names or first initials and
last names) in the context of papers. It is not hard to derive
and use the coauthorship information from the papers as ad-
ditional information for the authors being considered when
detecting the author duplication.

In our past work, we have developed a novel graphical
methodology for entity resolution [11,21–23]. The proposed
domain-independent approach views the underlying dataset
D as an entity-relationship graph, wherein the nodes repre-
sent the entities in D and the edges represent the relation-
ships among the entities. For any two entity representations,
the co-reference decision is made not only based on the en-
tity features, or information derived from the context, but
also based on the inter-entity relationships, including indi-
rect ones, that exist among the two representations.

While this methodology has been demonstrated to work



well in practice, it has several limitations. In particular, the
solution employs an intuition based mathematical model for
computing how strongly two entities are interconnected via
relationships in the entity relationship graph. This model
is the key component of the overall domain-independent ap-
proach. However, because it is fixed and purely intuition-
based, it might not be adequate for a particular application
domain or might lead to only minor quality improvements.
To overcome this problem, in this paper we present an al-
gorithm that makes the overall approach self-adaptive to
the data being processed, leading to the improvement of the
quality and efficiency of the proposed methodology.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 takes up a
graphical view of the problem. The basic entity resolution
algorithm is covered in Section 4. Section 5 presents an
algorithm for making the approach self tuning to dataset
being processed. The overall algorithm is then extensively
empirically evaluated in Section 6 and compared to some
of the state of the art solutions. Finally, we conclude in
Section 7.

2. RELATED WORK
Real-world datasets, especially when created by combin-

ing many diverse heterogeneous data sources into a unified
dataset, are known to have various disambiguation issues:
missing, erroneous, duplicate data and so on. It has been
realized early that the quality of data analysis and decision
making is only as good as the quality of the data being ana-
lyzed, leading to creation of various techniques and method-
ologies to deal with various types of errors in data. In this
section, we will mostly concentrate on methodologies that
deal with the Disambiguation/Entity Resolution problem.
The related problems include Deduplication [3, 34], Name
Disambiguation [17, 25, 29], Citation Matching [13, 24, 33],
Reference Reconciliation [15], etc. The cause of various
types of the disambiguation problem is the fact that in real-
world datasets, entities are referred to via descriptions (a
set of instantiated attributes) instead of unique identifiers,
leading to ambiguity.

There are different kinds of information present in a dataset
that an approach can utilize for disambiguation: attributes,
context, relationships, etc. The traditional approach to solv-
ing the disambiguation challenge is to compare the values
in attributes of two entity descriptions (references) to de-
cide whether they co-refer (i.e., refer to the same real-world
entity), for all pairs of entity references. These are called
feature-based similarity (FBS) methods [16, 18]. Recently,
there has been a number of interesting techniques developed
that enhance the traditional techniques by being able to uti-
lize certain types of context to improve the quality [3,5,15].
All these methods utilize directly linked entities as addi-
tional information when computing record similarity. We
refer to these methods as context-based methods.

There are also techniques that can analyze another type of
information: inter-entity relationships [22, 26]. In addition
to analyzing the information present in the dataset, some
of the disambiguation techniques can also analyze meta in-
formation about the dataset, specified by the analyst [13].
Some disambiguation approaches take into account the de-
pendence among the co-reference decisions and no longer
make pair-wise matching decisions independently. These are
called relational methods [6, 15,27,33,35].

The technique proposed in the paper is domain-independent
and aims at minimizing analyst participation. It is a graph-
ical approach, as it visualizes the dataset as the standard
entity-relationship graph. There are other graphical disam-
biguation approaches, which visualize different graphs:

• Web graph. To disambiguate appearances of peo-
ple on the web, it has been proposed to analyze the
Web graph [4], wherein the webpages are represented
as nodes, and hyperlinks as edges.

• Co-reference dependence graph. Some of the re-
lational approaches, e.g. [15], visualize the dependence
(edges) among co-reference decisions (nodes) as a graph.

• Entity-relationship graph (ER graph). In the
standard entity-relationship graph, the nodes repre-
sent the entities in the dataset and the edges represent
the relationships among the entities [22,26,29,31]. The
method proposed in this paper also analyzes the ER
graph for the dataset.

The work on entity resolution is quite extensive. The
most related work include recent approaches developed by
Andrew McCallum, William Cohen, Bradley Malin, Lise
Getoor, Lee Giles, etc. [8, 13, 14, 17, 26, 29]. The differences
of these techniques from our methodology are:

• ER graph. Our methodology analyzes the whole ER
graph “as is”. Existing most related methods analyze
either only portions of the ER graph or they analyze a
different graph – derived by the analyst from the ER
graph.

• Algorithms for analysis. Existing techniques are
frequently based on probabilistic methodologies, whereas
we rely primarily on the mathematical apparatus from
the area of Operation Research.

• Domain-independence. Unlike our approach, some
of those existing techniques are intended for specific
instances of Entity Resolution (e.g., email alias dis-
ambiguation, citation matching), or applicable to do-
mains with certain properties.

It should be noted that virtually all of the existing tech-
niques analyze only portions of the ER graph, if at all. For
instance, the approach in [7] by Bhattacharya and Getoor
analyzes only co-occurrences of names of authors via pub-
lications for a publication dataset. The approach [7], for
a fixed domain, understands only one type of relationship
(“writes” in this case) and only two types of entities: per-
son (“author”) and container (“publication”). Our approach
can analyze all of the types of relationships and entities
present. The approach in [7] is applicable to only those
domains where certain (co-occurrence) properties hold. An-
other example is [20], which analyzes only the shortest path
between two nodes in the graph. The adaptive approach
in [29] is most related, but it analyzes paths, in the ER
graph, of length no more than 2. Another interesting so-
lution [26] looks at people and connect them via one single
type of ‘are-related’ relationships. However, that approach
does not take into account that people can be related for
different reasons and there can be different types of rela-
tionships (and entities) in a given domain. We will compare
the proposed method with some of the state of the art solu-
tions in Section 6.
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Figure 1: Graphical representations of a sample
dataset.

3. GRAPHICAL VIEW OF THE PROBLEM
The proposed entity resolution algorithm employs an entity-

relationship graph as a representation for the dataset. To in-
troduce the necessary concepts, let us consider the following
simple scenario. Assume some extraction software is applied
to a dataset consisting of research publications. For each pa-
per, the software is capable of extracting its title, authors,
author affiliations and author email addresses, if present.
Figure 1(a) and 1(b) shows an example of graph representa-
tion for a sample dataset with two papers. For paper P1 with
title “Multimedia”, the software extracts that its authors are
Alice, Bob, and Carroll; Alice and Carroll are affiliated with
MIT; and Alice’s email address is alice@mit.edu. For paper
P2 with title “Databases”, the software extracts its authors
Alice, Bob, Don, and Erin; Don is affiliated with MIT; and
Alice’s email address is alice@mit.edu. The information
extracted from the two papers are initially represented as
shown in Figure 1(a). For each entity representation, there
is a distinct node in the graph. For instance, the ‘Alice’ from
P1 and ‘Alice’ from P2 get two separate nodes. The rela-
tionships among entities are represented by edges between
corresponding nodes. For example, the edge between ‘Car-
roll’ and P1 represents an ‘author-writes-paper’ relationship.
The essence of the problem is to merge those references that
in reality refer to the same entity.

The traditional approaches (and/or domain knowledge)
often can be effectively employed to determine for each pair
of entity representations whether they: (1) are highly likely
to co-refer (very similar) and thus should be merged, (2) are
highly unlikely to co-refer (too dissimilar) and thus should
not be merged, (3) might co-refer (uncertain). For instance,
if organization names are known to be unique identifiers of
organizations in a given application domain, then handling
organizations might not be a challenge for that domain. For
the scenario illustrated in Figure 1(a), it means that both
‘MIT’ references refer to the same organization and the two
nodes of ‘MIT’ should be merged. Also email addresses of-
ten serve as unique identifiers of people, so the traditional
approach can conclude with high confidence that the two
representations for ‘Alice’, with the same email address, are
likely to co-refer and should be merged.

The most interesting and challenging cases are the uncer-
tain cases that fall under the third category. To capture
those cases graphically we introduce a new edge type: a
similarity edge. A similarity edge is created for a pair of
representations which are similar to some degree that they

Create-Graph(R, τ, ε)
1 V ← ∅ //V is the node set
2 ER ← ∅ //ER is the regular edge set
3 ES ← ∅ //ES is the similarity edge set
4 for each ri ∈ R
5 Create a node vi corresponding to ri

6 V ← V ∪ {vi}
7 for each pair of nodes u, v ∈ V
8 if there is a relationship between u and v
9 ER ← ER ∪ {(u, v)} //create an edge (u,v)

10 P ← Blocking(V )
11 //P contains pairs of nodes {{u1, v1}, . . . , {un, vn}}
12 //where ui, vi are close to each other
13 //according to Blocking(V)
14 for each pair of nodes {ui, vi} ∈ P
15 if f(ui, vi) > τ then

16 Merge-Nodes(ui, vi)
17 else if f(ui, vi) > ε then

18 ES ← ES ∪ {(ui, vi)} //create a similarity edge
19 E ← ER ∪ ES

20 return V, E

Figure 2: Graph Creation Algorithm

potentially refer to the same entity, but need further analy-
sis. The degree of such a similarity can be based on domain
knowledge, ad-hoc techniques, or on feature-based similar-
ity, such as the Edit Distance measure. In the latter case,
entities are considered to be similar when their similarity ex-
ceeds a certain threshold value. For instance, for the graph
illustrated in Figure 1(a), a similarity edge will be created
for the two representations of ‘Bob’, since they might poten-
tially refer to the same person. The rest of the author names
are less similar, and thus no similarity edges will be created
for them. The new graph is demonstrated in Figure 1(b)
with the similarity edge represented as a dashed line.

3.1 Creating the Entity-Relationship Graph
The generic algorithm for creating the graphical entity-

relationship representation of a dataset is presented in Fig-
ure 2. The algorithm first creates an initial representation
of the dataset. It does so by creating a distinct node per
each entity representation found in the dataset, and then
connecting nodes via an edge when there is a correspond-
ing relationship among the nodes. It then applies domain
knowledge and other standard techniques to merge high-
confidence cases. Usually the merging of two nodes u and v

is decided by comparing the similarity score f(u, v) between
them with a high-confidence threshold τ . Notice that the
current standard techniques frequently employ a blocking
process [32] to bring similar representations together so that
there is no need to check every single pair of nodes in the
dataset, leading to a speedup. Finally, the algorithm creates
similarity edges between each pair of nodes that has simi-
larity scores lower than τ , but higher than a low-confidence
threshold ε. This means this pair of nodes can potentially
represent the same entity but needs further analysis. Us-
ing higher threshold τ to merge high-confidence cases and
lower threshold ε to bring together nodes for further anal-
ysis is essentially an adaptation of the canopy method [28].
With regard to the similarity edges, the goal of entity reso-
lution can be rephrased as determining for each two nodes,
connected via a similarity edge, whether they co-refer.

3.2 Virtual Connected Subgraph
An interesting property of the resulting entity-relationship
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Figure 3: Virtual Connected Subgraphs (VCS).

graph with respect to similarity edges is that it contains
several Virtual Connected Subgraphs (VCS). Each similarity
edge is a part of a VCS as illustrated in the example in
Figure 3. A VCS is a subgraph of the overall graph G, s.t.:

• it is virtual – it consists of only similarity edges,
• it is connected – there is a path between any pair of

nodes that belong to the VCS,
• it is complete – no more nodes or edges from G can be

added to the VCS such that the above two properties
still hold.

The concept of a VCS is important because the overall
task can be conceptually viewed as partitioning each VCS.
This is because according to the similarity edges, entity rep-
resentations in different VCSs cannot refer to the same en-
tity. Figure 3 demonstrates an example of three VCSs: two
for entities of type people and one for entities of type depart-
ment.

There are two situations that are possible with respect to
splitting VCSs into clusters of entity representations: (1) the
number of entities in each VCS is known to the algorithm
beforehand; and (2) the general case where that number is
unknown. In the first case, since the number of entities in
each VCS is known, the algorithm knows the exact number
of clusters to split each VCS into. That restricted scenario
has been studied in [11]. In a more common case studied in
this paper, that number is unknown and the overall problem
is thus more complex.

3.3 The idea behind the graphical approach
We will build on a well-established technique of analyzing

relationships for disambiguation [11, 20–22, 26], to apply to
the problem of Entity Resolution . While that work has been
shown to significantly improve the quality for certain types
of the disambiguation problem, applying it to the general
case of entity resolution remains a challenge. The overall
idea behind using relationships is to look at the direct and
indirect (long) relationships that exist between specific pairs
of entity representations in order to make a disambigua-
tion decision. In terms of the entity-relationship graph that
means analyzing paths that exist between various pairs of
nodes.

For instance, to decide whether the two representations
of ‘Bob’ co-refer in Figure 1(b), among other factors the
proposed technique will analyze various paths that exist be-
tween the two representations for Bob in the graph and mea-
sure the connection strength that those paths carry. If the
algorithm decides that the connection strength between the
two ‘Bob’ nodes is sufficiently strong, it would then use it

as an extra evidence that the two representations might co-
refer. The hypothesis and the premise of this approach is
that each path carries in itself a certain degree of affinity,
and if the overall affinity is sufficiently large, then the two
representation are likely to co-refer.

More specifically, the approach relies on the notion of the
connection strength c(u, v) between two nodes u and v in the
graph G. The connection strength between u and v reflects
how strongly u and v are connected to each other via paths
that exist between them. The key idea of the methodology
that we propose is to complement existing techniques with
analysis of c(u, v) to better the quality of entity resolution
and, most importantly, make c(u, v) adapt to the underlying
dataset.

4. CONSOLIDATION ALGORITHM
We now have developed all the concepts and notation

needed to explain the proposed entity resolution approach.
The solution exploits both features and relationships for the
purpose of consolidation, and outputs the resulting cluster-
ing as the outcome. The algorithm starts by constructing
the Entity-Relationship (ER) graph for the dataset and then
identifies all the VCSs in the ER graph. It then employs a
merging algorithm to consolidate entities in each VCS.

Merging is a bottom-up clustering approach employed by
many disambiguation algorithms. The basic idea is to iden-
tify the two nodes with the highest similarity, and to merge
them in case their similarity is above a predefined threshold.
The merging process continues until there are no nodes left
whose similarity is above the threshold. If the merging of
the nodes affects the similarities of other nodes, then the
similarity scores need to be updated and compared with the
threshold again. The algorithm formalization is presented
in Figure 4.

Various disambiguation algorithms that employ merging
differ significantly in how exactly the merging is carried
out. One of the key differences is in the way similarity
s(u, v) between two representations u and v is computed.
For example, the traditional techniques compute s(u, v) us-
ing only entity features, i.e., s(u, v) = f(u, v), where f(u, v)
is a feature-based similarity function. Context-based meth-
ods, utilize a merging approach that combines feature-based
similarity with the similarity of attributes derived from the
context. This combined strategy leads to significant im-
provement in quality of the result, compared to that of pure
feature-based methods [5, 15].

As elaborated in the previous section, a feature-based sim-
ilarity approach is first employed to construct the ER graph
for the dataset being processed. The merging technique
discussed next essentially enhances that feature-based ap-
proach, by applying analysis of relationships to the remain-
ing cases that cannot be resolved with FBS techniques with
high confidence.

The proposed merging approach, like the traditional meth-
ods, also looks at all pairs of nodes that can be similar:
in this case, these are the nodes connected via similarity
edges, see Figure 4. However, the proposed approach com-
putes s(u, v) as a combination of the feature-based similarity
f(u, v) and the connection strength c(u, v):

s(u, v) = c(u, v) + λf(u, v), (1)

where λ is a parameter that controls the amount of relative
contribution of the connection strength and feature-based



Consolidate-Graph(V, E, λ, δ)
1 Q← ∅ //Q is a priority queue
2 for each similarity edge(u, v) ∈ ES

3 s(u, v)← c(u, v) + λf(u, v)
4 Insert {u, v, s(u, v)} into Q
5 based on descending order of s(u, v)
6 while Q is not empty
7 Take the first element {u, v, s(u, v)} in Q
8 if s(u, v) > δ then

9 Merge-Nodes(u, v)
10 Q← Update-Score(Q)
11 else

12 break

13 return V, E

Figure 4: Consolidation Algorithm

similarity. Section 5.3 will explain how the value of λ is ob-
tained. In Section 6 we shall see that considering connection
strength c(u, v) in the merging process leads to a powerful
s(u, v) function which is very effective in improving the qual-
ity of the final result.

When c(u, v) is computed by a disambiguation algorithm,
only L-short simple paths between u and v are considered,
where a path is L-short if its length does not exceed L and
a path is simple if it does not contain duplicate nodes. The
set of L-short simple paths is denoted by PL(u, v). The
intuition is that longer paths are less important and thus can
be omitted. The total connection strength between nodes
u and v is computed as the sum of connection strengths of
paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (2)

When computing connection strengths, the proposed algo-
rithm considers only paths that go through regular edges.
For nodes x and y, the x y paths connecting x and y with
similarity edges are discovered, but not taken into account
when computing c(x, y). Instead they are hashed on those
similarity edges in a hash table. The merging proceeds iter-
atively. Merging of any two nodes u and v, connected via a
similarity edge (u, v), can lead to appearance of new paths
that do not contain similarity edges. This new paths are
efficiently discovered via a lookup in the hash table with the
key {u, v}. After that the corresponding connection strength
and the priority queue are updated by the Update-Score

function on Line 10 in Figure 4.

5. ADAPTIVENESS TO DATA
Since there can be many path types, it can be quite dif-

ficult to pick good weights for those path types based on
the intuition. The number of path types, and hence the
number of their weights, depends on the particular graph
being analyzed and on the value of the parameter L (max-
imum length of paths). In general, assigning good weights
manually is proved to be a non-trivial challenge. Therefore,
we propose a self-tuning algorithm that can learn the path
type weights automatically so that it is adaptive to the data
being analyzed.

5.1 Motivation for Adaptiveness
Before we describe the self-tuning capabilities of our ap-

proach, let us analyze which benefits you can expect if you
succeed in creating a self-tunable connection strength (CS)
model in the context of the disambiguation task. First, such

Dataset
External 

Data/Knowledge

Figure 5: Utilizing external data/knowledge.

Web of KnowledgeDataset

Figure 6: Web of knowledge.

a CS model would minimize the analyst participation. This
is important since nowadays various data-integration solu-
tions are incorporated in real Database Management Sys-
tems (DBMS). For example, entity resolution is known as
fuzzy grouping operation in the data-integration module of
Microsoft SQL Server DBMS [10]. Having a less analyst-
dependent technique makes that operation of wide applica-
bility, so that non-expert users can apply it to their datasets.

The second advantage of such a CS model is that it ex-
pects to increase the quality of the disambiguation tech-
nique. There are also less obvious advantages. For example,
the technique is capable of detecting which path types are
marginal in their importance. Thus, the algorithm that dis-
covers paths when computing c(u, v) can be sped up, since
the path search space can be reduced by searching only for
important paths while skipping marginally important ones.
Speeding up the algorithm that discovers paths is important
since it is the bottle-neck of the overall approach.

Finally, it is often desirable to be able to (aggregate and
then) use external data/knowledge sources to disambiguate
a dataset, as illustrated in Figure 5. This is indeed pos-
sible with the approach proposed in [21, 22] and with an
adaptive CS model, as illustrated in Figure 6. For that,
the dataset and external data need to be first represented
as the standard entity-relationship (ER) graph. Then the
nodes that are known to correspond to the same entity in
the dataset and the external ‘web of knowledge’ will need
to be merged. Now the disambiguation technique, when ap-
plied to the dataset, will find paths that go through not
only this dataset, but also the web of knowledge. The im-
portance of various paths will be automatically determined
by the adaptive CS model. So the web of knowledge can be
potentially automatically employed to improve the disam-
biguation quality, or, it is also possible that the model will
detect that all paths going through the web of knowledge
are unimportant and thus it should not be used.

In the rest of this section, we first discuss how to generalize
many of the existing Connection Strength (CS) models to
create an adaptive CS model in Section 5.2. We then present
an algorithm for calibrating the adaptive model from data
in Section 5.3. We illustrate the above algorithms via an
example in Section 5.5.

5.2 Adaptive CS Model
The goal of any connection strength model is for any two

nodes u and v in the graph G to be able to compute how
strongly they are connected to each other via paths in G.
To create an adaptive CS model, we observe that many of
the non-adaptive CS models can be generalized.



Namely, assume that all paths that can be potentially
discovered by the algorithm can be classified into a finite
set of path types ST = {T1, T2, . . . , Tn}. That is, there is a
function T (p, G) → ST , that for any given path p maps it
to one of those path types. If any two paths p1 and p2 are
of the same type Tj , then they will be treated as identical
by the algorithm. Then, for any two nodes u and v we
can characterize the connections among them with a path-
type count vector Tuv = (c1, c2, . . . , cn), where each ci is
the number of paths of type Ti that exist between u and
v. If we assume that there is a way to associate weight wi

with each path type Ti, then we can see that many existing
connection strength models compute c(u, v) as:

c(u, v) =
n

∑

i=1

ciwi. (3)

The difference among the existing CS models is (a) in the
way they classify paths into types, and (b) in the way they
assign weights to path types, where both (a) and (b) are ei-
ther already given and fixed or, alternatively, decided by the
algorithm designer based on what is intuitively reasonable
for a particular domain.

Assigning those weights manually based on intuition might
be a suboptimal solution. It requires a smart analyst who
should know the dataset and the algorithm in detail. That
often is undesirable, and the goal is to make the analyst
work simpler by minimizing her participation. So instead
the right weights can be learned from data automatically.
Below we present such a learning algorithm that reduces
this learning task to solving a linear programming problem.

5.3 Learning Algorithm
As any supervised learning algorithm, the proposed algo-

rithm uses training data for learning. In the training data
for each pair of object description x and y we know whether
or not they co-refer. The learning is based on the generic dis-
ambiguation principle, that the affinity/similarity between
two entity representations that co-refer is likely to be no-
ticeably greater than that of two descriptions that do not
co-refer. Using this principle, we can define the learning
formulae for the problem of entity resolution. In defining
constraints for the corresponding linear programming prob-
lem, we look at each VCS at a time. For each similarity
edge (xi, xj), where xi and xj belong to the same cluster in
the VCS, we formally define a set of constraints according
to the generic disambiguation principle:

s(xi, xj) ≥ s(xi, xk) (∗)
s(xi, xj) ≥ s(xj , x`) (∗∗)

(4)

Here, s(u, v) is computed according to (1), in which λ is a
non-negative variable, and (∗) denotes the set of additional
conditions on selecting xi, xj , xk. Specifically, xi, xj , xk should
be chosen such that:

• there should be similarity edges (xi, xj), (xi, xk) in G,
• those edges should be in the same VCS,
• xi and xj co-refer, xi and xk do not co-refer.

The conditions specified as (∗∗) are similar to (∗), but for
x` instead of xk. System (4) might be overconstrained and
as such might not have a solution. This system does not
yet address the ‘likely’ part of the principle: the inequalities
should hold most of the time, but not always. To address

that, a slack is added to the system:






































Constraints:
s(xi, xj) + ξijk ≥ s(xi, xk) (∗)
s(xi, xj) + ξij` ≥ s(xj , x`) (∗∗)
ξijk, ξij` ≥ 0 for all i, j, k, `

Objective:

Minimize
[

∑

ijk
ξijk +

∑

ij`
ξij`

]

.

(5)

System (5) always has a solution. Here, ξijk are slack vari-
ables that take on any real nonnegative values. The ob-
jective is to minimize their sum. In addition, to make clear
decisions, the connections strength between two descriptions
that co-refer should clearly outweigh that of two descriptions
that do not co-refer. This translates into requiring that the
difference between s(xi, xj) and s(xi, xk) be maximized, and
the same for x`.



























































Constraints:
δijk = s(xi, xj) − s(xi, xk) (∗)
δij` = s(xi, xj) − s(xj , x`) (∗∗)
δijk + ξijk ≥ 0 (∗)
δij` + ξij` ≥ 0 (∗∗)

Objective:

Minimize α
[

∑

ijk
ξijk +

∑

ij`
ξij`

]

+

+ (1 − α)
[

−
∑

ijk
δijk −

∑

ij`
δij`

]

.

(6)

In (6), c(u, v) is computed according to (3). The task is
to learn the optimal path type weights wi’s along with the
parameter λ by minimizing the objective. System (6) is a
linear programming (LP) problem which can be solved by
any known LP method or using an off-the-shelf LP solver.
Linear programming in general is known to have efficient
solutions [19].

5.4 Classifying Paths into Types
There are many possible ways to classify paths. The Path

Type Model (PTM) classifies a path by looking at the types
of edges the path is composed of. That is, each path can
be viewed as a sequence of edges 〈e1, e2, . . . , ek〉. Each edge
has a type associated with it. For example, in a publica-
tion database authors write papers and are affiliated with
organizations. Hence there are two types of edges that cor-
respond to the two types of relationships: E1 for ‘writes’
and E2 for ‘is affiliated with’. A sequence of edge types can
be viewed as a string, and PTM assigns different weight to
each distinct string.

It is possible to think the number of path types will be
huge: tk, where t is the number of edge types and k is the
length of paths. However, because each node type can only
connect to certain types of edges, the number of path types
is limited. For example, an author node can be associated
with edges of types ‘writes’ (a paper) and ‘is affiliated with’
(an organization), but a paper node can only be incident to
a ‘writes’ edge type. Therefore the number of path types
will be far less than tk and in practice, the size of training
data is generally sufficient for the purpose of learning.

5.5 Example
To illustrate the concepts from the previous sections, con-

sider the small scenario in Figure 7. It shows a small ER
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Figure 7: Example Graph.

graph with two VCSs. The first VCS has four references
x1, x2, x3, x4 connected by three similarity edges about three
real-world entities {{x1, x2}, {x3}, {x4}}. The second VCS
has three references y1, y2, y3 with two similarity edges about
two real-world entities {{y1, y2}, {y3}}. For simplicity, let
us assume λ = 1 in (1) and thus s(u, v) = c(u, v). Then
s(x1, x2) = w1 + w2, s(y1, y2) = 2w1, and so on, where wi’s
are as illustrated in Figure 7. Thus we have:











































































Constraints:
δ1 = [w1 + w2] − [w3 + w4]
δ2 = [w1 + w2] − [w1 + w3 + w4]
δ3 = [2w1] − [w2 + w3]
δ1 + ξ1 ≥ 0
δ2 + ξ2 ≥ 0
δ3 + ξ3 ≥ 0
0 ≤ ξ1, ξ2, ξ3

0 ≤ w1, w2, w3, w4 ≤ 1

Objective: Minimize
α [ξ1 + ξ2 + ξ3] + (1 − α) [−3w1 − w2 + 3w3 + 2w4]

(7)
After solving the linear program (7) using a LP solver,

we will get the answer for the PTM: w1 = w2 = 1 and
w3 = w4 = 0.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally study the proposed

techniques on three datasets taken from the Movie and Pub-
lication domains. We first present the experimental setup
in Section 6.1, followed by the experiments that test the
proposed entity resolution approach in Section 6.2.

6.1 Experimental Setup

6.1.1 Datasets
We will use three datasets: RealPub, RealMov and Cora

to test our algorithms. RealPub and RealMov are derived
from real manually cleaned data, so they initially do not
contain uncertain references. To test our approach, we will
use a standard technique employed by data cleaning prac-
titioners: we introduce uncertainty/errors in our datasets
manually in a controlled fashion, and then examine the ef-
fect of uncertainty on the quality of various entity resolution
algorithms.

RealPub. RealPub is a real dataset derived from two
public-domain sources: CiteSeer and HPSearch. It is a pub-
lication dataset that describes authors, their publications

and their affiliations. It contains entities of four types:
papers (11,682 entities), authors (14,590 entities), depart-
ments (3084 entities) and organizations (1494 entities). This
dataset contains four types of (regular) relationships: pa-
per author, author dept, author org, and org dept, which map
papers to their authors, authors to their affiliations, and the
departments to the organizations respectively.

Introducing Uncertainty. In RealPub, all author refer-
ences are in the format of ‘full first name + last name’. We
introduce uncertainty in this dataset by pretending we only
know ‘first initial + last name’ for the author descriptions.
For example, for two representations r1 =‘John Smith’ and
r2 =‘Jane Smith’ we pretend we only know r1 =‘J. Smith’
and r2 =‘J. Smith’, so that r1 and r2 will be put in the same
VCS. We refer to the authors who have the same “first ini-
tial + last name” as uncertain authors and their names as
uncertain names. The goal is to correctly resolve the uncer-
tain author entities, i.e., separate the uncertain authors into
groups such that each group consists of author references
with the same full names.

RealMov. RealMov is a real dataset constructed from
the Stanford Movies Dataset [37]. It contains entities of
three types: movies (11,453 entities), studios (992 entities),
and people (22,121 entities). It also contains five types of
(regular) relationships: movie actor, movie director, movie
producer, producingStudio, and distributingStudio, which map
movies to their actors, directors, producers, producing stu-
dios and distributing studios respectively.

Introducing Uncertainty. In our experiments, the type of
entity we are dealing with is people, and specifically, director.
Assume that RealMov stores information about d1, d2, . . . , dn

director entities. The uncertainty will be introduced in a
fashion similar to that of the recent KDD Cup. We choose
randomly a fraction ρ of those directors and make all their
references uncertain. To achieve that, we group every two
directors and simulate the desired uncertainty by changing
all the director references in the same group such that each
reference can refer to either of the directors in this group.
For example, if the directors d1, d2, . . . , d10 were chosen, we
group the “uncertain” directors d1, d2, . . . , d10 in groups of
two, e.g. {d1, d2}, {d3, d4}, . . . , {d9, d10}. We assume all ref-
erences of d1 can refer to either d1 or d2, and so on, whereas
for the rest of the directors d11, d12, . . . , dn, all their refer-
ences will still uniquely identify the right director. Based on
the typical degree of uncertainty in real-world dataset [22],
we set ρ to 10% in our experiments.

Cora Cora dataset has been used for disambiguation by
many other researchers. It was prepared by the RIDDLE
project [1] and then cleaned further. It contains 1295 cita-
tions for 132 paper entities. Each record of citations consists
of 12 attributes: authors,title,institution,venue,address,publisher,
year,month, volume,pages,editors,and notes. The goal is to
correctly identify the duplicate citations.

6.1.2 Measuring Quality
Traditionally, the quality of record linkage is measured

using precision and recall, and their harmonic mean known
as F1 measure. Although precision and recall capture the
quality of results well most of the time, it is now often ar-
gued that such measures are not fully adequate for the prob-
lem of entity resolution, because they are representation-
centric measures, whereas entity-centric measures are often
preferred for entity resolution.



Let us illustrate this by an example. Assume a database of
ten objects {o1, . . . , o10}. Assume o1 has many representa-
tions {r11, . . . , r1n1

}, where n1 = 100 for example. Suppose
the other objects have only a few representations, say two:
{ri1, ri2} for each oi. Now let us assume that two different
algorithms have been applied to this database and we will
compare their outcome:

• Algorithm 1 has correctly consolidate all the repre-
sentations of o1 by placing them in one cluster {r11, . . . ,

r1n1
}. But it failed on each of the other objects o2, . . . , o10,

by placing their representations into two clusters: {ri1}
and {ri2} for each oi, instead of one {ri1, ri2} cluster.

• Algorithm 2 has correctly consolidated the represen-
tations of objects o2, . . . , o10. But it slightly failed on
the representations of object o1, by creating two clus-
ters {r11} and {r12, . . . , r1n1

} instead of one {r11, r12, . . . ,

r1n1
} cluster.

If we use precision/recall as measures, Algorithm 1 will be
significantly better than Algorithm 2 because it has consol-
idated more pairs correctly. For this example, Algorithm 1
missed 9 pairs of representations that co-refer (i.e.,{ri1, ri2},
i = 2, . . . , 10), while Algorithm 2 missed 99 pairs (i.e., {r11, r12},
. . . , {r11, r1,100}). However, if we consider the effectiveness
of the algorithms as the number of objects that the algo-
rithms can correctly resolve, then Algorithm 2 is signifi-
cantly better since it failed slightly only on one object, while
Algorithm 1 failed on 9 out of 10 objects.

Thus, we will also use other well-known measures: purity,
inverse purity and their harmonic mean FP -measure. Purity
measures the homogeneity of the clusters when evaluated
against pre-classification, while inverse purity measures the
stability of the classes when split into clusters. FP -measure
is the harmonic mean of the purity and inverse purity. 1

6.1.3 Resolution Algorithms
We test and compare four algorithms that employ fea-

tures, contexts and relationships.
FBS technique. FBS technique is the traditional ap-

proach of using features only for entity resolution.
Context-based techniques. To compare our approach

with context-based approaches that use directly associated
neighborhoods, we have implemented one of the best known
context-based methods that could be applied to our datasets,
which we will refer to as Context [5]. We always set all the
parameters of Context to their optimal values, thus giving
it an advantage over all other tested techniques.

1The purity measure is based on the precision. Each result-
ing cluster P from a partitioning P of the overall represen-
tation set D is treated as if it were the result of a query.
Each set L of representations of a partitioning L, which is
obtained by manually labeling the classes, is treated as if
it were the desired set/class of representations for a query.
The two partitioning P and L are then compared as follows.
The precision of a cluster P ∈ P for a given category

L ∈ L is given by Precision(P ; L) := |P∩L|
|P |

. The over-

all value for purity is computed by taking the weighted
average of maximal precision values: Purity(P,L) =
∑

P∈P
|P |
|D|

maxL∈L Precision(P, L). The inverse purity is

computed in a similar fashion: InversePurity(P,L) =
∑

L∈L
|L|
|D|

maxP∈P Precision(L, P ).

Algorithms RealPub RealMov
F1 FP F1 FP

FBS 0.538 0.740 0.597 0.785
Context 0.725 0.853 0.760 0.849
RelER 0.766 0.889 0.760 0.849
RelAA 0.774 0.892 0.848 0.869

Table 1: Comparing Different Approaches

Relationship-based techniques. We will test the basic
and adaptive relationship-based techniques presented in Sec-
tions 4 and 5. We refer to the former as RelER (Relationship-
based Entity Resolution) and the latter as RelAA (Relationship-
based Adaptive Algorithm). For the basic algorithm RelER,
the connection strengths are computed using WM model
[22] based on random walk since it is the best known non-
adaptive model. For the adaptive algorithm RelAA, we will
randomly divide the dataset to two parts: 50% of the dataset
is used for training the model to get proper path weights and
the rest 50% of the dataset is used for testing. We choose the
parameter L = 6 for all experiments. The results reported
in this section will be averaged from multiple runs. To fairly
compare the adaptive algorithm with all others, we report
the results of all algorithms on the same part of (test) data.

We will report the results of different approaches on Re-
alPub and RealMov datasets using both F1 and FP mea-
sures. For Cora dataset, since the number of citations is
not enough for training purpose, we will just use the basic
algorithm RelER and compare the precision/recall/F1 with
those reported in other papers.

6.2 Experiments on RealPub and RealMov
In this section, we empirically evaluate the quality and

efficiency of the overall approach, which are traditionally of
interest in the context of entity resolution.

Experiment 1 (Comparing approaches). In Table 1,
we compare the quality of the various entity resolution ap-
proaches on RealPub and RealMov datasets using F1 and
FP measures. In the table, we can see that for both RealPub
and RealMov datasets, RelAA performs the best. Context-
based and relationship-based algorithms always get better
results than FBS. This is expected since each of the three
methodology complement the previous one with the analysis
of more information that is available in a dataset: features,
then context, and then relationships. Notice that for Re-
alPub, the results of RelER and RelAA are very close to
each other and much better than Context and FBS. For
RealMov, the results of basic RelER algorithm is the same
as Context, while adaptive algorithm RelAA is much better
than all the other algorithms. This is because in RealMov,
there are more types of relationships, and when the paths’
length is long (i.e., parameter L is large), using a fixed model
(e.g., WM model in our experiments) to compute connection
strengths sometimes may confuse the basic resolution algo-
rithm. On the other hand, the adaptive algorithm instead
learns the weights from data, leading to better quality of
entity resolution.

Experiment 2 (Learning threshold). Varying the merg-
ing threshold employed by merging algorithms (see Section 4)
causes those algorithms to produce various results that form
a trade-off between the resulting precision/recall and pu-
rity/inverse purity. Figure 8 plots average purity against
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average inverse purity with the merging threshold varying
between 0 and 1 on RealPub dataset. From this figure, we
can see that there is a trade-off between the resulting quality
of clusters and entities, and there exists an optimum result
for a certain threshold value in terms of FP measure.

In our experiments we set the the merging threshold by
learning it from data. First, we load the ER graph for the
RealPub or RealMov dataset and partition all the VCS’s of
this ER graph into two sets: the training and test sets. We
determine the optimal threshold value on the training set.
This value serves as an estimation of the optimal threshold
value for the test set. We then apply that threshold on the
test set. Figure 9 illustrates the learning results of FP for
the two datasets, RealPub and RealMov, where 10% of all
VCS’s are utilized for training purposes and the rest 90%—
for testing. We report the results on the learned threshold
as ‘Est’ and the true optimal value on testing data as ‘Opt’.
For Context method, we always use the optimal threshold
value. Figure 9 demonstrates that the learned threshold
serves as a good estimation of the optimal threshold and
that the proposed algorithm significantly outperforms the
Context method.

Experiment 3 (Efficiency). This experiment tests the ef-
ficiency and shows the scalability of the proposed approach.
The bottleneck of our approach is the algorithm for discover-
ing all L-short simple paths and the figure essentially plots
the cost of that phase of the algorithm. In [21] we study
several optimizations of that algorithm, which improve the
performance by 1–2 orders of magnitude. We employ the
same optimizations in this paper as well. To simulate the
increasing size of the data, we tested on different fraction
of dataset we have. Figure 10 shows the execution time as
a function of the fraction of publications loaded from Re-
alPub dataset, e.g., 0.1 corresponds to 10% of the dataset,
1.0 corresponds to the whole dataset. For a graph with 40K
nodes, it takes less than 0.03 seconds. In our ongoing work,
we are trying to improve the scalability of the algorithm.

Experiment 4 (Choosing alpha). Figure 11 studies the
effect of parameter α, which controls the contribution of the
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Figure 11: Comparing the learning algorithm with
baseline and the impact of Alpha on RealPub.

two objectives in system (6) from Section 5, on the resolution
quality of the algorithm. It shows that there is a trade-off
between the two objectives, and that the algorithm that
learns weights outperforms the baseline, which uses WM
model, for any α ∈ (0, 1). In our experiment, the optimal
result for RealPub was achieved when α is equal to 0.7.

Experiment 5 (Handling random noise). To further
demonstrate the advantage of the adaptive model, we grad-
ually add uniform random noise to the datasets by introduc-
ing random relationships/edges that randomly connect two
nodes in the graph. The random relationships are added to
both training and test data. These random relationships are
meaningless for the purpose of disambiguation, and there-
fore the paths with random edge(s) should ideally have no
effect on the connection strengths. Figure 12 shows the im-
pact of random relationships added to RealPub data on the
result of the resolution algorithm. The more random rela-
tionships are added, the worse the baseline algorithm per-
forms since it is not adaptive. The learning algorithm, on
the other hand, can correctly capture all the meaningless
path types. Thus its curve stays flat as the amount of noise
increases.

6.3 Experiments on Cora
We apply our relationship-based algorithm on Cora dataset

and compare the results of precision/recall/F1 with those
reported by other researchers. One of the best results pub-
lished in the past is by [15], which used similar methodology
as ours. The approach they proposed is referred by DepGraph

and the baseline approach is referred by InDepDec in that
paper. We compare our approach with these two and the
results are presented in Table 2. Although the improvement
might look marginal, notice that our approach almost dou-
bled the improvement of DepGraph to baseline. Another
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Algorithms Precision Recall F1 Improve

InDepDec 0.985 0.913 0.948 -
DepGraph 0.985 0.924 0.954 0.6%

RelER 0.935 0.984 0.959 1.1%

Table 2: Comparing different approaches on Cora

observation is that the precision of our approach is worse al-
though the recall is better. This is because we employed the
adaptation of a canopy method that brings all the references
that can potentially co-refer together to the same VCS and
therefore guaranteed the matching references will almost al-
ways be found. In the meantime, this strategy reduces the
precision since it will group references that do not co-refer.

7. CONCLUSION
In this paper, we have developed a novel domain-independent

entity resolution approach and have presented its empirical
evaluation on datasets taken from two different domains.
The approach leverages an analysis of the entity-relationship
graph of the dataset being processed for improving the qual-
ity of the entity resolution. In addition, we have developed a
method that minimizes the required domain-analyst partic-
ipation and achieves even higher disambiguation quality by
being able to self-tune the overall approach to the dataset
being processed.
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