Mass Action Reactions

Reaction Description or Expansion
$ {\tt\emptyset \to X}$ Creation (introduction)
$ {\tt X \to \emptyset}$ Annihilation (removal)
$ {\tt p_1 A_1 + p_2 A_2 + \cdots \to}$ $ {\tt q_1 B_1 + q_2 B_2 + \cdots
}$ Standard mass action with stoichiometry
$ {\tt A\rightleftarrows B}$ $ \left\{\begin{matrix}{\tt A\to B} {\tt B\to A}\end{matrix}\right.$
$ {\tt p_1 A_1 + p_2 A_2 + \cdots \rightleftarrows}$ $ {\tt q_1 B_1 + q_2 B_2 + \cdots
}$ $ \left\{\begin{matrix}
{\tt p_1 A_1 + \cdots \to q_1 B_1 + \cdots}\\
{\tt q_1B_1+ \cdots \to p_1 A_q + \cdots}
\end{matrix}\right.
$
Representation of $ {\tt A+X\rightleftarrows A\_X \rightleftarrows B+X}$
$ {\tt A {\overset {X}{\rightleftarrows}}B}$ $ \left\{\begin{matrix}
{\tt A+X\to A\_X}\\
{\tt A\_X \to A+X}\\
{\tt A\_X \to B+X}\\
{\tt B+X \to A\_X }
\end{matrix}\right.$
Representation of $ {\tt A+X\rightleftarrows A\_X \rightleftarrows B\_X \rightleftarrows B+X}$
$ {\tt A{\overset{X}{\rightleftharpoons}} B}$ $ \left\{\begin{matrix}
{\tt A+X\to A\_X}\\
{\tt A\_X \to A+X}\\
{\tt A\_X \to...
...B\_X \to A\_X}\\
{\tt B\_X \to B+X}\\
{\tt B+X \to B\_X }
\end{matrix}\right.$
Typical Cascades
$ {\tt A_1 \to A_2 \to A_3 \cdots }$ $ \left\{\begin{matrix}
{\tt A_1 \to A_2}\\
{\tt A_2 \to A_3} \vdots
\end{matrix}\right.$
$ {\tt A_1 \rightleftarrows A_2 \rightleftarrows A_3 \cdots }$ $ \left\{\begin{matrix}
{\tt A_1 \rightleftarrows A_2}\\
{\tt A_2 \rightleftarrows A_3} \vdots
\end{matrix}\right.$
$ \overset{\tt X}{\tt A_1 \rightleftarrows A_2 \rightleftarrows A_3 \cdots }$ $ \left\{\begin{matrix}
{\tt A_1 \overset{X}\rightleftarrows A_2}\\
{\tt A_2 \overset{X}\rightleftarrows A_3} \vdots
\end{matrix}\right.$
$ \overset{\tt\{X_1,X_2\dots\}}{\tt A_1 \rightleftarrows A_2 \rightleftarrows A_3 \cdots }$ $ \left\{\begin{matrix}
{\tt A_1 \overset{X_1}\rightleftarrows A_2}\\
{\tt A_2 \overset{X_2}\rightleftarrows A_3} \vdots
\end{matrix}\right.$

Michaelis-Menten-Henri Style Reactions

Syntax $ {\tt\{A\implies B, MM[K,v]\}}$ or $ {\tt\{A\overset{X}\implies B, MM[K,v]\}}$
$ {\tt A\implies B}$ $ {\tt [B]'=\dfrac{v[A]}{K+[A]}=-[A]' }$
$ {\tt A\overset{X}\implies B}$ $ {\tt [B]'=\dfrac{v[A][X]}{K+[A]}=-[A]' }$
$ {\tt A\Longleftrightarrow B}$ $ {\tt [B]'=\dfrac{v_A[A]}{K_A+[A]}-\dfrac{v_B[B]}{K_B+[B]}=-[A]' }$
$ {\tt A\underset{Y}{\overset{X}{\Longleftrightarrow}} B}$ $ {\tt [B]'=\dfrac{v_A[A][X]}{K_A+[A]}-\dfrac{v_B[B][Y]}{K_B+[B]}=-[A]' }$
Syntax $ {\tt\{A\implies B, MM[k_1,k_2,k_3]\}}$ or $ {\tt\{A\overset{X}\implies B, MM[k_1,k_2,k_3]\}}$
$ {\tt A\implies B}$ $ {\tt [B]'=\dfrac{k_1[A]}{\frac{k_2+k_3}{k_1}+[A]}=-[A]' }$
$ {\tt A\overset{X}\implies B}$ $ {\tt [B]'=\dfrac{k_1 [A][X]}{\frac{k_2+k_3}{k_1}+[A]}=-[A]' }$
Cascades
$ {\tt A_1 \implies A_2 \implies A_3 \implies \cdots}$ $ \left\{\begin{matrix}
{\tt A_1 \implies A_2}\\
{\tt A_2 \implies A_3} \vdots
\end{matrix}\right.$
$ \overset{\tt X}{{\tt A_1 \implies A_2 \implies A_3 \implies \cdots}}$ $ \left\{\begin{matrix}
{\tt A_1 \overset{X}\implies A_2}\\
{\tt A_2 \overset{X}\implies A_3} \vdots
\end{matrix}\right.$
$ \overset{\tt\{X_1,X_2,\dots\}}{{\tt A_1 \implies A_2 \implies A_3 \implies \cdots}}$ $ \left\{\begin{matrix}
{\tt A_1 \overset{X_1}\implies A_2}\\
{\tt A_2 \overset{X_2}\implies A_3} \vdots
\end{matrix}\right.$

Regulatory Hill Functions

Syntax $ {\tt\{ A\mapsto B, hill[v,n,K,b,T]\}}$
$ {\tt A\mapsto B}$ $ {\tt [B]'=\dfrac{v(b+T[A])^n}{K^n+(b+T[A])^n}}$ and $ {\tt [A]'=0}$
Syntax $ {\tt
\{ A_1+A_2+\cdots \mapsto B, hill[v,n,K,b,\{T_1,T_2,\dots\}] \}
}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 +\cdots \mapsto B}\text{ or ...
...\
{\tt A_3\mapsto B}\\
\vdots
\end{matrix}\right.
\end{array}\end{displaymath} \begin{displaymath}
\begin{array}{l}
{\tt [B]'=\dfrac{v(b+T_1[A_1]+T_2[A_2]+\cdo...
...2]+\cdots)^n}} \\
{\tt [A_1]'=[A_2]'=\cdots = 0}
\end{array}\end{displaymath}

Catalytic Hill Functions

Syntax $ {\tt
\{ A\overset{X}\mapsto B, hill[v,n,K,b,T]\}}$
$ {\tt A\overset{X}{\mapsto} B}$ $ {\tt [B]'=\dfrac{v[X](b+T[A])^n}{K^n+(b+T[A])^n} = -[A]' }$
Syntax $ {\tt
\{ A_1+A_2+\cdots \mapsto B, hill[v,n,K,b,\{T_1,T_2,\dots\}] \}
}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 +\cdots \overset{X}\mapsto B...
...\overset{X}\mapsto B}\\
\vdots
\end{matrix}\right.
\end{array}\end{displaymath} \begin{displaymath}
\begin{array}{l}
{\tt [B]'=\dfrac{v[X](b+T_1[A_1]+T_2[A_2]+\...
...cdots)^n}} \\
{\tt [A_1]'=[A_2]'=\cdots = -[B]'}
\end{array}\end{displaymath}

Logistic Rate Functions

Syntax $ \{\tt A\mapsto B, GRN[v,\beta, n,h]\}$
$ {\tt A{\mapsto} B}$ \begin{displaymath}\begin{array}{l} \\
{\tt [B]'=\dfrac{v}{1+e^{-h-\beta [A]^n}}}\\
{\tt [A]'=0 }  \\
\end{array}\end{displaymath}
Syntax $ \{\tt A_1+A_2+\cdots \mapsto B, GRN[v, \{\beta_1,\beta_2,\dots\}, \{n_1,n_2,\dots\},h]\}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 + \cdots \mapsto B }\text{ o...
...o B}\\
{\tt A_2\to B} \vdots
\end{matrix}\right.
\end{array}\end{displaymath} \begin{displaymath}
\begin{array}{l}
{\tt [B]'=\dfrac{v}{1+e^{-h-\beta_1 [A_1]^{...
... - \cdots}}} \\
{\tt [A_1]' = [A_2]'=\cdots = 0}
\end{array}\end{displaymath}

S-System Rate Functions
(Synergistic Systems)

Syntax $ \{\tt A\mapsto B, SSystem[\tau,K_{+},K_{-},c_{+},c_{-}]\}$
$ {\tt A\mapsto B}$ $ \begin{array}{l}
\\
{\tt [B]'=\dfrac{1}{\tau}\left( K_{+}[A]^{C_{+}} - K_{-}[A]^{C_{-}} \right)}
 \\
{\tt [A]'=0} \\
\end{array}$
Syntax $ \{\tt A_1+A_2+\cdots\mapsto B, SSystem[\tau,K_{+},K_{-},\{p_1,p_2,\dots\},\{m_1,m_2,\dots\}]\}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 + \cdots \mapsto B }\text{ o...
...o B}\\
{\tt A_2\to B} \vdots
\end{matrix}\right.
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{l}
{\tt [B]'=\dfrac{ K_{+}[A_1]^{p_1}[A_2]^{p_...
...2}\cdots}{\tau}} \\
{\tt [A_1]'=[A_2]'=\cdots=0}
\end{array}\end{displaymath}

NHCA Rate Function
(Non-Hierarchical Cooperative Activation)

Syntax $ \{\tt A\mapsto B, NHCA[v, \{\alpha, \beta\}, n, m, k]\}$
$ {\tt A\mapsto B}$ \begin{displaymath}\begin{array}{l}
{\tt [B]'=\dfrac{v(1+\alpha [A]^n)^m}{(1+\alpha [A]^n)^m + k (1+\beta [A]^n)^m}}\\
{\tt [A]'=0}
\end{array}\end{displaymath}
Syntax $ \{\tt A_1 + A_2 + \cdots \mapsto B, NHCA[v, \{\{\alpha_1,\beta_1\}, \{\alpha_2,\beta_2\},\dots\}, \{n_1,n_2,\dots\}, m, k]\}$
Syntax $ \{\tt A_1 + A_2 + \cdots \mapsto B, NHCA[v, \{\{\alpha_1,\beta_1\}, \{\alpha_2,\beta_2\},\dots\}, n, m, k]\}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1+A_2+\cdots \mapsto B} \text{ or }...
..._2 \mapsto B}\\
{\tt\vdots}
\end{matrix} \right.
\end{array}\end{displaymath} \begin{displaymath}
\begin{array}{l}
{\tt
[B]'=\dfrac{v\prod_j(1+\alpha_j [A_j]^...
...{n_j})^m}
}
 \\
{\tt [A_1]'=[A_2]' = \cdots = 0}
\end{array}\end{displaymath}
Syntax $ \{\tt A \mapsto B, NHCA[v,T, n, m, k]\}$
Syntax $ \{\tt A_1+A_2+\cdots \mapsto B, NHCA[v,\{T_1,T_2,\dots\}, \{n_1,n_2,\dots\}, m, k]\}$
$ {\tt A\mapsto B}$ \begin{displaymath}\begin{array}{l}
{\tt [B]'=\dfrac{v(1+T\mathcal{U}(T)[A]^n)^m...
... + k (1+T\mathcal{U}(-T) [A]^n)^m}}\\
{\tt [A]'=0}
\end{array}\end{displaymath}
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 + \cdots \mapsto B} \text{ ...
...tt A_2 \mapsto B}\\
\vdots
\end{matrix} \right .
\end{array}\end{displaymath} \begin{displaymath}
\begin{array}{l}
{\tt [B]' =
\dfrac{v\prod_j (1+T_j\mathcal...
...]^{n_j})^m}
} \\
{\tt [A_1]'=[A_2]'=\cdots = 0}
\end{array}\end{displaymath}

MWC/GWMC Rate Function
(Generalized Monod-Wyman-Changeaux)

Syntax $ \{\tt A\overset{X}\Rightarrow B, MWC[k_{cat}, n, c, \ell,K]\}$
$ {\tt A\overset{X}\Rightarrow B}$ \begin{displaymath}\begin{array}{l}
{\tt
[B]' = k_{cat}[X]\dfrac
{\alpha(1+\alph...
... where } \alpha=\dfrac{[A]}{K}
\\
{\tt [A]'=-[B]'}
\end{array}\end{displaymath}
$ {\tt S\underset{\{A,I\}}{\overset{X}\Rightarrow} P}$

\begin{displaymath}\begin{array}{l}
{\tt
[B]' = k_{cat}[X]\dfrac
{s(1+s)^{n-1}+c...
...I]}{K_I},\
a=\dfrac{[A]}{K_A}
\\
{\tt [A]'=-[B]'}
\end{array}\end{displaymath}

Syntax $ \{\tt\underset{\{\{A_1,A_2,\dots\}, \{I_1,I_2,\dots\}\}}{\{S_1,S_2,\dots\}\overset{X}\Rightarrow \{ P_1,P_2,\dots \}}, MWC[\{k_1,k_2\dots \},n,c,\ell,K]\}$
\begin{displaymath}\begin{array}{l}
{\tt [P_q]'=k_q[X]\dfrac
{\prod_i(1+a_i)^n ...
...ac{[A_j]}{K_{A_j}}, \
i_j = \dfrac{[I_j]}{K_{I_j}}
\end{array}\end{displaymath}

Syntax $ \{\tt\underset{
\{\{A_1,A_2,\dots\},
\{I_1,I_2,\dots\}\},
\{
\{C'_{11},C'_{12...
...overset{X}\Rightarrow \{ P_1,P_2,\dots \}}, MWC[\{k_1,k_2,\dots\},n,c,\ell,K]\}$
here $ C_{j1},C_{j2},\dots$ are competitive inhibitors of $ S_j$, $ A'_{i1},A'_{i2},\dots$ are competitive activators of $ A_i$
\begin{displaymath}\begin{array}{l}
[P_q]'=\dfrac
{\prod_i(1+a_i+\overline{a_...
...verline{a_j} = \sum_q\dfrac{[A'_{jq}]}{K_{A'_{jq}}}
\end{array}\end{displaymath}

Rational Function Rate Law

\begin{displaymath}
\begin{array}{l}
{\tt\{\{\{ A_1, A_2,\dots \}, \{B_1,B_2,\do...
...ots\},\{b_0,\dots\},\{p_1,\dots\},\{q_1,\dots\}]\}
}\end{array}\end{displaymath}
\begin{displaymath}\begin{array}{l}
{\tt [X]'=\dfrac
{a_0 + a_1[A_1]^{p_1} + a...
...tt [A_1]'=[A_2]'=\cdots = [B_1]'=[B_2]'=\cdots = 0}
\end{array}\end{displaymath}

User-Defined Stoichiometric Rate Laws

\begin{displaymath}
\begin{array}{l}
\text{Syntax }
{\tt\{p_1A_1 + p_2A_2 + \c...
...t f[A_1[t],A_2[t],\dots, B_1[t],B_2[t],\dots] \} }
\end{array}\end{displaymath}
$ {\tt [X_i]'= (q_i-p_i)f[A_1[t],A_2[t],\dots,B_1[t],\dots] } $

User-Defined Regulatory Rate Laws

$ {\tt\{A\mapsto B, name[r, T, n, h, f]\} }$ $ {\tt [B]' = rf(h+T[A]^n)}$
\begin{displaymath}
\begin{array}{l}
{\tt A_1 + A_2 + \cdots \mapsto B} \text{ ...
...tt A_2 \mapsto B}\\
\vdots
\end{matrix} \right .
\end{array}\end{displaymath} $ {\tt [B]' = rf(h+T_1[A_1]^{n_1} + T_2[A_2]^{n_2} + \cdots )}$

Flux-Only Reactions

$ {\tt
\{ p_1 X_1 + p_2 X_2 + \cdots \to q_1 Y_2 + q_2 Y_2 + \cdots,
}$
$ {\tt Flux[}
\textit{lower bounds },
\textit{variable name},
\textit{upper bounds},
\textit{value},
\textit{objective coefficient}]
$

About this document ...

This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html arrow-forms.tex -no_navigation -split 0

The translation was initiated by Snicker Snack on 2012-08-31


Snicker Snack 2012-08-31