IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 1

Pattern Routing: Use and Theory for Increasing
Predictability and Avoiding Coupling

Ryan Kastner, Student Member, IEEE, Flaheh Bozorgzadeh, Student Member, IEEE
and Majid Sarrafzadeh, Fellow, IEEE

Abstract— Deep sub-micron effects, along with increas-
ing interconnect densities, have increased the complexity
of the routing problem. Whereas previously we could fo-
cus on minimizing wirelength, we must now consider a vari-
ety of objectives during routing. For example, an increased
amount of timing restrictions means that we must minimize
interconnect delay. But, interconnect delay is no longer
simply related to wirelength. Coupling capacitance has be-
come a dominant component of delay due to the shrinking
of device sizes. Regardless, the most important objective is
producing a routable circuit. Unfortunately, this often con-
flicts with minimizing interconnect delay as minimum delay
routes create congested areas, for which an exact routing
cannot be realized without violating design rules. In this
work, we use the concept of pattern routing to develop al-
gorithms that guide the router to a solution that minimizes
interconnect delay — by considering both coupling and wire-
length — without damaging the routability of the circuit.

The paper is divided into two parts. The first part demon-
strates that pattern routing can be used without affecting
the routability of the circuit. We propose two schemes to
choose a set of nets to pattern route. Using these schemes,
we show that the routability is not hindered. The second
part builds on the previous part by presenting a framework
for coupling reduction using pattern routing. We develop
theory and algorithms relating pattern routing and cou-
pling. Additionally, we give suggestions on how to extend
our theory and use our algorithms for both global and de-
tailed routing.

I. INTRODUCTION

HE process of routing can be divided into two sub-

problems, global and detailed routing. Global routing
decomposes the routing problem into smaller, manageable
routings for the detailed router. Specifically, the global
router finds a rough path for each net while trying to reduce
the chip size, decrease the interconnect delay and distribute
the congestion across the routing area, among other things
[1], [2], [3]- Detailed routing uses the results of global rout-
ing to find an exact realization of the interconnections in
VLSI circuits.

The global routing problem is known to be NP-hard
[4]. This motivates the use of heuristic and approxima-
tion algorithms. The maze routing (or maze running) al-
gorithm [5] is a widely used method for global and detailed
routing. Briefly, the maze routing algorithm starts from
a source point and recursively searches its neighbors for
the best route until it reaches the sink point. The best
route is defined by a function of congestion, wire length,

This work was supported by the DARPA NEST program and UC-
MICRO with contributions from Xilinx and Fujitsu.

Ryan Kastner, Elaheh Bozorgzadeh and Majid Sarrafzadeh
are with the Computer Science Department, University
of California, Los Angeles, Los Angeles, CA 90095 (e-
mail:{kastner,elib,majid} @cs.ucla.edu).

chip size, number of bends, etc. Maze routing finds the
optimal path for two-terminal nets according to the cost
function. A major drawback of the algorithm is the large
amount of memory required to label its data structure, the
grid graph. There have been several other proposed exten-
sions and modifications to the maze routing algorithm in
the almost 40 years since it has been introduced, but the
underlying method remains the same.

Pattern routing is the well-known idea of using prespec-
ified patterns to route two terminal nets. This is partic-
ularly useful for high level CAD tools (i.e. tools preced-
ing global routing in the design flow). For example, most
placement tools use quick routing metrics to get a basic
idea about congestion and wirelength information. In this
paper, we develop quick routing methods that reduce the
interconnect delay, increase the predictability of the cir-
cuit and do not affect the quality of the routing solution.
Since we know these metrics will not affect the routing, the
placement tool can use these methods to model congestion
and wirelength more accurately. Also, since we know the
routing topology of a net, we can start wire sizing, wire
planning and optimally add buffers! once we have place-
ment information.

Due to DSM effects, coupling is of greater importance for
power, area and timing in circuits. There are four princi-
pal reasons for this, increasing interconnect densities, faster
clock rates, more aggressive use of high performance cir-
cuit families, and scaling threshold voltages [7]. In fact,
coupling capacitance between wires can account for over
70% of the total wiring capacitance, even in 0.25 pym pro-
cesses [8]. Therefore, it has become necessary to consider
coupling during both global and detailed routing.

Up until recently, there has been little research on the
coupling problem in routing. Coupling reduction was con-
sidered at the detailed routing stage for the river rout-
ing problem [9], the channel routing problem [10] and the
switch box routing problem [11]. Also, there have been
efforts in reducing coupling in the stage between global
and detailed routing. Xue et al. developed a post global
routing tool which estimates the possible coupling between
sensitive wires and tries to reroute nets away from possible
crosstalk areas [12]. Chaudhary et al. develop a general
post-routing spacing algorithm [13]. Also, coupling is ex-
amined for area routing [14] and global routing [15]. This
work presents algorithms for coupling avoidance routing.
The algorithms are general so they can be used in both

LIf we know the net topology the complexity of buffer insertion for
delay becomes polynomial time solvable [6].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 2

global and detailed routing.

In this paper, we focus on increasing routing predictabil-
ity and reducing the unwanted effects caused by coupling
during routing. This work is based on papers that appeared
in ASIC/SOC 2000 [16], ICCAD 2000 [17] and ISPD 2001
[18]. In Section II, we give some basic definitions in or-
der to make this paper self-contained. In particular, we
discuss pattern routing, congestion and coupling. Also, we
briefly describe our router used in the experiments. Section
IIT introduces the idea of increasing routing predictability
through pattern routing. We present heuristics for finding
a subset of nets which can be predictably routed and show
the results of those heuristics. We introduce the Coupling-
Free Routing (CFR) problem in Section IV and discuss
its applications to global and detailed routing. An ex-
act algorithm for Coupling-Free Routing Decision Problem
(CFRDP) is presented. Then, we show how to transform a
CFR problem into implication graph to model the depen-
dencies between nets. Finally, we introduce the Maximum
Coupling-Free Layout (MAX-CFL) Problem and analyze
a couple algorithms developed to solve the problem. We
conclude in Section V.

II. PRELIMINARIES

A multi-terminal netn = {(mla Y1,)7 (1’2, y2)) (1’3, y?)): ety (mna yn)}‘)

is a collection of points in the plane. A terminal is single
point of a net. A multi-terminal net can be partitioned
into a collection of two-terminal nets (a net with exactly
two points) using a number of standard techniques. We
adopt the stable spanning tree partitioning of Ho et al. [19].
Additionally, the spanning tree is altered for flexibility [20].
Essentially, we use this to transform the multi-terminal net
into a set of either a very short two-terminal net or a large
two-terminal net. That paper shows that these nets can be
pattern routed independently as two-terminal nets without
affecting the routability of the circuit.

A two-terminal net (or simply called a net hereafter) n =
{(z1,41), (z2,y2)} is an unordered pair of points (z1,y:)
and (z2,y2). A routing or wiring of n is a set of horizontal
and vertical line segments connecting (z1,¥1) and (z2,y2).
A layout is the routings of a set of nets.

A net n can be routed without any bends if and only if
either 1 = x5 or y; = y». We call such a net a zero-bend
net. Otherwise, there are two ways to route n with one
bend as shown in Figure 1. When a routing has no more
than one bend, it is called a single bend routing [21]. We
call such a net a one-bend net.

The routings in Figure 1 are called the upper-L routing
and the lower-L routing. A stable spanning tree ensures
that upper-L routing and lower-L routing shapes of the
two-terminal nets obtained from a multi-terminal net are
pairwise non-intersecting. To avoid confusion, we often
refer to a possible routing as a route. Thus we say that a
one-bend net has two one-bend routes (the upper-L route
and the lower-L route).

A grid graph is a graph G(V,E) such that each vertex
corresponds to a point in a plane. See Figure 2 for further
explanation. A routing of a net on a grid graph is a set

(xy)

(uv)

(xy)
lower wiring

Fig. 1. a) Upper-L routings b) Lower-L routings

of grid edges such that the terminals are fully connected.
The route edges of a net are the set of edges used in the
routing of that net.

A global bin is a rectangular partition of the chip. By
partitioning the chip into many rectangular regions and
placing the cells into these regions, we have a placement
using global bins. The boundaries of the global bins are
global bin edges.

. . ; - b)
‘ ‘ O 0
0320000 ic5

= o2 i[o DE>G.M

Global Bins

Global

*********************** 7/ Edges Edges

EnlE=NE)
0505 Dot o0ail]%

Fig. 2. (a) Pla.ccslrsnent of cells into global bins. (b) The corresponding
grid graph.

In this paper, we assume that a global placement of cells
and their interconnections are given by some placement
engine (our experiments used Dragon [22]). The cells are
placed into global bins and each cell is assumed to be placed
in the center of the global bin. Looking at Figure 2, it is
easy to see that the global bins and edges can be trans-
formed into a grid graph. The interconnections between
the cells can be modeled by nets.

Congestion in a layout means that there are too many
nets routed in a local area. This causes difficulty for the
detailed router as it may not find a feasible routing solu-
tion. We want to evenly distribute the routing across the
total chip area. The congestion of an edge is the number
of nets routed over a global bin edge. From now on, we
will refer to a global bin edge g as e;. The capacity (also
referred to as supply) of edge e, is ¢,. It is the maximum
number of nets that can be routed over e4. ¢, is a fixed
value that is based on the length of the edge and the tech-
nology used in creating the chip. The routing demand of
eg, specified as dg, is defined as the number of route edges
crossing ey. Similarly, the demand of a vertex v is d,,. Here
the demand corresponds to the number of routes that pass
though the vertex v (equivalently the global bin v). An

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 3

edge is overflown if and only if the d. > c¢.. Formally, the
overflow of an edge is:

de —co — t

OU@T‘flOU)e _ { 0 if de > Ce

otherwise

t is a threshold value which allows d, to go above ¢, with-
out an overflow penalty. t is used since you can often route
up to ¢ nets though neighboring bins without affecting the
congestion of those bins. ¢ is usually a small constant (ap-
prox. 2-5). Using the global bin and global edge notation,
the total overflow of a routing is:

|BE|

over flowotqr = E over flow,
e=1

where BFE is the set of bin edges. The total overflow reflects
the shortage of routing resources for a particular set of edge
capacities. A routing with a minimized total overflow is
one of the objectives of our global router. Our industrial
experience shows that total overflow is a good measure of
congestion.

A. Maze Routing

We implemented a global maze router. The maze router
takes every net and routes them one at a time according
to a cost function.

e€RouteEdges

over flowyoyte = over flow,

lengthyroute =| RouteEdges |

COStroute = @ X over flow,oyte + length oute

coStiotal = Z COSlroute
allnets

There is a tradeoff between minimizing overflow and min-
imizing wire length. Ideally, you could minimize both con-
currently. Most often this is not possible. Our cost function
can solely minimize wire length (set a = 0). Likewise you
can minimize overflow by setting a > 1. We found that
varying a from 10 to 100 minimizes the total overflow while
keeping the wire length minimal.

For nets with more than two-terminals, we use stable
Steiner trees to partition the net into a set of two-terminal
nets. Each net is given an initial route and then a rip-up
and reroute phase is applied to further minimize the total
overflow. This technique (or variants of it) appears in most
global routers in order to deal with the net ordering prob-
lem [23]. During rip-up and reroute, the bin edges are se-
quentially searched. If an edge is overflown, then all of the
nets that pass through that edge are ripped and rerouted.
This process continues until the total overflow converges
to a local minimum. That is, if the total overflow does
not decrease (the goal is to minimize the total overflow)
after \ iterations, rip-up and reroute has completed. We
found that a A of 200 gave good results for the designs that
we tested. Larger designs may need an increased A\ which
decreases the chance of getting stuck in a local minimum.
In general, smaller designs can afford to decrease A\ which
would decrease the runtime.

B. Pattern Routing

Pattern routing is the notion of using predefined pat-
terns to route two-terminal nets. Usually these are simple
patterns such as a L-shaped (single bend) or a Z-shaped
pattern — 2-bends, route restricted within bounding box.
For more details, see Figure 3.

@ (b)

— |-
RCE

(== -

Fig. 3. (a) L-shaped routing of 2 two-terminal nets.
routing of 2 nets.

(b) Z-shaped

Patterns can speed up the routing process. Instead of
maze routing a net, we pattern route it. In general, maze
routing will consider many bins that the final route will
not actually use. When using pattern routing, only a con-
stant number of edges are searched. For example, L-shaped
pattern routing will only search the edges on the bound-
ing box of the two-terminal net. Then, depending on cost
of these edges, it will choose the upper-L or lower-L. and
place the route there. Similarly, Z-shaped pattern routing
needs only search the edges on the perimeter and inside
the two-terminal bounding box. On the other hand, maze
routing will search every edge (on the worst case). There-
fore, pattern routing has a better upper bound on runtime
complexity. We found that on average, the pattern routing
approach searches fewer edges than the maze router. We
formally summarize the complexities:

1. Given a net n = {(z1,y1), (z2,y2)} and a grid graph
G(V,E).

2. Let A be the edges on and within the bounding box of
n. A CE. [A] =2 |z1 — 22| [y1 — ya| + |21 — 22| + 11 — y2|
3. Let P be the edges on the bounding box of n. P C A.
|P| =2 (Jz1 — 22| + |y1 — 32])

4. Maze routing - O(|E|)

5. L-shaped pattern routing - O(|P|)

6. Z-shaped pattern routing - O(|A|)

Theorem 1: |P| < |A]| < |E]|.

Proof 1: The proof is trivial since, by definition, P C
ACE. O

The maze router ensures that the least cost route (ac-
cording to the cost function) is found. Pattern routing does
not give you this luxury. In fact, an L-shaped pattern rout-
ing could produce the second worst possible route. This
occurs if both the upper-L route and the lower-L route are
the two worst paths. Pattern routing will choose the better
of these two solutions, giving you a bad routing. In general
this is not the case, as our results show.

Another benefit of pattern routing lies in the predictabil-
ity of a pattern-routed net [17]. If you know that a net will
be pattern routed, you can quickly and accurately estimate
its route earlier in the design flow. For example, you know
that an L-shaped pattern route will take one of two routes.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 4

This allows higher level CAD tools, such as the placement
or logic synthesis engines, to estimate routings which will
lead to better congestion and area estimates. In order to
exploit predictability, the tools need placement informa-
tion. Many industrial logic synthesis tools are moving to-
wards layout-driven synthesis. Additionally, an academic
behavioral level synthesis tool has recently incorporated
placement information [24].

With emergence of deep sub-micron (DSM) fabrication
technology, interconnect has an increasingly dominant role.
Now circuit delay is determined by the gate resistance and
capacitance as well as the interconnect resistance and ca-
pacitance [25]. When optimizing for delay in a circuit, logic
synthesis tools look at the critical path. Usually these tools
only consider the gate delay, ignoring the interconnect de-
lay. If we could pattern route the gates on the critical path,
then we can more accurately estimate the interconnect re-
sistance and capacitance.

Finally, the number of vias on a pattern-routed net is
fixed. Since vias further increase the capacitance and re-
sistance, it is beneficial to keep them at a minimum. Also,
vias negatively affect the routability of the circuit [26].

C. Coupling

Bakoglu [27] shows that the wire-delay on a distributed
RC line contains a Rw - (Cs + C¢) time constant, where
Ry is the interconnect resistance, and Cg and C¢ are the
substrate and coupling capacitances.

Ao l-w gl t
RW'(CS+CC):Z_t(W 5

) (M)

where p is resistivity of the conductor, €, is the insulator di-
electric constant, and w, ¢ and h are the conductor’s width,
thickness and separation from the substrate, respectively.
The terms [and s are the coupled length and spacing of
the interconnect.
The coupling capacitance C'c between two wires ¢ and j
can also be represented as follows:
. i lij 1
CC('LJ) = J:l;stij] 1— w;;rwj (2)

ij

where w; and w; are the sizes of wires ¢ and j (w;, w; > 0),
fij is the unit length fringing capacitance between wires ¢
and j, [;; is the overlap length of wires ¢ and j and dist;;
is the distance from the center line of wire i to the center
of wire j (see Figure 4).

We are trying to minimize the coupling. During routing,
we can control l;;, dist;j, w; and w;. By avoiding overlap
between two wires, [;; can be minimized. In other words,
we do not want adjacent wires to run in parallel for long
distances. We assume that w;, wj, [;; are fixed; we do not
consider wire sizing and spacing in our algorithm. But,
this can be done as a post-processing step using a number
of techniques (see [28], [29] for a comprehensive survey and
tutorial).

There are two problems introduced by coupling, delay
deterioration and crosstalk. Delay deterioration refers to

a)

wirei with width (Wi)

wire j with width (Wj)
b) 1ij

j C bstrate 1

sul

dij Ccoupl ed

T Csubstrate T

Fig. 4. a) Physical coupling capacitance between two wires b) The
wires modeled by resistors and capacitors

the fact that the total capacitance seen by a gate is no
longer a constant value. The rising contribution of coupling
capacitance to total load capacitance makes the Miller ef-
fect evident. Delay deterioration occurs because the Miller
effect causes the capacitance to vary. For example, if two
coupled nets switch in opposite directions at the same time,
the capacitance, hence the delay, will increase.

Crosstalk is a type of noise? introduced by coupling be-
tween two adjacent wires. A change in voltage or current on
one of the wires may interfere with the signal on the other
wire. There are two unwanted effects of crosstalk. First,
the two wires form a mutual inductor. This inductive effect
must be considered as circuit frequencies move above 500
MHz [30], [31]. Inductive effects are not addressed in this
work. The second effect is associated with coupling capac-
itance. Coupling capacitance can cause a switching net to
induce noise onto a neighboring net possibly resulting in
an incorrect functional response.

Coupling between nets is not always detrimental. In [32],
Kirkpatrick and Sangiovanni-Vincentelli introduce the no-
tion of crosstalk constraint generation which uses the con-
cepts of analog and digital sensitivity and a physical cou-
pling term in order to reduce the constraints given to layout
synthesis. This allows us to remove false crosstalk con-
straints. For example, a net A may couple with net B.
But, net A could have a high tolerance for delay and noise.
Therefore, the A and B can couple without negative cir-
cuit performance. We want to remove these cases as they
unnecessarily over-constrain the problem.

2Noise is defined as an unwanted variation which makes the behav-
ior of a manufactured circuit deviate from the expected response.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 5

III. USING PATTERNS WHILE MAINTAINING
RourABILITY

In this section, we show the effect of pattern routing on
the quality of the routing solution. We show that you can
pattern route up to 80% of the nets with smallest bounding
boxes while incurring little or no loss of quality. Then, we
show how a set of nets that satisfies the y-density routing
problem (formally defined in Section III-C) can be pattern
routed without sacrificing the routing quality. This gives
us the ability to pattern route a subset of all the nets, even
if the nets have a large bounding box.

A. Benchmarks

To perform our experiments, we used five MCNC
standard-cell benchmark circuits [33]. The characteristics
of the circuits are shown in Table I. The circuits were
placed into global bins using the Dragon global and de-
tailed placement engine [22]. Some of the benchmarks (i.e.
priml and prim1.2) are repeated. Repeated benchmarks
differ in the number of global bins; they consist of the same
number of nets, cells and pins but may have a completely
different placement.

TABLE 1
BENCHMARK CIRCUIT INFORMATION

Data Num Num Num Global
file Cells | Nets Pins Bins
priml 833 1156 3303 8 X 16
primi.2 833 1156 3303 | 16 X 16
prim?2 3014 3671 12014 | 8 X 16
prim2.2 3014 3671 12014 | 32 X 32
avqgs 21584 | 30038 | 84081 | 30 X 80
avgs.2 21584 | 30038 | 84081 | 80 X 80
biomed 6417 7052 | 22253 | 20 X 40
biomed.2 6417 7052 | 22253 | 40 X 40
struct 1888 1920 5407 | 20 X 16

B. Pattern Routing Analysis

For our experimental results, we choose to use L-shaped
pattern routing over Z-shaped for a several reasons. First,
for two-terminal nets there are only two possible L-shaped
routes to consider. The number of Z-shaped routes grows
linearly with the bounding box size. Since we are aiming
towards predictable routes, L-shaped patterns reduce the
choices of routings. Secondly, we want the routing to exe-
cute quickly. The time to find the congestion of the routes
is O(|P|) whereas the Z-shaped routes is O(]4|). Theorem
3.1 states the |P| < |A|.

We comment on a few observations. Even though pure
maze routing has the greatest freedom in terms of find-
ing the least congested solution, the overall algorithm is
a heuristic therefore it’s not guaranteed to find the opti-
mal solution. The tradeoff between fast routing time and
reduced number of routings (better predictability) favors

L-shaped routing. Therefore, we will exclusively use L-
shaped routing for all of our pattern routing experiments.
Our experiments focused on determining which nets we
can pattern route while incurring little to no congestion
penalty. Our first heuristic (referred to as the Largest First
Pattern Route or LFPR heuristic) splits the multi-terminal
nets into two terminal nets and sorts them from largest
bounding box to smallest bounding box. Then, we pattern
routed the x% largest nets while maze routing the rest of
the nets. The pattern routed nets were not rerouted during
the rip and reroute phase. As shown in Table II, pattern
routing large nets gives unfavorable overflow results. If you
pattern route only the largest 5% of the nets, your overflow
increases more than two-fold over maze routing every net.
A similar trend occurs as you increase the pattern route
percentage. Pattern routing only 20% of the nets results
in an overflow over 4 times the 0% overflow. (Note, the 0%
pattern route is exactly equivalent to maze routing every
net; the rip and reroute stage will consider every net.)

TABLE II
CONGESTION DATA FOR LARGEST-FIRST PATTERN ROUTE HEURISTIC.
0% IS THE BASE CASE CONGESTION. THE REMAINING RESULTS TAKE
THE CONGESTION AND SUBTRACT THE BASE CASE CONGESTION. SO 40
(As IN PRIM1 AT 5%) MEANS A TOTAL CONGESTION OF 165+40=205

| Datafile | 0% | 5% | 10%] 15% [20%

priml 165 40 64 82 91
primil.2 121 46 79 88 99
prim2 112 26 71 101 190
prim2.2 35 -3 44 69 142
avgs 63 | 224 384 414 464
avgs.2 18 | 394 575 670 730
biomed 25 43 269 366 386
biomed.2 47 -5 238 363 408
struct 74 | 120 182 228 252
total 660 | 885 | 1906 | 2381 | 2762

The Smallest First Pattern Route (SFPR) heuristic gave
more encouraging results. This heuristic is similar to LFPR
except here, we sort the two terminal nets from smallest to
largest. Thus, an SFPR of 5% will pattern route the small-
est 5% of the nets. Referring to Table III, we can see that
we can pattern route up to 80% of the nets with only a small
increase in overflow. In fact, pattern routing the small nets
actually leads to better overflow results! These results add
validity to our previous statement that pattern routing can
lead the maze router to better overflow solution.

This SFPR heuristic results may seem surprising. Look-
ing at Table IV, you can see the percentage of the total
route length that the smallest x% of the nets comprises.
Even when you pattern route the smallest 90% of the nets,
the route length of these small nets is, on average, only
58.32% of the total route length. This means that the re-
maining 10% of the nets that are maze routed are much
longer than the short nets. This allows the maze router
enough freedom to find a good routing, even when 90% of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 6

TABLE III
CONGESTION DATA FOR SMALLEST-FIRST PATTERN ROUTE
HEURISTIC. 0% IS THE BASE CASE CONGESTION. THE REMAINING
RESULTS TAKE THE CONGESTION AND SUBTRACT THE BASE CASE
CONGESTION. A NEGATIVE RESULT MEANS THAT THE CURRENT
CONGESTION IS BETTER THAN THE BASE CONGESTION.

Datafile || 0% | 50% | 60% | 70% | 80% | 90%

priml 165 -4 0 -2 -3 6
priml.2 121 0 -3 11 9 5
prim2 112 1 1 -1 4 28

prim2.2 35 -1 -4 -5 -4 | -14

avgs 63 | -14 -5 6 15 27
avgs.2 18 7 -3 12 0 6
biomed 25 0 -2 -1 0 5

biomed.?2 a7 0 -3 -2 4 9
struct T4 -3 6 13 32 52
total 660 | -14 | -13 31 57 | 124

the nets are fixed. This gives some insight as to why the
LFPR heuristic does not work. If you fix the long nets to
a pattern, you greatly reduce the routing freedom that the
maze router needs to produce a good route. Since the small
nets are close in physical proximity, there are limited num-
ber of routes that these nets could take. Therefore, the
maze router may find a less congested solution, but due
to the small number of feasible routes, the pattern route
solution will not significantly vary from the best (i.e. maze-
routed) solution. Additionally, small nets are often entirely
located within a congested region. In this case, any short-
est length path will be essentially equivalent in terms of
overflow minimization. Since there is no quality improve-
ment using maze routing, the pattern route is preferable
due to it’s faster run time and predictability.

TABLE IV
PERCENTAGE OF ROUTE LENGTH USED BY SFPR NETS. FOR
EXAMPLE, WHEN YOU PATTERN ROUTE THE 10% SMALLEST NETS IN
PRIM1, THE ROUTE LENGTH OF THOSE NETS IS ONLY 5.75% OF THE
TOTAL ROUTE LENGTH

Datafile [] 10% | 20% [30% | 50% | 80% [90% |
priml [5.8 [11.5 [17.3 [28.5 | 50.7 | 64.1
priml.2 || 5.6 | 11.2 [16.9 | 28.1 | 54.7 | 69.4
prim2 || 6.3 [12.6 [19.0 | 31.6 | 52.2 | 65.2
prim2.2 |[3.7 | 7.4 [11.1[18.5 | 41.0 | 54.7
avgs || 2.8 | 5.5| 8.3 [13.9]32.8]49.1
avgs.2 || 3.6 | 7.2 |10.9 [18.1 | 36.6 | 50.5
biomed | 3.6 7.3 [10.9 | 18.1 | 40.8 | 54.8
biomed.2 || 2.9 | 6.0 | 9.0 | 14.9 [36.3 | 45.0
struct || 3.3 | 6.6 | 9.9 |21.952.3]67.1
avg 42| 84126215 44.1 | 58.3

We have shown that you can pattern route up to 80%
of the nets with small bounding boxes. Unfortunately, you
can not do pattern routing on nets with large bounding

boxes using the LFPR heuristic without suffering a huge
loss in the quality of solution. Now, we will show that
any set of y-density nets can be pattern routed without
degrading the solution quality. This allows us to pattern
route the nets with large bounding boxes.

C. v-density Routing

The ~-density (vy-d) routing problem tries to find a 1-
bend routing of two-terminal nets such that the routing
demand of every bin edge is less than . Let us define the
~-density routing problem formally:

1. Given a set of two-terminal nets N, a grid graph G(V,E)
and an integer 7.

2. Does there exist a 1-bend routing for every net i € N
such that d. <~ for every edge e € E?

In Table V, we show that pattern routing on a set of
1-d or 2-d routable nets does not affect the overall routing
solution quality. Since we are trying to show that nets
with large bounding boxes can be pattern routed, we used
a heuristic that focused on finding such nets. Like the
LFPR heuristic, we sort the nets from largest to smallest
bounding box. Then, we assign an upper or lower routing
to the nets so that they can be -d routed. Therefore, some
of the largest nets are always in the set of y-d nets. Table V
also shows the overflow results when we pattern route a set
of 1-d, 2-d, 3-d, 4-d and 5-d nets. Notice that some circuits
allow up to 5-d routing without loss of quality. This highly
depends on the number of nets and number of bins in the
benchmark. For example, avqgs is a large benchmark and
the nets in the 3-d routing only account for 17.7% of the
total routing. Compare this to prim1.2 where the nets of
the 3-d routing are 35.5% of the total routing. Notice that
1-d routing doesn’t hurt the solution quality for all but
three benchmark (here avgs seems to be an anomaly since
the 2-d, 3-d and 4-d routings show no degradation of the
overall routing quality). We believe that as the capacity of
the edges grows larger, the allowable density (value of)
can increase while maintaining similar routability.

TABLE V
OVERFLOW INFORMATION FOR PATTERN ROUTING A SET OF 7¥Y-D NETS.
7y IS VARIED FROM 1 TO 5. THE BASE CASE IS THE TOTAL OVERFLOW
WITH PURE MAZE ROUTING. THE NEXT COLUMNS ARE CURRENT
OVERFLOW - BASE CASE. A LOWER VALUE MEANS BETTER OVERFLOW
HENCE A BETTER SOLUTION.

| Datafile || base | 1-d [2-d | 3-d | 4-d [5-d |

priml 165 -2 5 -5 =7 =7
priml.2 121 0 6 6 3 3
prim2 112 0 -4 4 -3 2
prim2.2 35 8 -2 0 -6 2
avgs 63 10 | -16 -3 -7 -6
avgs.2 18 | -13 -2 6 -4 22
biomed 25 -2 -1 4 -5 1
biomed.2 47 -6 2 -4 11 6
struct 74 6 10 10 10 10
total 660 1 -2 18 -8 | 33

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 7

IV. UsING PATTERNS TO REDUCE COUPLING

In the previous section, we showed that it is possible to
use L-shaped patterns to routes some nets without affect-
ing the quality of the routing solution. By pattern rout-
ing the nets, we reduce their interconnect delay (since the
wirelength is minimal). But, coupling is also an important
component of delay that must be considered. Therefore,
we need methods to reduce the coupling between nets. In
this section, we present some theoretical aspects to reduce
coupling between nets and introduce some algorithms to
implement this theory. The ideas that we introduce pro-
vide a framework from which more complex algorithms and
methods can be derived. We discuss some possible deriva-
tions to both the global and detailed routing problems.

A. Coupling-Free Routing

Every route consists of horizontal and/or vertical line
segments. We say two wires couple if the line segments
forming them are closer than d units for more than [units.
Two line segments intersect if they have at least one point
in common and overlap if they have more than one point
in common.

For a given set of nets S = {n; = {(x14,y14), (T2i,y2i) } |
1 <4 < S|}, a (single bend) layout of S is coupling-free if
there are no two routes that run in parallel at a distance
equal to or closer than s units for more than [continu-
ous units. Examples of coupled and non-coupled layouts
are given in Figure 6. Given a set of two-terminal nets,
the problem of obtaining a coupling-free routing of nets is
called the coupling-free routing problem (CFR problem). A
more complex formulation to decide coupling can be sub-
stituted in lieu of our coupling-free definition. For exam-
ple, we can use a complex coupling equation e.g., Equa-
tion 2, and define two nets as coupling-free if they have a
coupling capacitance less than some threshold value. The
theory and equations we present will hold for any pairwise
definition of coupling®. Additionally, it is straightforward
to extend the formulation to consider the cumulative cou-
pling effect caused by multiple neighboring nets. Consider
the situation in Figure 5. When considered separately, the
lower-L routing of two nets A and B do not couple with
upper-L routing of Net C. But, when both A and B are
routed in an lower-L the additive effect of the coupling
causes a coupling violation for the upper-L routing of C.
We will explain how to handle such cases. Unfortunately,
by considering these cases, the complexity of the problem
substantially increases*.

We consider routing only a subset of nets for a few rea-
sons. First, by routing a subset of the critical nets as pat-
terns, we guarantee that the nets have the minimum wire-
length, which reduces the interconnect delay of the nets so
that the timing constraints can be met. The remaining crit-
ical nets can be routed using other more general coupling

3Note: the runtime may increase due to increased complexity of
coupling calculation.

4We go from solving 2-SAT to solving the general SAT problem,
which is NP-Complete.

aware routing techniques, e.g., maze routing that consid-
ers coupling and timing as in [34]. We are presenting a
fundamental algorithm with polynomial runtime and basic
theoretical properties. Additional heuristics can easily be
added onto this algorithm to increase its application. We
believe that a solid framework with fundamental proper-
ties is needed for every heuristic [35]; this paper presents a
basic coupling algorithm to which heuristic extensions can
be added. Now, we discuss some possible applications and
extensions that may be added to our base algorithm.

Net A Net B
O O
O
Net C
Fig. 5. The combination of two routings cause a non-coupling-free
layout

Non-coupled layout

Coupled layout

Fig. 6. a) Coupling-free routings b) Non-coupling-free routings

As VLSI fabrication technology progresses, more routing
layers become available. Therefore, we can afford to set
aside preferred layers for critical nets. A preferred layer
usually has a lower wiring resistance due to position of
the layer (lower layers have lower resistance) and width of
the wires on that layer (large wire widths have lower resis-
tance). Power, ground and clock nets are already routed on
preferred layers. We propose using the preferred layers for
routing critical nets. Critical nets are allotted very little
slack in order to meet timing constraints. Since intercon-
nect is becoming a dominate factor in delay of a circuit and
coupling plays are large role in interconnect delay, these
nets should routed in order to minimize coupling and wire-
length. Therefore, we can use notion of coupling-free rout-
ing to provide a detailed routing for the critical nets. Since
the nets are routed with at most one bend, they have min-
imum wirelength. In addition, coupling-free routing mini-
mizes the coupling of the routed nets. Combining these two
factors, we have a routing of the critical nets with minimal
interconnect delay. After we have a coupling-free layout,
non-critical nets can be routed, using any type of rout-
ing method, e.g., maze routing, on the preferred layers to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 8

maximize routing resources. Additionally, we can consider
all minimum length routes, e.g. z-shapes. It is possible
to extend our algorithms to consider z-shapes, though this
extension creates a dramatic increase in complexity®.

Many single-layer routing algorithms have been sug-
gested. Liao et. al [36] propose density routing or maze
routing to perform this task. A more recent paper by Lin
and Ro [37] improves on the work by Liao et. al. They
employ a two step process. First, they find a planar set of
single-bend nets without considering coupling. Then, they
use a method based on rubber-band equivalent to find a
routing for the remaining nets. CFR can easily be incor-
porated into the first stage of Lin and Ro’s algorithm to
obtain a planar layout that is coupling-free.

Generally, coupling at the global routing stage is hard
to determine. A global route is not exact. Therefore, a
net could possibly couple with every net that is routed in
the same global bin. But, the net will only couple with
it’s immediate neighbors®. Ultimately, track assignment
(which can be done at the global or detailed routing stage)
determines the coupling. Additionally, the detailed router
will often make local changes which can affect the coupling
of nets [38]. But, the detailed router can only make local
changes, therefore considering coupling at the global stage,
even if it isn’t exact, is beneficial as it can provide a way
to make large scale changes to a layout that otherwise can
not be done at the detailed level. If we have coupling-
free layout at the global stage, then the layout will remain
coupling-free at the detailed stage. Therefore, we can use
CFR at the global routing stage to reduce coupling for the
detailed router. This is similar to wire planning; we are
trying to find a general area for the net’s routing. Then,
the detailed router can consider more exact coupling while
making track changes, locally permuting the wiring (adding
additional bends) and changing the spacing between wires
as in [39]. Additionally, we could “freeze” the routings at
the detailed level to insure that they remain coupling-free.

Next, we propose an exact algorithm for determining
if a set of nets can be a coupling-free routing. Then,
we describe a couple heuristics for solving the mazimum
coupling-free layout problem — the maximum number of
nets that can be laid out in a coupling-free fashion.

B. The Coupling-Free Routing Decision Problem

The Coupling-Free Routing Decision Problem
(CFRDP): Given a set of two-terminal nets .S, is there
a single-bend routing for every net in S such that no two
routings couple? That is, does there exists no two routes
that run in parallel at a distance equal to or closer than s
units for more than [continuous units?

We solve the coupling-free routing decision problem by
transforming it into an instance of the 2-satisfiability (2-

50Once again, the formulation goes from 2-SAT to the general SAT
problem

6Theoretically, a net couples with every net on the chip. But, the
neighboring nets act as a shield which makes the coupling capacitance
seen by the other nets minimal.

SAT) problem.

The 2-satisfiability problem: Given a set U of vari-
ables, a collection C' of clauses such that each clause ¢ € C
has |¢| = 2. Is there a satisfying truth assignment for U?

The 2-SAT problem can be solved in O(|U|) time [40].

In order to transform an instance of CFR decision prob-
lem to 2-SAT, we assign a boolean variable to each net.
Without loss of generality, we say if net A has an upper-L
route if its variable is true (z4) and a lower-L route if its
variable is false (Z2). A routing of a net may force a routing
of another net. For example, assume net A is routed in an
upper-L. If the upper-L routing of A (z4) couples with the
lower-L routing of B (Zg), then net B must be routed as
an upper-L to avoid coupling. Hence x4 forces xg. With
respect to two nets A and B, there are 10 possible forcing
interactions between these nets.

1. A and B are independent. Either layout for each net
does not directly influence the layout for the other.

2. A and B can not be couple-free routed.

3. The lower-L routing for A forces the upper-L routing for
B. However, the upper-L routing for A does not influence
the routing of B. The next three cases are similar.

. The lower-L routing of A forces the lower-L routing of

4
B.
5. The upper-L routing of A forces the upper-L routing of
B.

6. The upper-L routing of A forces the lower-L routing of
B.

7. The lower-L routing of A forces a lower-L routing of B.
Also, the upper-L routing of A forces an upper-L routing
of B. The next three cases are similar to this case.

8. Lower-L of A forces lower-L of B; Upper-L of A forces
lower-L of B.

9. Lower-L of A forces upper-L of B; Upper-L of A forces
upper-L of B.

10. Lower-L of A forces upper-L of B; Upper-L of A forces

lower-L of B.
Examples of all of these cases are given in Figure 7.

v S
I L
fffff NN !
2 5 o
r ®--)
7 & 3, 8 &=—=¢ 9) 10
— T] g.
]

Fig. 7. Examples of the 10 interactions for the coupling-free routing
problem. The solid points and lines correspond to net A. The dotted
lines and circles correspond to the the bounding box and terminals
of net B, respectively.

The algorithm proceeds as follows:
Stage 1: Consider the m interactions where S is
the set of nets under consideration. If two nets can not
be couple-free routed (corresponding to interaction 2), the
algorithm terminates and returns FALSE. For each pair of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 9

nets, i and j, we determine the interaction between n; and
n;. Using this information, we can determine which wires
are forced.

Stage 2: The constraint information must be encoded into
boolean expression with these properties:

1. Tt is in conjunctive normal form (CNF) (see [41])

2. It contains at most two literals per clause

3. It is satisfiable if and only if the corresponding wire set
can be laid out (without coupling) in a single bend fashion

Each of the 10 interactions can be encapsulated as a binary
relation.

1. A and B are independent. No encoding

2. A and B can not be couple-free routed. No encoding,
the algorithm will terminate and return FALSE if this case
is found.

The lower-L routing for A forces the upper-L routing for
. Encoded as (z4 V zp)

The lower-L routing of A forces the lower-L routing of
. Encoded as (r4 V TR)

The upper-L routing of A forces the upper-L routing of
. Encoded as (T V zB)

The upper-L routing of A forces the lower-L routing of
. Encoded as (T4 V TB)

. The lower-L routing of A forces a lower-L routing of B.
Also the upper-L routing of A forces an upper-L routing
of B. Encoded as (x4 VTE) A (Ta V zB)

8. Lower-L of A forces lower-L of B; Upper-L of A forces
lower-L of B. Encoded as (x4 VZE) A (Ta VTB)
9. Lower-L of A forces upper-L of B; Upper-L of A forces
upper-L of B. Encoded as (x4 V) A (Ta V zB)
10. Lower-L of A forces upper-L of B; Upper-L of A forces
lower-L of B. Encoded as (x4 Vzp) A (Ta VTB)

For each forced wire A, if the wire is forced to an upper-
L route, this is encoded as x 4; if the wire is forced to a
lower-L route, this is encoded as T 4.

Every net n is given a boolean variable. Therefore, |U| =

NWeoe WO W W

|S|. The entire set of w interaction relations are
encoded as specified. Each of these relations becomes a
clause in the 2-SAT instance.

Lemma 1: |C| = O(|S]*)

Proof 1: Since there are at most two relations per in-
teractions, |C| < |S|(]S]—1). O

The 2-SAT instance is obtained by letting each net n
be a boolean variable € U. The set of clauses C are the
encoded net interactions.

Theorem 2: The coupling-free routing decision prob-
lem can be solved in O(|S|?) time.

Proof 2: The CFRDP o 2-SAT in O(|S|?) time. An
instance of 2-SAT can be solved in linear time. Therefore,
we can solve the coupling-free routing decision problem in
O(|S|?) time. O

If we want to consider the cumulative effect of coupling
between a set of nets, we can add additional clauses to the
2-SAT formulation we have just described. First, we must
identify the set of nets that cumulatively cause a coupling
violation as in Figure 5. For each case, we add an addi-
tional clauses and variables. The clauses added will have a

cardinality greater than 2 i.e. we will no longer have a 2-
SAT formulation. For the example in Figure 5, we add two
additional clauses ¢; and ¢; and one additional variable zp
as follows: ¢y = (xa VapVap),ca = (Tp VZc). The new
variable xzp indicates if both nets A and B are routed in a
lower-L fashion. If that’s the case, clause ¢y forces net C
to be routed as a lower-L to avoid the joint coupling effect.
The additional clauses and variables for other cases can be
derived in a similar manner.

C. Implication Graph

In this section, we show how an instance of the CFR
problem is transformable into an implication graph. Then,
we define some properties associated with the implication
graph. We can utilize the properties of the implication
graph to solve the CFR problem.

D. 2-SAT x Implication Graph

First, we show how an instance of 2-SAT is transformable
into an implication graph. In Section IV, we show how to
transform an instance of the CFR problem to an instance
of 2-SAT. Since CFR o 2-SAT o implication graph, CFR
o implication graph. The multi-step transformation allows
us to elegantly prove many properties associated with the
implication graph. But, we will also show how to directly
transform the CFR problem to an implication graph.

Let C = Ci(z; Vy;) be an instance of 2-SAT, where z;, y;
are literals over ui,...,un, € U. We want to know when
SAT(C) is true. Define a digraph G = (V,E) by letting
V be the set of literals and (x,y) € E if and only if ZV y
is one of the clauses. Recall that T V y is equivalent to
x = y (implication). We can assume there is no clause of
the form z = =z since that is always true. Finally, note
that £ = -+ = y implies z = y.

Theorem 3: If there is a cycle in G containing both x
and T for all x € V, C is not SAT.

Proof 3: The reason is that if x = Z, then x must be
false. But since there is a cycle T = x which means x must
be true. We have a contradiction. Therefore, C is SAT iff
G does not contain any cycles including x and T for any
literal x. O

We call the digraph G an implication graph since it mod-
els the implications between the literals.

E. Coupling-Free Routing < Implication Graph

Now we show how the CFR problem is directly trans-
formable into an implication graph.

Given a set of nets N. The implication graph is a di-
rected graph (digraph) Gnmp(V, E). Let every vertexv € V
correspond an upper-L routing and lower-L routing of each
net n € R. Therefore, |V| = 2 x |N|. Then, (z,y) € E if
and only if z forces y or, equivalently, x = y. We call this
an implication.

Theorem 4: If there is an implication z4 = zpg, there
is contrapositive implication Tg = T 4.

Proof 4: Since x4 = xp, the upper-L routing of x4
must couple the lower-L routing of xp. Therefore, a lower-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 10

L routing of net B (zg) will force a lower-L routing of net
A (zzx). O

Theorem 5: Given a set of nets IV, the construction
of the corresponding implication graph takes running time
O(INP?).

Proof 5: First, we must determine the forcing interac-
tions between every net. There are W possible in-
teractions. Determining whether coupling exist in each in-
teraction take O(1) time. Therefore, it takes O(|N|?) time
to determine the interactions. The number of vertices in
the implication graph is exactly 2| N|. The maximum num-
ber of edges is (2\é\r|) = O(|N|*). The forcing interactions
determine whether or not an edge exist. This requires a
simple O(1) lookup into an interaction table. Adding up
the complexities gives us the runtime of O(|N|?). O

Lemma 2: Consider a set of nets N and its correspond-
ing implication graph G. If there is a cycle in G containing
z; and T; where i € N, then the nets N are not couple-free
routable.

Proof 2: This is a direct consequence of Theorem 4.1.
This should not be surprising since we can transform the
CFR problem into 2-SAT. O

Lemma 3: Given a set of nets N, there is an O(|V||E|)
algorithm to determine if these nets are coupling-free
routable.

Proof 3: Theorem 5 says that an implication graph is
created in O(|N|?) time. According to Lemma 2, if we find
a cycle containing z; and T; the nets N are not coupling-free
routable. We can look for these cycles by doing a depth-
first search from every vertex. If there is a path from z;
to T; and a path from Z; to z;, there is a cycle containing
x; and T;. We can do this for every vertex in O(|V||E|).
O(|N|?) < O(JV]||E]). Therefore, we can determine if the
nets are coupling-free routable in O(|V||E]). O

For each implication case, up to two clauses are added
to 2-SAT in the transformation. These clauses correspond
directly to edges in the implication digraph. Figure 8 shows
a simple example for three nets. Focusing on nets A and
B, we see that an upper-L routing of net A forces a lower-
L routing for net B (corresponding to case 6). Therefore,
we add the clause (Ta V Tg) to the 2-SAT instance. In
the implication graph, we add an edge from vertex z4 to
vertex Tp. Notice that an upper-L routing of net B forces
a lower-L routing of net A. This corresponds to zp = Ta
which is the contrapositive of the previous statement. The
other cases are similar. Notice that there are no cycles in
the implication graph in Figure 8 (c). This means that
these three nets can be coupling-free routed.

F. Properties
F.1 Direct Forcing

Assume that we have implication graph Gimp(V, E)
which is constructed from an instance of a CFR problem
containing the set of nets N. Remember that every vertex
in the implication graph corresponds to a routing of a net
€ N. Therefore, there are two vertices per net, one ver-
tex for the upper-L routing and one vertex for the lower-L

a3

[y
N
w
)

1) If Xathen Xc
2) If Xathen Xb
B N 3) If Xb then Xc
bl O¢ : 4) If Xb then Xa

5) If Xc then Xb
6) If Xcthen Xa

| peal ey

2

3 ,,J,,,,bc

W’AAA‘AAA:

Net A ={ (2,1), (1.3}
Net B ={ (1,2), (3,1) }
Net C={ (2,2), (3,3) }

@0’@
&

Fig. 8. a) The layout of nets A, B and C. b) The implications of
the nets. c¢) The implication graph. z; indicates an upper-L routing
of net i. The implication graph does not have any cycles containing
z; and z;, i € A,B,C, therefore the nets are coupling-free routable.

routing. We define the routing corresponding to vertex v
as route(v). Let u,v € V be two unique vertices. If there
is a directed edge (u,v), then the route(u) forces route(v).
This is a direct consequence of the way that the implication
graph is constructed.

The outdegree of vertex v in a digraph is the number
of vertices adjacent to v. In an implication graph, the
outdegree of v corresponds to the number of routings that
route(v) forces. We call this a direct forcing.

F.2 Indirect Forcing

A routing may force a net even if it isn’t a direct forc-
ing. Referring to Figure 9, Route 1 directly forces only one
route, Route 2. But, Route 2 forces Route 3 which forces
Route 4. So, if we choose to route the net A in an upper-
L manner (Route 1), then nets B, C and D must be laid
out as Routes 2, 3 and 4, respectively if we want to route
every net. Route 1 forces three routes even though it only
directly forces Route 2. We say that Route 1 indirectly
forces Routes 2, 3 and 4.

b)

Fig. 9. a) The layout of the nets b) The implication graph for routes
1,2,3 and 4.

Given an implication graph Gimp(V,E) and vertices
u,v € V. A v indirectly forces u if there is a path from
u to v. The number of total forcings (direct and indirect)
of v is calculated by determining number of vertices that

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 11

are connected to v. A slightly modified version of depth-
first search can be used to determine the number of indirect
forcing in time O(|V]).

G. Mazimum Coupling-Free Layout

The Maximum Coupling-Free Layout Problem
(MAX-CFL): Given a set of two-terminal nets S and a
positive integer K < |S|. Is there a single-bend routing for
at least K nets in S such that no two routings couple?

Theorem 6: The Maximum Coupling-Free Layout
Problem for planar layouts is NP-Complete.

Proof 6: We make a transformation from the MAXWIRE

problem. The MAXWIRE problem is defined as finding a
subset of nets T' where T' C S and |T'| > K such that all
the wires in 7' can be laid out in a single bend fashion on
one layer. The MAXWIRE problem is NP-Complete [42].
By setting the coupling variables d = oo and [= 0, we
can directly transform any instance of MAXWIRE to an
instance of MAX-CFL. This essentially removes any cou-
pling restrictions from the problem. O

MAX-CFL can be extended to consider criticality. The
criticality of a net can be defined in numerous ways. Most
often, a nets criticality is determined by the amount of
timing slack that is available to that net. Also, the length
of a net can be used. If we consider criticality, MAX-CFL
tries to route a subset of nets with maximum criticality.
A subset with maximum criticality will not always be the
subset of maximum size.

Additional routing restrictions to the MAX-CFL prob-
lem are often needed. For example, we can use MAX-CFL
to find a subset of planar nets. In this case, we must slightly
modify the algorithms to consider intersection between the
nets. Another common routing problem allows two layers
to route the nets — one for vertical segments, one for hor-
izontal segments. In this case, we must consider overlap
between the nets. The algorithms that we present next as-
sume that there are no restrictions. With the proper simple
modifications, they can consider such restrictions.

Now, we look at a few heuristics to solve the MAX-CFL
problem.

G.1 Greedy Algorithm

The first and most obvious algorithm that we consider
is the greedy algorithm. This algorithm chooses the most
critical net and, if possible, routes the net in an upper-L or
lower-L fashion. If both the upper-L and lower-L routings
couple with net that has already been laid out, the current
net is not laid out; the most critical remaining net is then
considered. The algorithm iterates until all nets have been
considered.

Algorithm 1: Maximum Coupling-Free Layout Routing Greedy
Heuristic

Given a set of nets NV

Sort N by criticality (largest — smallest)

for each net n € N

do route n in upper-L or lower-L, if possible

Theorem 7: The Maximum Coupling-Free Routing
Greedy Heuristic takes O(|N|log |N]) time.

Proof 7: The sorting step takes O(|N|log|N|) time.
The “for” loop will complete after |N| iterations. Hence
an O(|N|log|N|) run time for the algorithm. O

The greedy heuristic is a simple and fast method of find-
ing a maximum coupling-free layout solution.

Of course, there are many shortcomings to this algo-
rithm. First, the greedy nature of the algorithm may cause
a critical net that couples with many other less critical nets
to be routed. By not routing a critical net, you may be able
to route a large number of other less-critical nets which can
lead to a better overall solution. A simple example of this
situation is shown in Figure 10. The greedy algorithm will
place net A first. Then, it will place net B in an upper-L
routing because it is the most critical unrouted net. Now,
neither net C or net D can be placed since they both couple
with net B. The best solution in terms of number of nets
routed and total criticality routed is routing nets A, C and
D.

a b
) D?C) p{¢
10 R 01 0
B } BO- -
0—0 80 ! 0—0 80
A A ! A A
éC C

Fig. 10. An unrouted net is displayed as a dotted line; a routed net
has a solid line. Assume that criticality of net A = 100; B = 50;
C = D = 40. a) Greedy algorithm solution. 2 nets are placed with
a total criticality of 150. b) Best solution. 3 nets are placed with a
total criticality of 180.

G.2 Implication Algorithm

We showed how to generate an implication graph from an
instance of the coupling-free routing problem in Section I'V-
C. Now, we use some of the properties of the implication
graph to create a heuristic to solve the MAX-CFL problem.

The implication algorithm tries to eliminate the bad de-
cisions made by the greedy algorithm. It starts by deter-
mining the forcing interactions between every pair of nets.
Then, it finds the nets that have a truly independent rout-
ing (either upper-L or lower-L) and routes them in the ap-
propriate manner. An independent routing is equivalent to
a route that forces no other nets (corresponding to interac-
tions 1, 3-6 from Figure 7). If a net only forces other nets
when it is routed in a lower-L (upper-L) will be routed in
an upper-L (lower-L). The upper-L situations corresponds
to interactions 3 and 5 while the lower-L situations corre-
sponds to interactions 4 and 6. Since these routings are
independent, routing these nets can not cause a situation
as described in Figure 10. The remaining nets are routed
according to a function of number of nets that they directly
and indirectly force. The net with lowest value according to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 12

that function is routed first, as long it doesn’t couple with
any net that is already routed. This process continues until
all of the nets have been considered.

Theorem 8: The running time of the implication algo-
rithm is O(|N|?).

Proof 8: According to Theorem 4.3, the construction
of the implication graph takes O(]N|?) time. There are
O(|N) vertices in the implication graph, therefore the first
“for” loop has O(|N|) iterations. As stated in Theorem
5.4, the Forcings algorithm has a run time of O(|V| + |E|).
Note that O(|V]) = O(|N|) and O(|E|) = O(|N|?). There-
fore, the total run time of the “for” loop is O(|N|?). Sort-
ing takes O(|N|log |N|) time. The final “for” loop O(|N|)
time. Therefore, the algorithm requires O(|N|?) time. O.

Algorithm 2: Maximum Coupling-Free Layout Routing Implication
Heuristic
Given a set of nets NV
Create an implication graph G(V, E)
R+« 0
for each vertex v € V
do r.net + route(v)
r.num_forcing < Forcings(route(v))

R+~ RUT
Sort R by function(direct_forcings,indirect_forcing) (smallest —
largest)

for each routing r € R
do if r.net is unrouted and r is routable
then route r

G.3 Maximum 2-Satisfiability Algorithm

In Section IV-B, we showed how to transform the
coupling-free routing problem into an instance of 2-SAT.
In this section, we show how one can use the well-known
problem of Maximum 2-Satisfiability (MAX-2SAT) to solve
MAX-CFL.

Given a set of boolean variables, U, a collection of clauses
C such that each clause ¢ € C has |c¢|] = 2 and an inte-
ger K < |U|, the Maximum 2-Satisfiability (MAX-2SAT)
problem is defined as finding a truth assignment for U such
that at least K clauses € C are satisfied. MAX-2SAT is
NP-complete [41].

It seems that solving the MAX-2SAT problem on a trans-
formed 2-SAT instance of CFR would be equivalent to solv-
ing MAX-CFL. Yet there are some subtle differences be-
tween them. First, the objective of MAX-2SAT maximizes
the number of satisfied clauses by finding an appropriate
truth assignment to the boolean variables. But, in MAX-
CFL, we wish to maximize the number of routed nets; this
means that we wish to minimize the number of variables in
unsatisfied clauses of the equivalent MAX-2SAT instance.
These are two different objective functions.

Remember that each variable corresponds to the routing
of exactly one net. If a clause is unsatisfied, then the value
of the two variables in that clause are not valid. For ex-
ample, assume that we have two nets, A and B that have
an coupling interaction specified by the clause (z4 V zg)”.
If that clause is unsatisfied, it implies that z4 and zp are

"This correspond to the lower-L routing for A forcing the upper-L
routing for B. See Section IV-B, interaction 3.

both false i.e. both nets A and B are routed in a lower-
L pattern which causes coupling between the two nets.
Therefore, we can not route either net A or net B for and
still keep a coupling-free routing.

We may have a large number of unsatisfied clauses, hence
we must eliminate at least one net for each unsatisfied
clause. Of course, eliminating the routing of one net corre-
sponds to removing all the forcing interactions — therefore
all the clauses where that variable exists — between that
net and every other net. Therefore, the real problem be-
comes finding a maximum set of nets such that they are
coupling-free, i.e. their 2-SAT instance is completely satis-
fied. This in itself is another optimization problem.

Despite of these differences, a correlation between the
number satisfied clauses in the MAX-2SAT instance and
the number of coupling-free routed nets exists. Therefore,
we can still use a MAX-2SAT algorithm to solve the MAX-
CFL problem as long as we take into account the differ-
ences. We do this by determining the number of variables
in the unsatisfied clauses and removing the routing of the
nets that correspond to those variables. This yields lower
bound for the MAX-CFL problem, as it is possible to re-
move only a subset of these nets and still maintain a valid
solution.

G.4 Evaluation

To perform our experiments, we used five MCNC
standard-cell benchmark circuits and five benchmarks from
the ISPD98 benchmark suite [43] (ibm01 - 05). The cir-
cuits were placed into using the Dragon global and detailed
placement engine [22].

Our experiments focus on reducing the added delay
caused by coupling. Long nets (in terms of wirelength)
have the greatest opportunity for coupling and have the
largest amount of interconnect delay. Therefore, we look
at the longest nets from each of these circuits. We attempt
to find a coupling-free 1-d routing for the set of nets since
we showed in the previous section that a set of 1-d nets will
not affect the overall routability of the circuit.

First, we investigate the sensitivity of the coupling
threshold. Figure 11 shows the number of constraints when
we vary the coupling length while the coupling width re-
mains at 1 unit. Figure 12 shows a similar figure when
the coupling width is 2 units. Recall that two nets have a
coupling interaction iff they have line segments that are at
a distance of the coupling width or less and run in paral-
lel to another for more than the coupling length. We use
the ISPD98 benchmarks for comparison since they roughly
have the same grid size. Furthermore, we consider the case
when there are 100 nets.

We expect two general trends. First, the number of
constraints should monotonically increase as the coupling
length decreases. Second, the number of constraints should
monotonically decrease as the coupling width increases.
The rate of increase/decrease is the relevant data. It is
interesting to note that the difference in the number of
constraints between the two charts differ significantly when
the coupling length is small (e.g. 10, 20), yet the difference

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 13

is minimal when the coupling length is large (e.g. 40, 45).
As the coupling length decreases, the benchmarks tend to
show an exponential decrease in the number of constraints.

2500

2000 -

=y

a

o

o
!

1000 ~

constraints

500 -

1 2 3 4 5
benchmark name

Fig. 11. The number of coupling constraints over the ISPD98 bench-
mark files. The coupling width over all the benchmarks is 1 unit. The
coupling length varies from 5 - 45 units according to the legend.

3500
3000
2500 -
2000 -
1500 ~
1000 ~

500 -

constraints

1 2 3 4 5

benchmark name

Fig. 12. The number of coupling constraints over the ISPD98 bench-
mark files. The coupling width over all the benchmarks is 2 unit. The
coupling length varies from 5 - 45 units according to the legend.

We compare the greedy algorithm, implication and
MAX-2SAT algorithms in terms of number of nets routed
and criticality of the nets that are routed. Net critical-
ity is normally defined at the logic synthesis stage and is a
function of the amount of slack available on a net. Unfortu-
nately, the benchmarks do not include timing information.
Hence, we need another measure of criticality. It has been
shown that the delay for a wire of length [increases at the
rate of O(I?) without wire sizing, O(Iv/1) with optimal wire
sizing and linearly with proper buffer insertion [44]. We did
experiments using linear (1), l-root-1 (1v/1), and quadratic
(1) functions. Of course, the criticality function can easily
be changed to incorporate some other function.

To solve the MAX-2SAT problem, we used the FMSAT
solver from the University of Michigan [45]. The algorithm

used is similar to the Fiduccia-Mattheyses algorithm for
hypergraph partitioning except that the gain update is dif-
ferent and there is no balance constraint. Unlike many
other satisfiability solvers, FMSAT has the ability to out-
put partially satisfied (MAX-SAT) answers when a fully
satisfied answer is not achieved. In order to obtain a solu-
tion, we removed all the variables (hence nets) that are in
unsatisfied clauses. Therefore, the MAX-SAT solution we
obtain is a lower bound on the best possible solution gen-
erated from the solver. We could possibly obtain a better
solution by removing only a subset of these nets. Yet, this
in another optimization problem in itself; we only wish to
use the MAX-SAT solver as a comparison with the other al-
gorithms and leave this optimization problem as potential
future work.

Figure 13 shows the fraction of nets that are placed by
the greedy, implication and MAX-2SAT algorithms. In this
experiment, we used the linear function indirect_forcing +
2 xdirect_forcing for the implication algorithm. We set
the coupling width and length thresholds to 1 and 10, re-
spectively.

We can see that the implication algorithm consistently
finds a routing for a larger percentage of nets. Over all the
experiments that we ran, the implication algorithm routes,
on average, 3.38% more nets than the greedy algorithm.
Both these algorithms perform much better than the MAX-
2SAT solver. We believe there are several reasons for the
poor performance of the MAX-2SAT algorithm. First, we
are trying to maximize the number of violated variables
(variables in unsatisifed clauses) which is different from the
MAX-SAT objective function (maximizing the number of
unviolated clauses). Also, a MAX-SAT solver is not gener-
ated specifically for MAX-2SAT. A solver that focuses on 2-
SAT instances would undoubtedly perform better. Finally,
as we discussed earlier, the number of violated variables is
only a lower bound on the number of routable nets.

When the problem is highly constrained, the greedy and
implication algorithms perform similarly. A smaller grid
size and the larger number of nets adds constraints to the
problem. With fewer constraints on the problem, the impli-
cation algorithm performs notably better. Table VI shows
the routed net results for some of the larger benchmarks.
You can see that the performance of the implication al-
gorithm is quite good on the large benchmarks, especially
when we consider a small number of nets.

TABLE VI
PERCENTAGE OF ROUTES LAID OUT FOR LARGE BENCHMARKS.

Num avgs ibm0O1 ibm02

nets || greedy | imp. | greedy | imp. | greedy | imp.
25 76% 847, 647, 72 647 72
50 58% 627 50% 74% 467 50%
75 52 56% 417, 467 33% 417,
100 457, 497, 36% 37% 33% 38%
125 467 467, 22}, 297 297 33%

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 14

0.7
0.6 =
\ —— Greedy
0.5 L
= —=— Implication
£ \ MAX-2SAT
3 04 =
g \§k777
2 o013 i — _
% . 7\77,‘.
)
0.1
0] T T T T T T T T T
25 50 75 100 125 150 175 200 225 250
total nets considered

Fig. 13. Fraction of nets placed averaged over all benchmarks.

implication vs greedy

I
©

I
o
|

B
N
|

I8
o
.

B
&)
.

—e—linear
—=— quadratic
| root |

relative criticality

B
a
|

//\/\/\/

25 50 75 100 125 150 175 200 225 250
nets considered

Fig. 14. Relative criticality of nets placed by the greedy algorithm
compared to the implication algorithm. The results are averaged over
all benchmarks. The criticality of the benchmarks are normalized to
the criticality result of the implication algorithm. Therefore, a result
of y indicates that the greedy algorithm laid out yx(criticality of
implication algorithm).

If we only look at the criticality of the nets routed, we
see that the greedy algorithm is better than the implication
algorithm. Figure 14 confirms that the greedy algorithm
outperforms the implication algorithm using a quadratic
function, l-root-1 and linear function. For a linear critical-
ity function, the greedy algorithm was approximately 1.1
times better than the implication algorithm. If we use the
quadratic function, the greedy function outperforms the
implication heuristic by a factor of 1.8 (when we consider
the 250 most critical nets). This should be of little surprise,
however, since the implication algorithm does not use the
idea criticality to find a routing of the nets.

In summary, the results indicate that the implication al-
gorithm is the best algorithm for routing the maximum
number of nets. The greedy algorithm tends to find a lay-
out with maximum criticality but performs poorly with
respect to maximizing the number of nets.

V. CONCLUSION

In this work, we show show that pattern routing is a
useful concept for handling coupling and increasing pre-
dictability of the routing without affecting the routability
of the circuit. We argued that pattern routing is beneficial
to higher level CAD tools since it allows them to choose
the routings of a subset of nets while insuring the quality
of the routing solution. In addition, we showed that pat-
tern routing can help even at the global routing stage by
leading the router find a better solution.

In the first part of the paper, we looked for nets that
can be pattern routed without degrading the quality of the
routing solution. Even with this limitation, we show that
we can pattern route up to 80% of the nets. Also, we show
that pattern routing works with large nets if they are ~-d
routable.

In second part of the paper, we address the issue of cou-
pling during routing. We present algorithms and theory
for a new problem named Coupling-Free Routing (CFR).
CFR is a coupling formulation for pattern routing. We
purposely define CFR problem to be generic; this allows
us to use the problem as a base algorithm to which a wide
variety of extensions can be added to create more complex
heuristics. We mention some possible extensions to CFR
for detailed routing, single layer routing and global routing.
Additionally, we discuss an extension to the algorithm that
considers the cumulative effects of coupling from multiple
nets.

We show how to transform CFR to an implication graph,
which takes an instance of the problem and models the de-
pendencies or forcings that exists between the nets. We
present an exact, efficient algorithm for the CFR decision
problem via a transformation to the 2-satisfiability prob-
lem. The CFR decision problem will determine whether
every net within a specified set is coupling-free routable.

The MAX-CFL problem is defined as finding a coupling-
free routing for the maximum number of nets in a set. We
show that the planar MAX-CFL problem is NP-Complete.
Also, we give a few heuristics for solving the general MAX-
CFL problem, the greedy, implication and MAX-2SAT al-
gorithms.

The greedy algorithm is quite simple, yet is an effective
way of obtaining a layout with maximal criticality with
small runtime complexity. The implication algorithm uses
some properties associated with the implication graph to
formulate a solution. The MAX-2SAT algorithm trans-
forms the MAX-CFL problem into an 2-satisfiability in-
stance and generates an answer using a MAX-SAT solver.
Our experiments show that the implication algorithm is the
best algorithm at routing the maximum number of nets; it
consistently routes the largest number of nets.

ACKNOWLEDGMENTS

The authors are grateful to Professor Igor Markov and
Arathi Ramani from the University of Michigan for provid-
ing us with their FMSAT solver and modifying it to fit our
needs. Also, we would like to thank the referees for their
constructive suggestions and comments.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002 15

REFERENCES

[1] M. Sarrafzadeh and C.K. Wong, An Introduction to VLSI Phys-
ical Design, McGraw-Hill, New York, NY, 1996.

[2] N. Sherwani, Algorithms For VLSI Physical Design Automation,
Kluwer Academic Publishers, Boston, MA, 1993.

[3] T. Lengauer, Combinatorial Algorithms for Integrated Circuit
Layout, John Wiley and Sons, New York, 1990.

[4] R.M. Karp, Reducibility Among Combinatorial Problems, Com-
plexity of Computer Computations, New Rouk: Plenum, 1972.

[5] C.Y. Lee, “An Algorithm for Path Connection and Its Applica-
tion,” IRE Transactions on Electronic Computer, 1961.

[6] L.P.P.P van Ginneken, “Buffer Placement in Distributed RC-
tree Networks for Minimal Elmore Delay,” in Proc. International
Symposium on Circuits and Systems, 1990.

[7] K.L. Shepard, “Design Methodologies for Noise in Digital Inte-
grated Circuits,” in Proc. ACM/IEEE Design Automation Con-
ference, June 1998.

[8] D. Sylvester et al., “Interconnect Scaling: Signal Integrity and
Performance in Future High-speed CMOS Designs,” in Proc. of
VLSI Symposium on Technology, 1998.

[9] H.Zhou and D.F. Wong, “An Optimal Algorithm for River Rout-
ing with Crosstalk Constraints,” in Proc. IEEE International
Conference on Computer Aided Design, November 1996.

[10] K. Jhang, S. Ha and C.S. Jhon, “COP: A Crosstalk Optimization
for Gridded Channel Routing,” IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, April 1996.

[11] T. Gao and C.L. Liu, “Minimum Crosstalk Switchbox Rout-
ing,” in Proc. IEEE Internation Conference on Computer Aided
Design, November 1994.

[12] T. Xue, E.S. Kuh and D. Wang, “Post Global Routing Crosstalk
Risk Estimation and Reduction,” in Proc. IEEE International
Conference on Computer Aided Design, November 1996.

[13] K. Chaudhary, A. Onozawa and E.S. Kuh, “Cross Point Assign-
ment with Global Rerouting for General-Architecture Designs,”
in Proc. IEEE International Conference on Computer Aided De-
sign, November 1993.

[14] H.P. Tseng, L. Scheffer and C. Sechen, “Timing and Crosstalk
Driven Area Routing,” in Proc. ACM/IEEE Design Automation
Conference, June 1998.

[15] H. Zhou and D.F. Wong, “Global Routing with Crosstalk Con-
straints,” in Proc. ACM/IEEFE Design Automation Conference,
June 1998.

[16] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Coupling
Aware Routing,” in Proc. IEEE International ASIC/SOC Con-
ference, September 2000.

[17] R. Kastner, E. Borzorgzadeh and M. Sarrafzadeh, “Predictable
Routing,” in Proc. IEEE International Conference on Computer
Aided Design, November 2000.

[18] R. Kastner, E. Bozorgzadeh and M. Sarrafzadeh, “An Exact
Algorithm for Coupling-Free Routing,” in Proc. International
Symposium on Physical Design, April 2001.

[19] J. Ho, G. Vijayan and C.K. Wong, “A New Approach to the
Rectilinear Steiner Tree Problem,” in Proc. ACM/IEEE Design
Automation Conference, June 1989.

[20] E. Bozorgzadeh, R. Kastner and M. Sarrafzadeh, “Creating and
Exploiting Flexibility in Steiner Trees,” in Proc. ACM/IEEE
Design Automation Conference, June 2001.

[21] V. Vaishnavi and D. Wood, “Rectilinear Line Segment Inter-
section, Layered Segment Trees and Dynamization,” Journal of
Algorithms, July 1982.

[22] M. Wang, X. Yang and M. Sarrafzadeh, “DRAGON: Fast
Standard-Cell Placement for Large Circuits,” in Proc. IEEE In-
ternational Conference on Computer Aided Design, November
2000.

[23] R. Nair, “A Simple Yet Effective Technique for Global Wiring,”
IEEE Transactions on Computer Aided Design, March 1987.
[24] W. Dougherty and D. Thomas, “Unifying Behavioral Synthesis
and Physical Design,” in Proc. ACM/IEEE Design Automation

Conference, June 2000.

[25] D. Sylvester and K. Keutzer, “A Global Wiring Paradigm
for Deep Submicron Design,” IEEE Transactions on Computer
Aided Design, February 2000.

[26] A. Kahng, S. Mantik and D. Stroobandt, “Requirements for
Models of Achievable Routing,” in Proc. International Sympo-
sium on Physical Design, April 2000.

[27] H.B. Bakoglu, Circuits, Interconnections and Packaging for
VLSI, Addison-Wesley Publishing Company Inc., 1990.

[28] J. Cong et al., “Performance Optimization of VLSI Interconnect
Layout,” Integration, the VLSI Journal, 1996.

[29] J. Cong et al., “Interconnect Design for Deep Submicron ICs,”
in Proc. IEEE International Conference on Computer Aided De-
sign, November 1997.

[30] M. Lee, A. Hill and M.H. Darley, “Interconnect Inductance
Effects on Delay and Crosstalk for Long On-Chip Nets with Fast
Input Slew Rates,” in Proc. International Symposium on Circuits
and Systems, May 1998.

[31] Y. Massoud et al., “Layout Techniques for Minimizing On-Chip
Interconnect Self Inductance,” in Proc. ACM/IEEE Design Au-
tomation Conference, June 1998.

[32] D. Kirkpatrick and A. Sangiovanni-Vincentelli, “Techniques for
Crosstalk Avoidance in the Physical Design of High-Performance
Digital Systems,” in Proc. International Conference on Computer
Aided Design, November 1994.

[33] K. Kozminski, “Benchmarks for Layout Synthesis - Evolution
and Current Status”,” in Proc. ACM/IEEE Design Automation
Conference, June 1991.

[34] S.-W. Hur, A. Jagannathan and J. Lillis, “Timing Driven Maze
Routing,” in Proc. International Symposium on Physical Design,
April 1999.

[35] M. Sarrafzadeh, E. Bozorgzadeh, R. Kastner and A. Srivastava,
“Design and Analysis of Physical Design Algorithms,” in Proc.
International Symposium on Physical Design, April 2001.

[36] K.F.Liao, M. Sarrafzadeh and C.K. Wong, “Single-Layer Global
Routing,” IEEE Transactions on Computer Aided Design, 1994.

[37] Z.-M. Lin and Z.-W. Ro, “A Heuristic Planar Routing Algorithm
for High Performance Single-Layer Layout,” Manuscript, 2000.

[38] J. Cong, J. Fang and K.-Y. Khoo, “DUNE: A Multi-Layer Grid-
less Routing System with Wire Planning,” in Proc. International
Symposium on Physical Design, April 2000.

[39] P. Saxena and C. L. Lui,
Crosstalk-Driven Wire Perturbation,”
Computer-Aided Design, June 2000.

[40] S. Even, A. Itai and A. Shamir,
Timetable and Multicommodity Flow Problems,”
nal of Comp., 1976.

[41] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, New York, NY, 1979.

[42] R. Raghavan, J. Cohoon and S. Sahni, “Single Bend Wiring,”
Journal of Algorithms, June 1986.

[43] C. Alpert, “The ISPD98 Circuit Benchmark Suite,” in Proc.
International Symposium on Physical Design, April 1998.

[44] J. Cong and D.Z. Pan, “Interconnect Delay Estimation Models
for Synthesis and Design Planning,” in Proc. Asia and South
Pacific Design Automation Conference, January 1999.

[45] A. Ramani and I. L. Markov, “The FMSAT Satisfiability Solver:
Hypergraph Partitioning Meets Boolean Satisfiability,” Tech. Rep
CSE-TR-448-02., University of Michigan, 2002.

“A Postprocessing Algorithm for
IEEE Transactions on

“On the Complexity of
SIAM Jour-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2002

Ryan Kastner (S’00) received B.S. degrees in
both electrical engineering and computer engi-
neering in 1999, and M.S. degree in 2000 from
Northwestern University. He is currently work-
ing toward the Ph.D. degree in the Computer
Science Department at University of Califor-
nia, Los Angeles, under the guidance of Profes-
sor Majid Sarrafzadeh. His research interests
include physical design, reconfigurable com-
puting and compilers.

Elaheh Bozorgzadeh (S°00) received the
B.S. degree in electrical engineering with major
in electronics from Sharif University of Tech-
nology, Tehran, Iran in 1998. She received
the M.S. degree in Computer engineering from
Northwestern University in 2000. She is cur-
rently working towards the Ph.D. degree in
Computer Science at the University of Califor-
nia Los Angeles. Her research interests include
physical design automation especially routing
and routability issues, FPGAs (architecture
and CAD tools), and reconfigurable computing. She is a student
member of ACM and IEEE.

Majid Sarrafzadeh (M’87, SM’92, F’96)
(http://www.cs.ucla.edu/~majid) received his
B.S., M.S. and Ph.D. in 1982, 1984, and
1987 respectively from the University of Illinois
at Urbana-Champaign in Electrical and Com-
puter Engineering. He joined Northwestern
University as an Assistant Professor in 1987.
In 2000, he joined the Computer Science De-
partment at University of California at Los An-
geles (UCLA). His recent research interests lie
in the area of Embedded and Reconfigurable
Computing, VLSI CAD, and design and analysis of algorithms. Dr.
Sarrafzadeh is a Fellow of IEEE for his contribution to “Theory and
Practice of VLSI Design”. He received an NSF Engineering Initiation
award, two distinguished paper awards in ICCAD, and the best paper
award in DAC. He has served on the technical program committee of
numerous conferences in the area of VLSI Design and CAD, including
ICCAD, DAC, EDAC, and ISPD. He has served as committee chairs
of a number of these conferences.

Professor Sarrafzadeh has published approximately 230 papers, is
a co-editor of the book Algorithmic Aspects of VLSI Layout (1994
by World Scientific), and co-author of the book An Introduction to
VLSI Physical Design (1996 by McGraw Hill). Dr. Sarrafzadeh is
on the editorial board of the VLSI Design Journal, an Associate Ed-
itor of ACM Transaction on Design Automation (TODAES) and an
Associate Editor of IEEE Transactions on Computer-Aided Design
(TCAD).

Dr. Sarrafzadeh has collaborated with many industries in the past
fifteen years including IBM and Motorola and many CAD industries
and was one of the main architects of Monterey Design Systems main
product.

16

