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Abstract� Deep sub�micron e�ects� along with increas�
ing interconnect densities� have increased the complexity
of the routing problem� Whereas previously we could fo�
cus on minimizing wirelength� we must now consider a vari�
ety of objectives during routing� For example� an increased
amount of timing restrictions means that we must minimize
interconnect delay� But� interconnect delay is no longer
simply related to wirelength� Coupling capacitance has be�
come a dominant component of delay due to the shrinking
of device sizes� Regardless� the most important objective is
producing a routable circuit� Unfortunately� this often con�
�icts with minimizing interconnect delay as minimum delay
routes create congested areas� for which an exact routing
cannot be realized without violating design rules� In this
work� we use the concept of pattern routing to develop al�
gorithms that guide the router to a solution that minimizes
interconnect delay � by considering both coupling and wire�
length � without damaging the routability of the circuit�
The paper is divided into two parts� The �rst part demon�

strates that pattern routing can be used without a�ecting
the routability of the circuit� We propose two schemes to
choose a set of nets to pattern route� Using these schemes�
we show that the routability is not hindered� The second
part builds on the previous part by presenting a framework
for coupling reduction using pattern routing� We develop
theory and algorithms relating pattern routing and cou�
pling� Additionally� we give suggestions on how to extend
our theory and use our algorithms for both global and de�
tailed routing�

I� Introduction

T
HE process of routing can be divided into two sub�
problems� global and detailed routing� Global routing

decomposes the routing problem into smaller� manageable
routings for the detailed router� Speci�cally� the global
router �nds a rough path for each net while trying to reduce
the chip size� decrease the interconnect delay and distribute
the congestion across the routing area� among other things
���� ���� ���� Detailed routing uses the results of global rout�
ing to �nd an exact realization of the interconnections in
VLSI circuits�
The global routing problem is known to be NP�hard

�	�� This motivates the use of heuristic and approxima�
tion algorithms� The maze routing 
or maze running� al�
gorithm ��� is a widely used method for global and detailed
routing� Briey� the maze routing algorithm starts from
a source point and recursively searches its neighbors for
the best route until it reaches the sink point� The best
route is de�ned by a function of congestion� wire length�
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chip size� number of bends� etc� Maze routing �nds the
optimal path for two�terminal nets according to the cost
function� A major drawback of the algorithm is the large
amount of memory required to label its data structure� the
grid graph� There have been several other proposed exten�
sions and modi�cations to the maze routing algorithm in
the almost 	� years since it has been introduced� but the
underlying method remains the same�

Pattern routing is the well�known idea of using prespec�
i�ed patterns to route two terminal nets� This is partic�
ularly useful for high level CAD tools 
i�e� tools preced�
ing global routing in the design ow�� For example� most
placement tools use quick routing metrics to get a basic
idea about congestion and wirelength information� In this
paper� we develop quick routing methods that reduce the
interconnect delay� increase the predictability of the cir�
cuit and do not a�ect the quality of the routing solution�
Since we know these metrics will not a�ect the routing� the
placement tool can use these methods to model congestion
and wirelength more accurately� Also� since we know the
routing topology of a net� we can start wire sizing� wire
planning and optimally add bu�ers� once we have place�
ment information�

Due to DSM e�ects� coupling is of greater importance for
power� area and timing in circuits� There are four princi�
pal reasons for this� increasing interconnect densities� faster
clock rates� more aggressive use of high performance cir�
cuit families� and scaling threshold voltages ���� In fact�
coupling capacitance between wires can account for over
��� of the total wiring capacitance� even in ���� �m pro�
cesses ���� Therefore� it has become necessary to consider
coupling during both global and detailed routing�

Up until recently� there has been little research on the
coupling problem in routing� Coupling reduction was con�
sidered at the detailed routing stage for the river rout�
ing problem ���� the channel routing problem ���� and the
switch box routing problem ����� Also� there have been
e�orts in reducing coupling in the stage between global
and detailed routing� Xue et al� developed a post global
routing tool which estimates the possible coupling between
sensitive wires and tries to reroute nets away from possible
crosstalk areas ����� Chaudhary et al� develop a general
post�routing spacing algorithm ����� Also� coupling is ex�
amined for area routing ��	� and global routing ����� This
work presents algorithms for coupling avoidance routing�
The algorithms are general so they can be used in both

�If we know the net topology the complexity of bu
er insertion for
delay becomes polynomial time solvable ���
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global and detailed routing�
In this paper� we focus on increasing routing predictabil�

ity and reducing the unwanted e�ects caused by coupling
during routing� This work is based on papers that appeared
in ASIC�SOC ���� ����� ICCAD ���� ���� and ISPD ����
����� In Section II� we give some basic de�nitions in or�
der to make this paper self�contained� In particular� we
discuss pattern routing� congestion and coupling� Also� we
briey describe our router used in the experiments� Section
III introduces the idea of increasing routing predictability
through pattern routing� We present heuristics for �nding
a subset of nets which can be predictably routed and show
the results of those heuristics� We introduce the Coupling�
Free Routing 
CFR� problem in Section IV and discuss
its applications to global and detailed routing� An ex�
act algorithm for Coupling�Free Routing Decision Problem

CFRDP� is presented� Then� we show how to transform a
CFR problem into implication graph to model the depen�
dencies between nets� Finally� we introduce the Maximum
Coupling�Free Layout 
MAX�CFL� Problem and analyze
a couple algorithms developed to solve the problem� We
conclude in Section V�

II� Preliminaries

Amulti�terminal net n � f
x�� y�� �� 
x�� y��� 
x�� y��� ���� 
xn� yn�g
is a collection of points in the plane� A terminal is single
point of a net� A multi�terminal net can be partitioned
into a collection of two�terminal nets 
a net with exactly
two points� using a number of standard techniques� We
adopt the stable spanning tree partitioning of Ho et al� �����
Additionally� the spanning tree is altered for exibility �����
Essentially� we use this to transform the multi�terminal net
into a set of either a very short two�terminal net or a large
two�terminal net� That paper shows that these nets can be
pattern routed independently as two�terminal nets without
a�ecting the routability of the circuit�
A two�terminal net 
or simply called a net hereafter� n �

f
x�� y��� 
x�� y��g is an unordered pair of points 
x�� y��
and 
x�� y��� A routing or wiring of n is a set of horizontal
and vertical line segments connecting 
x�� y�� and 
x�� y���
A layout is the routings of a set of nets�
A net n can be routed without any bends if and only if

either x� � x� or y� � y�� We call such a net a zero�bend
net� Otherwise� there are two ways to route n with one
bend as shown in Figure �� When a routing has no more
than one bend� it is called a single bend routing ����� We
call such a net a one�bend net�
The routings in Figure � are called the upper�L routing

and the lower�L routing� A stable spanning tree ensures
that upper�L routing and lower�L routing shapes of the
two�terminal nets obtained from a multi�terminal net are
pairwise non�intersecting� To avoid confusion� we often
refer to a possible routing as a route� Thus we say that a
one�bend net has two one�bend routes 
the upper�L route
and the lower�L route��
A grid graph is a graph G
V�E� such that each vertex

corresponds to a point in a plane� See Figure � for further
explanation� A routing of a net on a grid graph is a set
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b)
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upper wiring
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Fig� �� a� Upper�L routings b� Lower�L routings

of grid edges such that the terminals are fully connected�
The route edges of a net are the set of edges used in the
routing of that net�
A global bin is a rectangular partition of the chip� By

partitioning the chip into many rectangular regions and
placing the cells into these regions� we have a placement
using global bins� The boundaries of the global bins are
global bin edges�
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Fig� �� �a� Placement of cells into global bins� �b� The corresponding
grid graph�

In this paper� we assume that a global placement of cells
and their interconnections are given by some placement
engine 
our experiments used Dragon ������ The cells are
placed into global bins and each cell is assumed to be placed
in the center of the global bin� Looking at Figure �� it is
easy to see that the global bins and edges can be trans�
formed into a grid graph� The interconnections between
the cells can be modeled by nets�
Congestion in a layout means that there are too many

nets routed in a local area� This causes di�culty for the
detailed router as it may not �nd a feasible routing solu�
tion� We want to evenly distribute the routing across the
total chip area� The congestion of an edge is the number
of nets routed over a global bin edge� From now on� we
will refer to a global bin edge g as eg� The capacity 
also
referred to as supply� of edge eg is cg � It is the maximum
number of nets that can be routed over eg� cg is a �xed
value that is based on the length of the edge and the tech�
nology used in creating the chip� The routing demand of
eg� speci�ed as dg � is de�ned as the number of route edges
crossing eg� Similarly� the demand of a vertex v is dv � Here
the demand corresponds to the number of routes that pass
though the vertex v 
equivalently the global bin v�� An
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edge is overown if and only if the de � ce� Formally� the
overow of an edge is�

overflowe �

�
de � ce � t if de � ce
� otherwise

t is a threshold value which allows de to go above ce with�
out an overow penalty� t is used since you can often route
up to t nets though neighboring bins without a�ecting the
congestion of those bins� t is usually a small constant 
ap�
prox� ����� Using the global bin and global edge notation�
the total overow of a routing is�

overflowtotal �

jBEjX
e��

overflowe

where BE is the set of bin edges� The total overow reects
the shortage of routing resources for a particular set of edge
capacities� A routing with a minimized total overow is
one of the objectives of our global router� Our industrial
experience shows that total overow is a good measure of
congestion�

A� Maze Routing

We implemented a global maze router� The maze router
takes every net and routes them one at a time according
to a cost function�

overflowroute �
X

e�RouteEdges

overflowe

lengthroute �j RouteEdges j
costroute � �� overflowroute � lengthroute

costtotal �
X

allnets

costroute

There is a tradeo� between minimizing overow and min�
imizing wire length� Ideally� you could minimize both con�
currently� Most often this is not possible� Our cost function
can solely minimize wire length 
set � � ��� Likewise you
can minimize overow by setting � � �� We found that
varying � from �� to ��� minimizes the total overow while
keeping the wire length minimal�
For nets with more than two�terminals� we use stable

Steiner trees to partition the net into a set of two�terminal
nets� Each net is given an initial route and then a rip�up
and reroute phase is applied to further minimize the total
overow� This technique 
or variants of it� appears in most
global routers in order to deal with the net ordering prob�
lem ����� During rip�up and reroute� the bin edges are se�
quentially searched� If an edge is overown� then all of the
nets that pass through that edge are ripped and rerouted�
This process continues until the total overow converges
to a local minimum� That is� if the total overow does
not decrease 
the goal is to minimize the total overow�
after � iterations� rip�up and reroute has completed� We
found that a � of ��� gave good results for the designs that
we tested� Larger designs may need an increased � which
decreases the chance of getting stuck in a local minimum�
In general� smaller designs can a�ord to decrease � which
would decrease the runtime�

B� Pattern Routing

Pattern routing is the notion of using prede�ned pat�
terns to route two�terminal nets� Usually these are simple
patterns such as a L�shaped 
single bend� or a Z�shaped
pattern � ��bends� route restricted within bounding box�
For more details� see Figure ��

(b)

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

�
�
�
�

����

(a)

Fig� �� �a� L�shaped routing of � two�terminal nets� �b� Z�shaped
routing of � nets�

Patterns can speed up the routing process� Instead of
maze routing a net� we pattern route it� In general� maze
routing will consider many bins that the �nal route will
not actually use� When using pattern routing� only a con�
stant number of edges are searched� For example� L�shaped
pattern routing will only search the edges on the bound�
ing box of the two�terminal net� Then� depending on cost
of these edges� it will choose the upper�L or lower�L and
place the route there� Similarly� Z�shaped pattern routing
needs only search the edges on the perimeter and inside
the two�terminal bounding box� On the other hand� maze
routing will search every edge 
on the worst case�� There�
fore� pattern routing has a better upper bound on runtime
complexity� We found that on average� the pattern routing
approach searches fewer edges than the maze router� We
formally summarize the complexities�

�� Given a net n � f
x�� y��� 
x�� y��g and a grid graph
G
V�E��
�� Let A be the edges on and within the bounding box of
n� A � E� jAj � � � jx��x�j � jy��y�j� jx��x�j� jy��y�j
�� Let P be the edges on the bounding box of n� P � A�
jP j � � � 
jx� � x�j� jy� � y�j�
	� Maze routing � O
jEj�
�� L�shaped pattern routing � O
jP j�
�� Z�shaped pattern routing � O
jAj�
Theorem �� jP j � jAj � jEj�
Proof �� The proof is trivial since� by de�nition� P �

A � E� �
The maze router ensures that the least cost route 
ac�

cording to the cost function� is found� Pattern routing does
not give you this luxury� In fact� an L�shaped pattern rout�
ing could produce the second worst possible route� This
occurs if both the upper�L route and the lower�L route are
the two worst paths� Pattern routing will choose the better
of these two solutions� giving you a bad routing� In general
this is not the case� as our results show�
Another bene�t of pattern routing lies in the predictabil�

ity of a pattern�routed net ����� If you know that a net will
be pattern routed� you can quickly and accurately estimate
its route earlier in the design ow� For example� you know
that an L�shaped pattern route will take one of two routes�



IEEE TRANSACTIONS ON COMPUTER�AIDED DESIGN� VOL� XX� NO� Y� MONTH ���� �

This allows higher level CAD tools� such as the placement
or logic synthesis engines� to estimate routings which will
lead to better congestion and area estimates� In order to
exploit predictability� the tools need placement informa�
tion� Many industrial logic synthesis tools are moving to�
wards layout�driven synthesis� Additionally� an academic
behavioral level synthesis tool has recently incorporated
placement information ��	��
With emergence of deep sub�micron 
DSM� fabrication

technology� interconnect has an increasingly dominant role�
Now circuit delay is determined by the gate resistance and
capacitance as well as the interconnect resistance and ca�
pacitance ����� When optimizing for delay in a circuit� logic
synthesis tools look at the critical path� Usually these tools
only consider the gate delay� ignoring the interconnect de�
lay� If we could pattern route the gates on the critical path�
then we can more accurately estimate the interconnect re�
sistance and capacitance�
Finally� the number of vias on a pattern�routed net is

�xed� Since vias further increase the capacitance and re�
sistance� it is bene�cial to keep them at a minimum� Also�
vias negatively a�ect the routability of the circuit �����

C� Coupling

Bakoglu ���� shows that the wire�delay on a distributed
RC line contains a RW � 
CS � CC� time constant� where
RW is the interconnect resistance� and CS and CC are the
substrate and coupling capacitances�

RW � 
CS � CC� �
� � l
w � t 


�� � l � w
h

�
�� � l � t

s
� 
��

where � is resistivity of the conductor� �� is the insulator di�
electric constant� and w� t and h are the conductor�s width�
thickness and separation from the substrate� respectively�
The terms l and s are the coupled length and spacing of
the interconnect�
The coupling capacitance CC between two wires i and j

can also be represented as follows�

CC
i� j� �
fij � lij
distij

�

�� wi	wj

�dij


��

where wi and wj are the sizes of wires i and j 
wi� wj � ���
fij is the unit length fringing capacitance between wires i
and j� lij is the overlap length of wires i and j and distij
is the distance from the center line of wire i to the center
of wire j 
see Figure 	��
We are trying to minimize the coupling� During routing�

we can control lij � distij � wi and wj � By avoiding overlap
between two wires� lij can be minimized� In other words�
we do not want adjacent wires to run in parallel for long
distances� We assume that wi� wj � lij are �xed� we do not
consider wire sizing and spacing in our algorithm� But�
this can be done as a post�processing step using a number
of techniques 
see ����� ���� for a comprehensive survey and
tutorial��
There are two problems introduced by coupling� delay

deterioration and crosstalk� Delay deterioration refers to
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Fig� �� a� Physical coupling capacitance between two wires b� The
wires modeled by resistors and capacitors

the fact that the total capacitance seen by a gate is no
longer a constant value� The rising contribution of coupling
capacitance to total load capacitance makes the Miller ef�
fect evident� Delay deterioration occurs because the Miller
e�ect causes the capacitance to vary� For example� if two
coupled nets switch in opposite directions at the same time�
the capacitance� hence the delay� will increase�

Crosstalk is a type of noise� introduced by coupling be�
tween two adjacent wires� A change in voltage or current on
one of the wires may interfere with the signal on the other
wire� There are two unwanted e�ects of crosstalk� First�
the two wires form a mutual inductor� This inductive e�ect
must be considered as circuit frequencies move above ���
MHz ����� ����� Inductive e�ects are not addressed in this
work� The second e�ect is associated with coupling capac�
itance� Coupling capacitance can cause a switching net to
induce noise onto a neighboring net possibly resulting in
an incorrect functional response�

Coupling between nets is not always detrimental� In �����
Kirkpatrick and Sangiovanni�Vincentelli introduce the no�
tion of crosstalk constraint generation which uses the con�
cepts of analog and digital sensitivity and a physical cou�
pling term in order to reduce the constraints given to layout
synthesis� This allows us to remove false crosstalk con�
straints� For example� a net A may couple with net B�
But� net A could have a high tolerance for delay and noise�
Therefore� the A and B can couple without negative cir�
cuit performance� We want to remove these cases as they
unnecessarily over�constrain the problem�

�Noise is de�ned as an unwanted variation which makes the behav�
ior of a manufactured circuit deviate from the expected response�



IEEE TRANSACTIONS ON COMPUTER�AIDED DESIGN� VOL� XX� NO� Y� MONTH ���� 


III� Using Patterns While Maintaining

Routability

In this section� we show the e�ect of pattern routing on
the quality of the routing solution� We show that you can
pattern route up to ��� of the nets with smallest bounding
boxes while incurring little or no loss of quality� Then� we
show how a set of nets that satis�es the ��density routing
problem 
formally de�ned in Section III�C� can be pattern
routed without sacri�cing the routing quality� This gives
us the ability to pattern route a subset of all the nets� even
if the nets have a large bounding box�

A� Benchmarks

To perform our experiments� we used �ve MCNC
standard�cell benchmark circuits ����� The characteristics
of the circuits are shown in Table I� The circuits were
placed into global bins using the Dragon global and de�
tailed placement engine ����� Some of the benchmarks 
i�e�
prim� and prim���� are repeated� Repeated benchmarks
di�er in the number of global bins� they consist of the same
number of nets� cells and pins but may have a completely
di�erent placement�

TABLE I

Benchmark circuit information

Data Num Num Num Global

file Cells Nets Pins Bins

prim� ��� ���� ���� � X ��

prim��� ��� ���� ���� �� X ��

prim� ���� ��	� ����� � X ��

prim��� ���� ��	� ����� �� X ��

avqs ����� ����� ����� �� X ��

avqs�� ����� ����� ����� �� X ��

biomed ���	 	��� ����� �� X ��

biomed�� ���	 	��� ����� �� X ��

struct ���� �
�� ���	 �� X ��

B� Pattern Routing Analysis

For our experimental results� we choose to use L�shaped
pattern routing over Z�shaped for a several reasons� First�
for two�terminal nets there are only two possible L�shaped
routes to consider� The number of Z�shaped routes grows
linearly with the bounding box size� Since we are aiming
towards predictable routes� L�shaped patterns reduce the
choices of routings� Secondly� we want the routing to exe�
cute quickly� The time to �nd the congestion of the routes
is O
jP j� whereas the Z�shaped routes is O
jAj�� Theorem
��� states the jP j � jAj�
We comment on a few observations� Even though pure

maze routing has the greatest freedom in terms of �nd�
ing the least congested solution� the overall algorithm is
a heuristic therefore it�s not guaranteed to �nd the opti�
mal solution� The tradeo� between fast routing time and
reduced number of routings 
better predictability� favors

L�shaped routing� Therefore� we will exclusively use L�
shaped routing for all of our pattern routing experiments�

Our experiments focused on determining which nets we
can pattern route while incurring little to no congestion
penalty� Our �rst heuristic 
referred to as the Largest First
Pattern Route or LFPR heuristic� splits the multi�terminal
nets into two terminal nets and sorts them from largest
bounding box to smallest bounding box� Then� we pattern
routed the x� largest nets while maze routing the rest of
the nets� The pattern routed nets were not rerouted during
the rip and reroute phase� As shown in Table II� pattern
routing large nets gives unfavorable overow results� If you
pattern route only the largest �� of the nets� your overow
increases more than two�fold over maze routing every net�
A similar trend occurs as you increase the pattern route
percentage� Pattern routing only ��� of the nets results
in an overow over 	 times the �� overow� 
Note� the ��
pattern route is exactly equivalent to maze routing every
net� the rip and reroute stage will consider every net��

TABLE II

Congestion Data for Largest�First Pattern Route heuristic�

�� is the base case congestion� The remaining results take

the congestion and subtract the base case congestion� So ��

�as in prim� at ��� means a total congestion of �	�
������

Datafile �� �� ��� ��� ���

prim� ��� �� �� �� 
�

prim��� ��� �� 	
 �� 



prim� ��� �� 	� ��� �
�

prim��� �� �� �� �
 ���

avqs �� ��� ��� ��� ���

avqs�� �� �
� �	� �	� 	��

biomed �� �� ��
 ��� ���

biomed�� �	 �� ��� ��� ���

struct 	� ��� ��� ��� ���

total ��� ��� ���� ���� �	��

The Smallest First Pattern Route 
SFPR� heuristic gave
more encouraging results� This heuristic is similar to LFPR
except here� we sort the two terminal nets from smallest to
largest� Thus� an SFPR of �� will pattern route the small�
est �� of the nets� Referring to Table III� we can see that
we can pattern route up to ��� of the nets with only a small
increase in overow� In fact� pattern routing the small nets
actually leads to better overow results� These results add
validity to our previous statement that pattern routing can
lead the maze router to better overow solution�

This SFPR heuristic results may seem surprising� Look�
ing at Table IV� you can see the percentage of the total
route length that the smallest x� of the nets comprises�
Even when you pattern route the smallest ��� of the nets�
the route length of these small nets is� on average� only
������ of the total route length� This means that the re�
maining ��� of the nets that are maze routed are much
longer than the short nets� This allows the maze router
enough freedom to �nd a good routing� even when ��� of
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TABLE III

Congestion Data for Smallest�First Pattern Route

heuristic� �� is the base case congestion� The remaining

results take the congestion and subtract the base case

congestion� A negative result means that the current

congestion is better than the base congestion�

Datafile �� ��� ��� 	�� ��� 
��

prim� ��� �� � �� �� �

prim��� ��� � �� �� 
 �

prim� ��� � � �� � ��

prim��� �� �� �� �� �� ���

avqs �� ��� �� � �� �	

avqs�� �� 	 �� �� � �

biomed �� � �� �� � �

biomed�� �	 � �� �� � 


struct 	� �� � �� �� ��

total ��� 
�� 
�� �� �	 ���

the nets are �xed� This gives some insight as to why the
LFPR heuristic does not work� If you �x the long nets to
a pattern� you greatly reduce the routing freedom that the
maze router needs to produce a good route� Since the small
nets are close in physical proximity� there are limited num�
ber of routes that these nets could take� Therefore� the
maze router may �nd a less congested solution� but due
to the small number of feasible routes� the pattern route
solution will not signi�cantly vary from the best 
i�e� maze�
routed� solution� Additionally� small nets are often entirely
located within a congested region� In this case� any short�
est length path will be essentially equivalent in terms of
overow minimization� Since there is no quality improve�
ment using maze routing� the pattern route is preferable
due to it�s faster run time and predictability�

TABLE IV

Percentage of route length used by SFPR nets� For

example when you pattern route the ��� smallest nets in

prim� the route length of those nets is only ����� of the

total route length

Datafile ��� ��� ��� ��� ��� 
��

prim� ��� ���� �	�� ���� ���	 ����

prim��� ��� ���� ���
 ���� ���	 �
��

prim� ��� ���� �
�� ���� ���� ����

prim��� ��	 	�� ���� ���� ���� ���	

avqs ��� ��� ��� ���
 ���� �
��

avqs�� ��� 	�� ���
 ���� ���� ����

biomed ��� 	�� ���
 ���� ���� ����

biomed�� ��
 ��� 
�� ���
 ���� ����

struct ��� ��� 
�
 ���
 ���� �	��

avg ��� ��� ���� ���� ���� ����

We have shown that you can pattern route up to ���
of the nets with small bounding boxes� Unfortunately� you
can not do pattern routing on nets with large bounding

boxes using the LFPR heuristic without su�ering a huge
loss in the quality of solution� Now� we will show that
any set of ��density nets can be pattern routed without
degrading the solution quality� This allows us to pattern
route the nets with large bounding boxes�

C� ��density Routing

The ��density ���d� routing problem tries to �nd a ��
bend routing of two�terminal nets such that the routing
demand of every bin edge is less than �� Let us de�ne the
��density routing problem formally�

�� Given a set of two�terminal nets N� a grid graph G
V�E�
and an integer ��
�� Does there exist a ��bend routing for every net i � N
such that de � � for every edge e � E�

In Table V� we show that pattern routing on a set of
��d or ��d routable nets does not a�ect the overall routing
solution quality� Since we are trying to show that nets
with large bounding boxes can be pattern routed� we used
a heuristic that focused on �nding such nets� Like the
LFPR heuristic� we sort the nets from largest to smallest
bounding box� Then� we assign an upper or lower routing
to the nets so that they can be ��d routed� Therefore� some
of the largest nets are always in the set of ��d nets� Table V
also shows the overow results when we pattern route a set
of ��d� ��d� ��d� 	�d and ��d nets� Notice that some circuits
allow up to ��d routing without loss of quality� This highly
depends on the number of nets and number of bins in the
benchmark� For example� avqs is a large benchmark and
the nets in the ��d routing only account for ����� of the
total routing� Compare this to prim��� where the nets of
the ��d routing are ����� of the total routing� Notice that
��d routing doesn�t hurt the solution quality for all but
three benchmark 
here avqs seems to be an anomaly since
the ��d� ��d and 	�d routings show no degradation of the
overall routing quality�� We believe that as the capacity of
the edges grows larger� the allowable density 
value of ��
can increase while maintaining similar routability�

TABLE V

Overflow information for pattern routing a set of ��d nets�

� is varied from � to �� The base case is the total overflow

with pure maze routing� The next columns are current

overflow � base case� A lower value means better overflow

hence a better solution�

Datafile base ��d ��d ��d ��d ��d

prim� ��� �� � �� �	 �	

prim��� ��� � � � � �

prim� ��� � �� � �� �

prim��� �� � �� � �� �

avqs �� �� ��� �� �	 ��

avqs�� �� ��� �� � �� ��

biomed �� �� �� � �� �

biomed�� �	 �� � �� �� �

struct 	� � �� �� �� ��

total ��� � 
� �� 
� ��
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IV� Using Patterns to Reduce Coupling

In the previous section� we showed that it is possible to
use L�shaped patterns to routes some nets without a�ect�
ing the quality of the routing solution� By pattern rout�
ing the nets� we reduce their interconnect delay 
since the
wirelength is minimal�� But� coupling is also an important
component of delay that must be considered� Therefore�
we need methods to reduce the coupling between nets� In
this section� we present some theoretical aspects to reduce
coupling between nets and introduce some algorithms to
implement this theory� The ideas that we introduce pro�
vide a framework from which more complex algorithms and
methods can be derived� We discuss some possible deriva�
tions to both the global and detailed routing problems�

A� Coupling�Free Routing

Every route consists of horizontal and�or vertical line
segments� We say two wires couple if the line segments
forming them are closer than d units for more than l units�
Two line segments intersect if they have at least one point
in common and overlap if they have more than one point
in common�

For a given set of nets S � fni � f
x�i� y�i�� 
x�i� y�i�g j
� � i � jSjg� a 
single bend� layout of S is coupling�free if
there are no two routes that run in parallel at a distance
equal to or closer than s units for more than l continu�
ous units� Examples of coupled and non�coupled layouts
are given in Figure �� Given a set of two�terminal nets�
the problem of obtaining a coupling�free routing of nets is
called the coupling�free routing problem 
CFR problem�� A
more complex formulation to decide coupling can be sub�
stituted in lieu of our coupling�free de�nition� For exam�
ple� we can use a complex coupling equation e�g�� Equa�
tion �� and de�ne two nets as coupling�free if they have a
coupling capacitance less than some threshold value� The
theory and equations we present will hold for any pairwise
de�nition of coupling�� Additionally� it is straightforward
to extend the formulation to consider the cumulative cou�
pling e�ect caused by multiple neighboring nets� Consider
the situation in Figure �� When considered separately� the
lower�L routing of two nets A and B do not couple with
upper�L routing of Net C� But� when both A and B are
routed in an lower�L the additive e�ect of the coupling
causes a coupling violation for the upper�L routing of C�
We will explain how to handle such cases� Unfortunately�
by considering these cases� the complexity of the problem
substantially increases��

We consider routing only a subset of nets for a few rea�
sons� First� by routing a subset of the critical nets as pat�
terns� we guarantee that the nets have the minimum wire�
length� which reduces the interconnect delay of the nets so
that the timing constraints can be met� The remaining crit�
ical nets can be routed using other more general coupling

�Note� the runtime may increase due to increased complexity of
coupling calculation�
�We go from solving ��SAT to solving the general SAT problem�

which is NP�Complete�

aware routing techniques� e�g�� maze routing that consid�
ers coupling and timing as in ��	�� We are presenting a
fundamental algorithm with polynomial runtime and basic
theoretical properties� Additional heuristics can easily be
added onto this algorithm to increase its application� We
believe that a solid framework with fundamental proper�
ties is needed for every heuristic ����� this paper presents a
basic coupling algorithm to which heuristic extensions can
be added� Now� we discuss some possible applications and
extensions that may be added to our base algorithm�

Net A Net B

Net C

Fig� �� The combination of two routings cause a non�coupling�free
layout

b)a)

Non-coupled layout Coupled layout

Fig� �� a� Coupling�free routings b� Non�coupling�free routings

As VLSI fabrication technology progresses� more routing
layers become available� Therefore� we can a�ord to set
aside preferred layers for critical nets� A preferred layer
usually has a lower wiring resistance due to position of
the layer 
lower layers have lower resistance� and width of
the wires on that layer 
large wire widths have lower resis�
tance�� Power� ground and clock nets are already routed on
preferred layers� We propose using the preferred layers for
routing critical nets� Critical nets are allotted very little
slack in order to meet timing constraints� Since intercon�
nect is becoming a dominate factor in delay of a circuit and
coupling plays are large role in interconnect delay� these
nets should routed in order to minimize coupling and wire�
length� Therefore� we can use notion of coupling�free rout�
ing to provide a detailed routing for the critical nets� Since
the nets are routed with at most one bend� they have min�
imum wirelength� In addition� coupling�free routing mini�
mizes the coupling of the routed nets� Combining these two
factors� we have a routing of the critical nets with minimal
interconnect delay� After we have a coupling�free layout�
non�critical nets can be routed� using any type of rout�
ing method� e�g�� maze routing� on the preferred layers to
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maximize routing resources� Additionally� we can consider
all minimum length routes� e�g� z�shapes� It is possible
to extend our algorithms to consider z�shapes� though this
extension creates a dramatic increase in complexity
�

Many single�layer routing algorithms have been sug�
gested� Liao et� al ���� propose density routing or maze
routing to perform this task� A more recent paper by Lin
and Ro ���� improves on the work by Liao et� al� They
employ a two step process� First� they �nd a planar set of
single�bend nets without considering coupling� Then� they
use a method based on rubber�band equivalent to �nd a
routing for the remaining nets� CFR can easily be incor�
porated into the �rst stage of Lin and Ro�s algorithm to
obtain a planar layout that is coupling�free�

Generally� coupling at the global routing stage is hard
to determine� A global route is not exact� Therefore� a
net could possibly couple with every net that is routed in
the same global bin� But� the net will only couple with
it�s immediate neighbors�� Ultimately� track assignment

which can be done at the global or detailed routing stage�
determines the coupling� Additionally� the detailed router
will often make local changes which can a�ect the coupling
of nets ����� But� the detailed router can only make local
changes� therefore considering coupling at the global stage�
even if it isn�t exact� is bene�cial as it can provide a way
to make large scale changes to a layout that otherwise can
not be done at the detailed level� If we have coupling�
free layout at the global stage� then the layout will remain
coupling�free at the detailed stage� Therefore� we can use
CFR at the global routing stage to reduce coupling for the
detailed router� This is similar to wire planning� we are
trying to �nd a general area for the net�s routing� Then�
the detailed router can consider more exact coupling while
making track changes� locally permuting the wiring 
adding
additional bends� and changing the spacing between wires
as in ����� Additionally� we could �freeze� the routings at
the detailed level to insure that they remain coupling�free�

Next� we propose an exact algorithm for determining
if a set of nets can be a coupling�free routing� Then�
we describe a couple heuristics for solving the maximum
coupling�free layout problem � the maximum number of
nets that can be laid out in a coupling�free fashion�

B� The Coupling�Free Routing Decision Problem

The Coupling
Free Routing Decision Problem
CFRDP�� Given a set of two�terminal nets S� is there
a single�bend routing for every net in S such that no two
routings couple� That is� does there exists no two routes
that run in parallel at a distance equal to or closer than s

units for more than l continuous units�

We solve the coupling�free routing decision problem by
transforming it into an instance of the ��satis�ability 
��

�Once again� the formulation goes from ��SAT to the general SAT
problem
�Theoretically� a net couples with every net on the chip� But� the

neighboring nets act as a shield which makes the coupling capacitance
seen by the other nets minimal�

SAT� problem�

The �
satis�ability problem� Given a set U of vari�
ables� a collection C of clauses such that each clause c � C

has jcj � �� Is there a satisfying truth assignment for U�

The ��SAT problem can be solved in O
jU j� time �	���
In order to transform an instance of CFR decision prob�

lem to ��SAT� we assign a boolean variable to each net�
Without loss of generality� we say if net A has an upper�L
route if its variable is true 
xA� and a lower�L route if its
variable is false 
xA�� A routing of a net may force a routing
of another net� For example� assume net A is routed in an
upper�L� If the upper�L routing of A 
xA� couples with the
lower�L routing of B 
xB�� then net B must be routed as
an upper�L to avoid coupling� Hence xA forces xB � With
respect to two nets A and B� there are �� possible forcing
interactions between these nets�
�� A and B are independent� Either layout for each net
does not directly inuence the layout for the other�
�� A and B can not be couple�free routed�
�� The lower�L routing for A forces the upper�L routing for
B� However� the upper�L routing for A does not inuence
the routing of B� The next three cases are similar�
	� The lower�L routing of A forces the lower�L routing of
B�
�� The upper�L routing of A forces the upper�L routing of
B�
�� The upper�L routing of A forces the lower�L routing of
B�
�� The lower�L routing of A forces a lower�L routing of B�
Also� the upper�L routing of A forces an upper�L routing
of B� The next three cases are similar to this case�
�� Lower�L of A forces lower�L of B� Upper�L of A forces
lower�L of B�
�� Lower�L of A forces upper�L of B� Upper�L of A forces
upper�L of B�
��� Lower�L of A forces upper�L of B� Upper�L of A forces
lower�L of B�
Examples of all of these cases are given in Figure ��
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Fig� �� Examples of the �� interactions for the coupling�free routing
problem� The solid points and lines correspond to net A� The dotted
lines and circles correspond to the the bounding box and terminals
of net B� respectively�

The algorithm proceeds as follows�

Stage �� Consider the jSj�jSj���
� interactions where S is

the set of nets under consideration� If two nets can not
be couple�free routed 
corresponding to interaction ��� the
algorithm terminates and returns FALSE� For each pair of
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nets� i and j� we determine the interaction between ni and
nj � Using this information� we can determine which wires
are forced�
Stage �� The constraint information must be encoded into
boolean expression with these properties�

�� It is in conjunctive normal form 
CNF� 
see �	���
�� It contains at most two literals per clause
�� It is satis�able if and only if the corresponding wire set
can be laid out 
without coupling� in a single bend fashion

Each of the �� interactions can be encapsulated as a binary
relation�

�� A and B are independent� No encoding
�� A and B can not be couple�free routed� No encoding�
the algorithm will terminate and return FALSE if this case
is found�
�� The lower�L routing for A forces the upper�L routing for
B� Encoded as 
xA � xB�
	� The lower�L routing of A forces the lower�L routing of
B� Encoded as 
xA � xB�
�� The upper�L routing of A forces the upper�L routing of
B� Encoded as 
xA � xB�
�� The upper�L routing of A forces the lower�L routing of
B� Encoded as 
xA � xB�
�� The lower�L routing of A forces a lower�L routing of B�
Also� the upper�L routing of A forces an upper�L routing
of B� Encoded as 
xA � xB� � 
xA � xB�
�� Lower�L of A forces lower�L of B� Upper�L of A forces
lower�L of B� Encoded as 
xA � xB� � 
xA � xB�
�� Lower�L of A forces upper�L of B� Upper�L of A forces
upper�L of B� Encoded as 
xA � xB� � 
xA � xB�
��� Lower�L of A forces upper�L of B� Upper�L of A forces
lower�L of B� Encoded as 
xA � xB� � 
xA � xB�
For each forced wire A� if the wire is forced to an upper�

L route� this is encoded as xA� if the wire is forced to a
lower�L route� this is encoded as xA�

Every net n is given a boolean variable� Therefore� jU j �
jSj� The entire set of jSj�jSj���

� interaction relations are
encoded as speci�ed� Each of these relations becomes a
clause in the ��SAT instance�

Lemma �� jCj � O
jSj��
Proof �� Since there are at most two relations per in�

teractions� jCj � jSj 
jSj � ��� �

The ��SAT instance is obtained by letting each net n
be a boolean variable � U � The set of clauses C are the
encoded net interactions�

Theorem �� The coupling�free routing decision prob�
lem can be solved in O
jSj�� time�

Proof �� The CFRDP 	 ��SAT in O
jSj�� time� An
instance of ��SAT can be solved in linear time� Therefore�
we can solve the coupling�free routing decision problem in
O
jSj�� time� �

If we want to consider the cumulative e�ect of coupling
between a set of nets� we can add additional clauses to the
��SAT formulation we have just described� First� we must
identify the set of nets that cumulatively cause a coupling
violation as in Figure �� For each case� we add an addi�
tional clauses and variables� The clauses added will have a

cardinality greater than � i�e� we will no longer have a ��
SAT formulation� For the example in Figure �� we add two
additional clauses c� and c� and one additional variable xD
as follows� c� � 
xA � xB � xD�� c� � 
xD � xC�� The new
variable xD indicates if both nets A and B are routed in a
lower�L fashion� If that�s the case� clause c� forces net C
to be routed as a lower�L to avoid the joint coupling e�ect�
The additional clauses and variables for other cases can be
derived in a similar manner�

C� Implication Graph

In this section� we show how an instance of the CFR
problem is transformable into an implication graph� Then�
we de�ne some properties associated with the implication
graph� We can utilize the properties of the implication
graph to solve the CFR problem�

D� ��SAT 	 Implication Graph

First� we show how an instance of ��SAT is transformable
into an implication graph� In Section IV� we show how to
transform an instance of the CFR problem to an instance
of ��SAT� Since CFR 	 ��SAT 	 implication graph� CFR
	 implication graph� The multi�step transformation allows
us to elegantly prove many properties associated with the
implication graph� But� we will also show how to directly
transform the CFR problem to an implication graph�

Let C � Ci
xi�yi� be an instance of ��SAT� where xi� yi
are literals over u�� ���� un � U � We want to know when
SAT
C� is true� De�ne a digraph G � 
V�E� by letting
V be the set of literals and 
x�y� � E if and only if x � y

is one of the clauses� Recall that x � y is equivalent to
x 
 y 
implication�� We can assume there is no clause of
the form x 
 x since that is always true� Finally� note
that x
 � � � 
 y implies x
 y�

Theorem �� If there is a cycle in G containing both x
and x for all x � V� C is not SAT�

Proof �� The reason is that if x 
 x� then x must be
false� But since there is a cycle x
 x which means x must
be true� We have a contradiction� Therefore� C is SAT i�
G does not contain any cycles including x and x for any
literal x� �

We call the digraph G an implication graph since it mod�
els the implications between the literals�

E� Coupling�Free Routing 	 Implication Graph

Now we show how the CFR problem is directly trans�
formable into an implication graph�

Given a set of nets N � The implication graph is a di�
rected graph 
digraph� Gimp
V�E�� Let every vertex v � V

correspond an upper�L routing and lower�L routing of each
net n � R� Therefore� jV j � � � jN j� Then� 
x� y� � E if
and only if x forces y or� equivalently� x
 y� We call this
an implication�

Theorem �� If there is an implication xA 
 xB � there
is contrapositive implication xB 
 xA�

Proof �� Since xA 
 xB � the upper�L routing of xA
must couple the lower�L routing of xB � Therefore� a lower�
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L routing of net B 
xB� will force a lower�L routing of net
A 
xA�� �

Theorem �� Given a set of nets N � the construction
of the corresponding implication graph takes running time
O
jN j���
Proof �� First� we must determine the forcing interac�

tions between every net� There are jNj�jNj���
� possible in�

teractions� Determining whether coupling exist in each in�
teraction take O
�� time� Therefore� it takes O
jN j�� time
to determine the interactions� The number of vertices in
the implication graph is exactly �jN j� The maximum num�

ber of edges is
�
�jNj
�

�
� O
jN j��� The forcing interactions

determine whether or not an edge exist� This requires a
simple O
�� lookup into an interaction table� Adding up
the complexities gives us the runtime of O
jN j��� �
Lemma �� Consider a set of nets N and its correspond�

ing implication graph G� If there is a cycle in G containing
xi and xi where i � N� then the nets N are not couple�free
routable�

Proof �� This is a direct consequence of Theorem 	���
This should not be surprising since we can transform the
CFR problem into ��SAT� �

Lemma �� Given a set of nets N� there is an O
jV jjEj�
algorithm to determine if these nets are coupling�free
routable�

Proof �� Theorem � says that an implication graph is
created in O
jN j�� time� According to Lemma �� if we �nd
a cycle containing xi and xi the nets N are not coupling�free
routable� We can look for these cycles by doing a depth�
�rst search from every vertex� If there is a path from xi
to xi and a path from xi to xi� there is a cycle containing
xi and xi� We can do this for every vertex in O
jV jjEj��
O
jN j�� 	 O
jV jjEj�� Therefore� we can determine if the
nets are coupling�free routable in O
jV jjEj�� �
For each implication case� up to two clauses are added

to ��SAT in the transformation� These clauses correspond
directly to edges in the implication digraph� Figure � shows
a simple example for three nets� Focusing on nets A and
B� we see that an upper�L routing of net A forces a lower�
L routing for net B 
corresponding to case ��� Therefore�
we add the clause 
xA � xB� to the ��SAT instance� In
the implication graph� we add an edge from vertex xA to
vertex xB � Notice that an upper�L routing of net B forces
a lower�L routing of net A� This corresponds to xB 
 xA
which is the contrapositive of the previous statement� The
other cases are similar� Notice that there are no cycles in
the implication graph in Figure � 
c�� This means that
these three nets can be coupling�free routed�

F� Properties

F�� Direct Forcing

Assume that we have implication graph Gimp
V�E�
which is constructed from an instance of a CFR problem
containing the set of nets N � Remember that every vertex
in the implication graph corresponds to a routing of a net
� N � Therefore� there are two vertices per net� one ver�
tex for the upper�L routing and one vertex for the lower�L

6) If Xc then Xa

1) If Xa then Xc
2) If Xa then Xb
3) If Xb then Xc
4) If Xb then Xa
5) If Xc then Xb

2 3

1
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3

1

a
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b

c

c

a

b

a)

Xa

Xa Xb

Xb Xc

Xc

Net A = { (2,1), (1,3) }
Net B = { (1,2), (3,1) }
Net C = { (2,2), (3,3) }

b)

Fig� �� a� The layout of nets A� B and C� b� The implications of
the nets� c� The implication graph� xi indicates an upper�L routing
of net i� The implication graph does not have any cycles containing
xi and xi� i � A�B�C� therefore the nets are coupling�free routable�

routing� We de�ne the routing corresponding to vertex v

as route
v�� Let u� v � V be two unique vertices� If there
is a directed edge 
u� v�� then the route
u� forces route
v��
This is a direct consequence of the way that the implication
graph is constructed�
The outdegree of vertex v in a digraph is the number

of vertices adjacent to v� In an implication graph� the
outdegree of v corresponds to the number of routings that
route
v� forces� We call this a direct forcing�

F�� Indirect Forcing

A routing may force a net even if it isn�t a direct forc�
ing� Referring to Figure �� Route � directly forces only one
route� Route �� But� Route � forces Route � which forces
Route 	� So� if we choose to route the net A in an upper�
L manner 
Route ��� then nets B� C and D must be laid
out as Routes �� � and 	� respectively if we want to route
every net� Route � forces three routes even though it only
directly forces Route �� We say that Route � indirectly
forces Routes �� � and 	�

b)

net A

net B

net C

net D

route 1

route 2

route 4

route 3

a)

1

2

3

4

Fig� �� a� The layout of the nets b� The implication graph for routes
����� and ��

Given an implication graph Gimp
V�E� and vertices
u� v � V � A v indirectly forces u if there is a path from
u to v� The number of total forcings 
direct and indirect�
of v is calculated by determining number of vertices that



IEEE TRANSACTIONS ON COMPUTER�AIDED DESIGN� VOL� XX� NO� Y� MONTH ���� ��

are connected to v� A slightly modi�ed version of depth�
�rst search can be used to determine the number of indirect
forcing in time O
jV j��

G� Maximum Coupling�Free Layout

The Maximum Coupling
Free Layout Problem
MAX
CFL�� Given a set of two�terminal nets S and a
positive integer K � jSj� Is there a single�bend routing for
at least K nets in S such that no two routings couple�

Theorem �� The Maximum Coupling�Free Layout
Problem for planar layouts is NP�Complete�

Proof �� Wemake a transformation from the MAXWIRE
problem� The MAXWIRE problem is de�ned as �nding a
subset of nets T where T � S and jT j � K such that all
the wires in T can be laid out in a single bend fashion on
one layer� The MAXWIRE problem is NP�Complete �	���
By setting the coupling variables d � � and l � �� we
can directly transform any instance of MAXWIRE to an
instance of MAX�CFL� This essentially removes any cou�
pling restrictions from the problem� �

MAX�CFL can be extended to consider criticality� The
criticality of a net can be de�ned in numerous ways� Most
often� a nets criticality is determined by the amount of
timing slack that is available to that net� Also� the length
of a net can be used� If we consider criticality� MAX�CFL
tries to route a subset of nets with maximum criticality�
A subset with maximum criticality will not always be the
subset of maximum size�

Additional routing restrictions to the MAX�CFL prob�
lem are often needed� For example� we can use MAX�CFL
to �nd a subset of planar nets� In this case� we must slightly
modify the algorithms to consider intersection between the
nets� Another common routing problem allows two layers
to route the nets � one for vertical segments� one for hor�
izontal segments� In this case� we must consider overlap
between the nets� The algorithms that we present next as�
sume that there are no restrictions� With the proper simple
modi�cations� they can consider such restrictions�

Now� we look at a few heuristics to solve the MAX�CFL
problem�

G�� Greedy Algorithm

The �rst and most obvious algorithm that we consider
is the greedy algorithm� This algorithm chooses the most
critical net and� if possible� routes the net in an upper�L or
lower�L fashion� If both the upper�L and lower�L routings
couple with net that has already been laid out� the current
net is not laid out� the most critical remaining net is then
considered� The algorithm iterates until all nets have been
considered�

Algorithm �� Maximum Coupling�Free Layout Routing Greedy
Heuristic
Given a set of nets N
Sort N by criticality �largest � smallest	
for each net n � N
do route n in upper�L or lower�L� if possible

Theorem 	� The Maximum Coupling�Free Routing
Greedy Heuristic takes O
jN j log jN j� time�
Proof 	� The sorting step takes O
jN j log jN j� time�

The �for� loop will complete after jN j iterations� Hence
an O
jN j log jN j� run time for the algorithm� �
The greedy heuristic is a simple and fast method of �nd�

ing a maximum coupling�free layout solution�
Of course� there are many shortcomings to this algo�

rithm� First� the greedy nature of the algorithm may cause
a critical net that couples with many other less critical nets
to be routed� By not routing a critical net� you may be able
to route a large number of other less�critical nets which can
lead to a better overall solution� A simple example of this
situation is shown in Figure ��� The greedy algorithm will
place net A �rst� Then� it will place net B in an upper�L
routing because it is the most critical unrouted net� Now�
neither net C or net D can be placed since they both couple
with net B� The best solution in terms of number of nets
routed and total criticality routed is routing nets A� C and
D�

A A A A

a)
C

C

D
D

B

B

C

C

B

B

D
D

b)

Fig� ��� An unrouted net is displayed as a dotted line� a routed net
has a solid line� Assume that criticality of net A � ���� B � ���
C � D � ��� a� Greedy algorithm solution� � nets are placed with
a total criticality of ���� b� Best solution� � nets are placed with a
total criticality of ����

G�� Implication Algorithm

We showed how to generate an implication graph from an
instance of the coupling�free routing problem in Section IV�
C� Now� we use some of the properties of the implication
graph to create a heuristic to solve the MAX�CFL problem�

The implication algorithm tries to eliminate the bad de�
cisions made by the greedy algorithm� It starts by deter�
mining the forcing interactions between every pair of nets�
Then� it �nds the nets that have a truly independent rout�
ing 
either upper�L or lower�L� and routes them in the ap�
propriate manner� An independent routing is equivalent to
a route that forces no other nets 
corresponding to interac�
tions �� ��� from Figure ��� If a net only forces other nets
when it is routed in a lower�L 
upper�L� will be routed in
an upper�L 
lower�L�� The upper�L situations corresponds
to interactions � and � while the lower�L situations corre�
sponds to interactions 	 and �� Since these routings are
independent� routing these nets can not cause a situation
as described in Figure ��� The remaining nets are routed
according to a function of number of nets that they directly
and indirectly force� The net with lowest value according to



IEEE TRANSACTIONS ON COMPUTER�AIDED DESIGN� VOL� XX� NO� Y� MONTH ���� ��

that function is routed �rst� as long it doesn�t couple with
any net that is already routed� This process continues until
all of the nets have been considered�
Theorem �� The running time of the implication algo�

rithm is O
jN j���
Proof �� According to Theorem 	��� the construction

of the implication graph takes O
jN j�� time� There are
O
jN j� vertices in the implication graph� therefore the �rst
�for� loop has O
jN j� iterations� As stated in Theorem
��	� the Forcings algorithm has a run time of O
jV j� jEj��
Note that O
jV j� � O
jN j� and O
jEj� � O
jN j��� There�
fore� the total run time of the �for� loop is O
jN j��� Sort�
ing takes O
jN j log jN j� time� The �nal �for� loop O
jN j�
time� Therefore� the algorithm requires O
jN j�� time� ��

Algorithm �� Maximum Coupling�Free Layout Routing Implication
Heuristic
Given a set of nets N
Create an implication graph G�V�E	
R � �
for each vertex v � V
do r�net � route�v	

r�num forcing � Forcings�route�v		
R � R � r

Sort R by function�direct forcings�indirect forcing	 �smallest �
largest	
for each routing r � R
do if r�net is unrouted and r is routable
then route r

G�� Maximum ��Satis�ability Algorithm

In Section IV�B� we showed how to transform the
coupling�free routing problem into an instance of ��SAT�
In this section� we show how one can use the well�known
problem of Maximum ��Satis�ability 
MAX��SAT� to solve
MAX�CFL�
Given a set of boolean variables� U � a collection of clauses

C such that each clause c � C has jcj � � and an inte�
ger K � jU j� the Maximum ��Satis�ability �MAX��SAT�
problem is de�ned as �nding a truth assignment for U such
that at least K clauses � C are satis�ed� MAX��SAT is
NP�complete �	���
It seems that solving the MAX��SAT problem on a trans�

formed ��SAT instance of CFR would be equivalent to solv�
ing MAX�CFL� Yet there are some subtle di�erences be�
tween them� First� the objective of MAX��SAT maximizes
the number of satis�ed clauses by �nding an appropriate
truth assignment to the boolean variables� But� in MAX�
CFL� we wish to maximize the number of routed nets� this
means that we wish to minimize the number of variables in
unsatis�ed clauses of the equivalent MAX��SAT instance�
These are two di�erent objective functions�
Remember that each variable corresponds to the routing

of exactly one net� If a clause is unsatis�ed� then the value
of the two variables in that clause are not valid� For ex�
ample� assume that we have two nets� A and B that have
an coupling interaction speci�ed by the clause 
xA � xB���
If that clause is unsatis�ed� it implies that xA and xB are

�This correspond to the lower�L routing for A forcing the upper�L
routing for B� See Section IV�B� interaction ��

both false i�e� both nets A and B are routed in a lower�
L pattern which causes coupling between the two nets�
Therefore� we can not route either net A or net B for and
still keep a coupling�free routing�
We may have a large number of unsatis�ed clauses� hence

we must eliminate at least one net for each unsatis�ed
clause� Of course� eliminating the routing of one net corre�
sponds to removing all the forcing interactions � therefore
all the clauses where that variable exists � between that
net and every other net� Therefore� the real problem be�
comes �nding a maximum set of nets such that they are
coupling�free� i�e� their ��SAT instance is completely satis�
�ed� This in itself is another optimization problem�
Despite of these di�erences� a correlation between the

number satis�ed clauses in the MAX��SAT instance and
the number of coupling�free routed nets exists� Therefore�
we can still use a MAX��SAT algorithm to solve the MAX�
CFL problem as long as we take into account the di�er�
ences� We do this by determining the number of variables
in the unsatis�ed clauses and removing the routing of the
nets that correspond to those variables� This yields lower
bound for the MAX�CFL problem� as it is possible to re�
move only a subset of these nets and still maintain a valid
solution�

G�	 Evaluation

To perform our experiments� we used �ve MCNC
standard�cell benchmark circuits and �ve benchmarks from
the ISPD�� benchmark suite �	�� 
ibm�� � ���� The cir�
cuits were placed into using the Dragon global and detailed
placement engine �����
Our experiments focus on reducing the added delay

caused by coupling� Long nets 
in terms of wirelength�
have the greatest opportunity for coupling and have the
largest amount of interconnect delay� Therefore� we look
at the longest nets from each of these circuits� We attempt
to �nd a coupling�free ��d routing for the set of nets since
we showed in the previous section that a set of ��d nets will
not a�ect the overall routability of the circuit�
First� we investigate the sensitivity of the coupling

threshold� Figure �� shows the number of constraints when
we vary the coupling length while the coupling width re�
mains at � unit� Figure �� shows a similar �gure when
the coupling width is � units� Recall that two nets have a
coupling interaction i� they have line segments that are at
a distance of the coupling width or less and run in paral�
lel to another for more than the coupling length� We use
the ISPD�� benchmarks for comparison since they roughly
have the same grid size� Furthermore� we consider the case
when there are ��� nets�
We expect two general trends� First� the number of

constraints should monotonically increase as the coupling
length decreases� Second� the number of constraints should
monotonically decrease as the coupling width increases�
The rate of increase�decrease is the relevant data� It is
interesting to note that the di�erence in the number of
constraints between the two charts di�er signi�cantly when
the coupling length is small 
e�g� ��� ���� yet the di�erence
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is minimal when the coupling length is large 
e�g� 	�� 	���
As the coupling length decreases� the benchmarks tend to
show an exponential decrease in the number of constraints�
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Fig� ��� The number of coupling constraints over the ISPD�� bench�
mark �les� The coupling width over all the benchmarks is � unit� The
coupling length varies from � � �� units according to the legend�
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Fig� ��� The number of coupling constraints over the ISPD�� bench�
mark �les� The coupling width over all the benchmarks is � unit� The
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We compare the greedy algorithm� implication and
MAX��SAT algorithms in terms of number of nets routed
and criticality of the nets that are routed� Net critical�
ity is normally de�ned at the logic synthesis stage and is a
function of the amount of slack available on a net� Unfortu�
nately� the benchmarks do not include timing information�
Hence� we need another measure of criticality� It has been
shown that the delay for a wire of length l increases at the
rate of O
l�� without wire sizing� O
l

p
l� with optimal wire

sizing and linearly with proper bu�er insertion �		�� We did
experiments using linear 
l�� l�root�l 
l

p
l�� and quadratic


l�� functions� Of course� the criticality function can easily
be changed to incorporate some other function�
To solve the MAX��SAT problem� we used the FMSAT

solver from the University of Michigan �	��� The algorithm

used is similar to the Fiduccia�Mattheyses algorithm for
hypergraph partitioning except that the gain update is dif�
ferent and there is no balance constraint� Unlike many
other satis�ability solvers� FMSAT has the ability to out�
put partially satis�ed 
MAX�SAT� answers when a fully
satis�ed answer is not achieved� In order to obtain a solu�
tion� we removed all the variables 
hence nets� that are in
unsatis�ed clauses� Therefore� the MAX�SAT solution we
obtain is a lower bound on the best possible solution gen�
erated from the solver� We could possibly obtain a better
solution by removing only a subset of these nets� Yet� this
in another optimization problem in itself� we only wish to
use the MAX�SAT solver as a comparison with the other al�
gorithms and leave this optimization problem as potential
future work�
Figure �� shows the fraction of nets that are placed by

the greedy� implication and MAX��SAT algorithms� In this
experiment� we used the linear function indirect forcing �
� �direct forcing for the implication algorithm� We set
the coupling width and length thresholds to � and ��� re�
spectively�
We can see that the implication algorithm consistently

�nds a routing for a larger percentage of nets� Over all the
experiments that we ran� the implication algorithm routes�
on average� ����� more nets than the greedy algorithm�
Both these algorithms perform much better than the MAX�
�SAT solver� We believe there are several reasons for the
poor performance of the MAX��SAT algorithm� First� we
are trying to maximize the number of violated variables

variables in unsatisifed clauses� which is di�erent from the
MAX�SAT objective function 
maximizing the number of
unviolated clauses�� Also� a MAX�SAT solver is not gener�
ated speci�cally for MAX��SAT� A solver that focuses on ��
SAT instances would undoubtedly perform better� Finally�
as we discussed earlier� the number of violated variables is
only a lower bound on the number of routable nets�
When the problem is highly constrained� the greedy and

implication algorithms perform similarly� A smaller grid
size and the larger number of nets adds constraints to the
problem� With fewer constraints on the problem� the impli�
cation algorithm performs notably better� Table VI shows
the routed net results for some of the larger benchmarks�
You can see that the performance of the implication al�
gorithm is quite good on the large benchmarks� especially
when we consider a small number of nets�

TABLE VI

Percentage of routes laid out for large benchmarks�

Num avqs ibm�� ibm��

nets greedy imp� greedy imp� greedy imp�

�� 	�� ��� ��� 	�� ��� 	��

�� ��� ��� ��� 	�� ��� ���

	� ��� ��� ��� ��� ��� ���

��� ��� �
� ��� �	� ��� ���

��� ��� ��� ��� �
� �
� ���
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of y indicates that the greedy algorithm laid out y��criticality of
implication algorithm	�

If we only look at the criticality of the nets routed� we
see that the greedy algorithm is better than the implication
algorithm� Figure �	 con�rms that the greedy algorithm
outperforms the implication algorithm using a quadratic
function� l�root�l and linear function� For a linear critical�
ity function� the greedy algorithm was approximately ���
times better than the implication algorithm� If we use the
quadratic function� the greedy function outperforms the
implication heuristic by a factor of ��� 
when we consider
the ��� most critical nets�� This should be of little surprise�
however� since the implication algorithm does not use the
idea criticality to �nd a routing of the nets�

In summary� the results indicate that the implication al�
gorithm is the best algorithm for routing the maximum
number of nets� The greedy algorithm tends to �nd a lay�
out with maximum criticality but performs poorly with
respect to maximizing the number of nets�

V� Conclusion

In this work� we show show that pattern routing is a
useful concept for handling coupling and increasing pre�
dictability of the routing without a�ecting the routability
of the circuit� We argued that pattern routing is bene�cial
to higher level CAD tools since it allows them to choose
the routings of a subset of nets while insuring the quality
of the routing solution� In addition� we showed that pat�
tern routing can help even at the global routing stage by
leading the router �nd a better solution�
In the �rst part of the paper� we looked for nets that

can be pattern routed without degrading the quality of the
routing solution� Even with this limitation� we show that
we can pattern route up to ��� of the nets� Also� we show
that pattern routing works with large nets if they are ��d
routable�
In second part of the paper� we address the issue of cou�

pling during routing� We present algorithms and theory
for a new problem named Coupling�Free Routing 
CFR��
CFR is a coupling formulation for pattern routing� We
purposely de�ne CFR problem to be generic� this allows
us to use the problem as a base algorithm to which a wide
variety of extensions can be added to create more complex
heuristics� We mention some possible extensions to CFR
for detailed routing� single layer routing and global routing�
Additionally� we discuss an extension to the algorithm that
considers the cumulative e�ects of coupling from multiple
nets�
We show how to transform CFR to an implication graph�

which takes an instance of the problem and models the de�
pendencies or forcings that exists between the nets� We
present an exact� e�cient algorithm for the CFR decision
problem via a transformation to the ��satis�ability prob�
lem� The CFR decision problem will determine whether
every net within a speci�ed set is coupling�free routable�
The MAX�CFL problem is de�ned as �nding a coupling�

free routing for the maximum number of nets in a set� We
show that the planar MAX�CFL problem is NP�Complete�
Also� we give a few heuristics for solving the general MAX�
CFL problem� the greedy� implication and MAX��SAT al�
gorithms�
The greedy algorithm is quite simple� yet is an e�ective

way of obtaining a layout with maximal criticality with
small runtime complexity� The implication algorithm uses
some properties associated with the implication graph to
formulate a solution� The MAX��SAT algorithm trans�
forms the MAX�CFL problem into an ��satis�ability in�
stance and generates an answer using a MAX�SAT solver�
Our experiments show that the implication algorithm is the
best algorithm at routing the maximum number of nets� it
consistently routes the largest number of nets�
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