

SIMSE: AN INTERACTIVE SIMULATION GAME FOR SOFTWARE
ENGINEERING EDUCATION

Emily Oh Navarro and André van der Hoek
School of Information and Computer Science

University of California Irvine
Irvine, CA 92697-3425

USA
emilyo@ics.uci.edu, andre@ics.uci.edu

Abstract
The typical software engineering education lacks a practi-
cal experience of the process of software engineering—
students are presented with relevant process theory in
lectures, but have limited opportunity to put these con-
cepts into practice in an associated class project. SimSE is
an educational, interactive, fully graphical computer game
that simulates software engineering processes, and is de-
signed specifically to train students in situations that re-
quire an understanding and handling of software process
issues. In this paper we describe SimSE, including its
educational goals, its design, and its implementation.

Key Words
Software engineering education, educational games, soft-
ware engineering simulation, simulation games

1. Introduction

While the software industry has had remarkable success
in developing software that is of an increasing scale and
complexity, it has also experienced a steady and signifi-
cant stream of failures. Most of us are familiar with public
disasters such as failed Mars landings, rockets carrying
satellites needing to be destroyed shortly after takeoff, or
unavailable telephone networks, but many more “private”
problems occur that can be equally disastrous or, at least,
problematic and annoying to those involved. Examining
one of the prime forums documenting these failures, the
Risks Forum [1], provides an illuminating insight: a ma-
jority of documented failures can be attributed to software
engineering process breakdowns. Such breakdowns range
from individuals not following a prescribed process (e.g.,
not performing all required tests, not informing a col-
league of a changed module interface), to group coordina-
tion problems (e.g., not using a configuration manage-
ment system to coordinate mutual tasks, not being able to
deliver a subsystem in time), to organizations making
strategic mistakes (e.g., choosing to follow the waterfall
process model where a spiral approach would be more
appropriate, not accounting for the complexity of the

software in a budget estimate). As a result, it is estimated
that billions of dollars are wasted each year due to inef-
fective processes and subsequent faulty software being
delivered [2].

We believe the root cause of this problem lies in edu-
cation: current software engineering courses typically pay
little to no attention to students being able to practice is-
sues surrounding the software engineering process. The
software engineering industry has long recognized the
problem of students having insufficient process experi-
ence and has repeatedly requested that academia address
this problem [3-6]. The underlying issue is time: any class
project must be completed within the length of its course.
While relevant process theory can be and typically is pre-
sented in lectures, the opportunities for students to practi-
cally and comprehensively experience the presented con-
cepts are limited. Most course projects simply guide stu-
dents through a linear execution of the waterfall model
(requirements, design, implementation, testing) in which
students are left with little discretion. Students cannot
decide which overall life cycle model to follow, whether
or not to first build a rapid prototype, or even when to set
the milestones for their deliverables—these and other
decisions are usually made by the instructor. The focus
strongly remains on creating project deliverables such as
requirements documents, design documents, source code,
and test cases, and little room is left to illustrate or experi-
ence the principles, pitfalls, and dimensions of the soft-
ware process. The overall result is that students are unable
to build a practical intuition and body of knowledge about
the software process, and are ill-equipped for choosing
particular software processes, for recognizing potentially
troublesome situations, and for identifying approaches
with which to address such troublesome situations.

To better prepare students for their future software de-
velopment jobs and consequent exposures to the software
process, we are developing a new approach to teaching
and practicing the software process that is complementary
to existing software engineering courses. SimSE is a com-
puter-based environment that allows the creation and
simulation of software engineering processes. It allows
students to virtually participate in a realistic software en-

gineering process that involves real-world components
not present in typical class projects, such as teams of peo-
ple, large scale projects, critical decision-making, person-
nel issues, multiple stakeholders, budgets, planning, and
random, unexpected events. In so doing, it provides stu-
dents with a platform in which they can experience many
different aspects of the software process in a practical
manner without the overarching emphasis on creating
deliverables. SimSE directly addresses the shortcomings
of existing classroom approaches by filling the gap be-
tween the process knowledge and theory taught in lectures
and the small percentage of this knowledge that students
actually put into practice in class projects.

The remainder of this paper is organized as follows:
Section 2 outlines the objectives of SimSE as an educa-
tional simulation. Section 3 describes the architecture and
various components of SimSE in detail. In Section 4 we
provide a brief overview of related work, and we end in
Section 5 with our conclusions and future directions.

2. Objectives

As an educational simulation, SimSE must make tradeoffs
among faithfulness to reality, level of detail, usability,
teaching objectives, and “fun factors”. As an example,
educational purpose and fun factors may call for visual
feedback to be humorous and “over the top”, such that the
causal effects of decisions can be easily recognized by
students. However, this would contradict the issue of
faithfulness to reality. Clearly a delicate balance has to be
struck among all design parameters. To guide us in creat-
ing this balance, we formulated a set of overarching
guidelines for the design of SimSE, based on both the
unique nature of software engineering and lessons learned
from previous studies about critical success factors for
educational simulations:

• SimSE should illustrate both specific lessons and
overarching practices of the software process. Spe-
cific lessons include, among others, Brooks’ Law
(adding more employees to a project that is already
late will make the project even later, due to the expo-
nentially increased communication overhead [7]) and
the fact that the use of a configuration management
system normally improves the development process.
Overarching practices concern the choice of different
life cycle models, the tradeoffs involved in many de-
cisions, and the potential for drastic consequences in
case of failure.

• SimSE should support the instructor in specifying the
lessons he or she wishes to teach. Instructors using
SimSE may belong to different schools of thought
regarding best software engineering practices, and
may have different teaching objectives. Furthermore,
real-world software processes vary with different ap-
plication domains, organizations, and cultures.

• SimSE should provide a student with clear feedback
concerning their decisions. Consider, for example, a
student who hires a plethora of employees in order to

rush code development. Later, the student faces a
lengthy integration phase with many bugs being dis-
covered. The simulation environment must explain
why this situation occurs (e.g., more employees leads
to more parallel work, which leads to more integra-
tion problems [8]).

• SimSE should be easy to learn, enjoyable, and com-
paratively quick. Without compromising the level of
complexity that is needed to make each simulation
unique, a single simulation must neither be too diffi-
cult nor too long in order to maintain the interest of
students and, thus, its value as an educational tool.
The enjoyability of the game is a large part of what
will make the lessons learned more memorable [9].

In summary, SimSE must be enjoyable and realistic, yet
rooted in both conceptual and empirical principles of
software engineering. The environment must provide stu-
dents with a complimentary learning opportunity that re-
inforces lessons taught in lectures and foreshadows and
prepares students for their actual experiences in class pro-
jects and future careers.

3. Approach

SimSE is a single-player game in which the player takes
on the role of project manager of a team of developers.
The player must manage these employees to complete a
particular (aspect of a) software engineering project.
Management activities include, among others, hiring and
firing, assigning tasks, monitoring progress, and purchas-
ing tools. In general, following good software engineering
practices will lead to positive results while blithely ignor-
ing these practices will lead to miserable failure in com-
pleting the project.

3.1 Overall Architecture

Figure 1 illustrates the architecture of SimSE. Models are
created using a model builder that allows the specification
of employees, artifacts, projects, tools, and customers, as
well as activities that these entities can participate in, and
rules according to which they behave. Based upon a par-
ticular choice of model, a generator interprets the model

Figure 1: SimSE Architecture

Simulation
Environment

State
Mgmt.

Rule
Execution

Clock

User
Interface

Explanatory
Tool

GeneratorModels
Model
Builder

Standard Part

Variable Part

Invokes

Creates Reads

Generates

Simulation
Environment

State
Mgmt.

Rule
Execution

Clock

User
Interface

Explanatory
Tool

GeneratorModels GeneratorModels
Model
Builder

Standard Part

Variable Part

Invokes

Creates Reads

Generates

and automatically generates code for a state management
component, a rule execution component, and the graphi-
cal user interface, which are inserted into the generic
simulation environment. A student can then use this cus-
tom-generated simulation environment to practice the
situations captured by the chosen model. Each of the ma-
jor components in the architecture will be further ex-
plained in the following subsections.

3.2 Model Builder and Generator

To facilitate the rapid and relatively easy specification of
customized simulation models, a fundamental part of
SimSE is its model builder. It is expected that an instruc-
tor will use this tool to create models (or alter existing
models as necessary) that embody the lessons and proc-
esses that they wish to teach to their students. Then, a
customized simulation that the students can play will be
generated by the Generator component.
 The model builder consists of five parts that corre-
spond to the five parts of a SimSE model: The object
builder, the start state builder, the action builder, the rule
builder, and the graphics builder.

Object builder. The object builder is used to perform the
first step in building a model: defining the object types to
be used in the model. Each major entity participating in
the simulation will be an instantiation of an object type.
Every object type defined must descend from one of five
meta-types: Employee, Artifact, Tool, Project, or Cus-
tomer. An object type consists of a name and a set of
typed attributes. For example, a Programmer Employee
type would be an instance of the Employee meta-type,

have the name “Programmer”, and may have the follow-
ing set of attributes: Name (String), Productivity (Dou-
ble), Experience (Integer), and Hired (Boolean). The user
interface for the object builder is shown in Figure 2. For
the sake of space, the interfaces for the other builders are
not shown, but they are similar in appearance to the object
builder in that they all support the modeler in building a
model using buttons, drop-down lists, menus, and dialog
boxes—no programming is required.

Start state builder. Once the object types for a simula-
tion have been defined, the start state builder can be used
to specify the start state for that simulation. The start state
refers to the set of objects that are present when the simu-
lation begins. Each one of these objects must be an instan-
tiation of one of the object types defined in the object
builder. The start state builder allows the user to create
and add an object to the start state by first choosing its
object type, and then assigning starting values for all of its
attributes.

Action builder. The next part of a SimSE model is the set
of actions, or activities in which the objects in the simula-
tion can participate. For example, a “Code” artifact, with
one or more “Programmer” Employees and one or more
“Compiler” Tools could participate in a “Coding” action,
in which the programmers build a piece of code using a
compiler. As another example, an Employee could par-
ticipate in a “break” action, referring to the activity of
taking a break, during which he or she rests and does not
work. The action builder is the tool that supports defining
these actions. It allows the modeler to define actions by
specifying the following information for each action: a

Figure 2: Object Builder User Interface.

name; one or more participants—roles in the action that
can be filled by one or more objects, an action trigger, and
an action destroyer. An action trigger refers to the set of
conditions that cause the action to begin to occur in the
simulation. An action destroyer is similar to an action
trigger, but has the opposite effect: whereas a trigger
starts an action, a destroyer stops an action.

Rule builder. After all of the action types have been de-
fined, the next task in building a SimSE model is to attach
rules to each action type. This is the function of the rule
builder. A rule defines an effect of an action—how the
simulation is affected when that action is active.

We distinguish three types of rules in a SimSE model:
create objects rules, destroy objects rules, and effect
rules. As its name indicates, a create objects rule causes
new objects to be created in the game. Conversely, the
firing of a destroy objects rule results in the destruction of
existing objects. An effect rule specifies the complex ef-
fects of an action on its participants’ states, including the
values of their attributes and their participation in other
actions. For instance, an effect rule attached to the “Cod-
ing” action might cause the size of the code to increase by
the additive productivity levels of all of the programmers
currently working on it. As another example, a “Break”
action might have an effect rule attached to it that: a) in-
creases the energy of an employee; and b) deactivates the

employee from all other actions he or she is currently
participating in for the duration of the “Break” action.

Graphics builder. The final activity in building a SimSE
model is specifying the graphics for the simulation.
Through the graphics builder, the user can assign an im-
age to each object in the start state, as well as each object
that is created by a create objects rule. This image will be
used to represent the object in the graphical user interface
of the simulation. In addition, the graphics builder in-
cludes a map editor that can be used to define the layout
of the “office”—starting locations for all of the objects in
the game.

3.3 Simulation Environment

The simulation environment is responsible for executing a
simulation and creating the user experiences that demon-
strate the inherent complexity of the software process.
The simulation loop itself operates in the following man-
ner (refer to Figure 1): The clock drives the simulation by
emitting ticks at equal time intervals. At every clock tick,
the rule execution component checks which actions are
currently executing by querying the state management
component. It then executes the rules associated with
these actions, and in turn propagates the effects of these
rules on the entities and actions in the state management

Figure 3: SimSE Graphical User Interface.

component. After this update is completed, the clock then
signals the user interface to update the display. The user
interface then queries the state management component
and updates itself to reflect the current state.

One of SimSE’s most fundamental features is its fully
graphical user interface. Learning through visual clues has
proven to be far more effective than simply studying tex-
tual output [11, 12]. Consider a simulation that wants to
teach Brooks’ law [7], which states that adding personnel
to a project that is late makes it even later than completing
it with the original personnel. A text-based simulation
environment could only show the effect of this law in
numbers that show the project will indeed be later [13].
However, it remains unclear as to why the project is later.
This is where SimSE will leverage its visual front-end by
graphically illustrating that the number of meetings in-
creases and personnel assemble in meeting rooms at a
greater frequency. As a result, independent learning is
fostered: a student receives direct feedback on their deci-
sions and can draw their own conclusions about the
cause-and-effect relationships present in the process.
 A preliminary version of the graphical user interface of
SimSE is shown in Figure 3. The center part displays a
virtual office in which the software engineering process is
taking place, including typical office surroundings (e.g.,
desks, chairs, computers, meeting rooms) and employees.
Employees “communicate” with the manager (player)
through pop-up “bubbles” that appear over their heads.
The player can interact with the employees through right-
click menus (not shown) on each employee that display a
list of available actions (e.g., do coding, give a raise, fire,
ask what they are doing, etc.). Detailed information about
each employee (the current values of their attributes) can
be obtained by clicking on that employee’s image along
the bottom edge of the interface. Graphical representa-
tions of projects and customers, artifacts (e.g., require-
ments document, code), and tools are displayed along the
top, left, and right edges, respectively. Like the employ-
ees, detailed information about each of these entities can
be displayed by clicking on its image. The user drives the
simulation through the controls of the clock, shown in the
lower right corner. They can either step the clock forward
a specified number of clock ticks, or step until the next
event, i.e., the next time an employee wants to “say”
something.

4. Related Work

This research draws from three main areas of related
work: simulation in education, software engineering edu-
cation, and software process simulation. The following
subsections describe the relationships between SimSE and
these existing bodies of work.

4.1 Simulation in education

Simulation is a powerful educational tool that is widely
used in a number of different domains such as flight simu-
lation [14], military training [15], and hardware design

[16]. The success of simulation in education can be attrib-
uted to its unique qualities that set it apart from other
pedagogical approaches: First, simulation allows students
to gain valuable hands-on experience of the process being
simulated without any of the potential monetary costs or
harmful effects that can result from actual real-world ex-
perience. As a result, students are free to repeat experi-
ences and experiment with different approaches, their
only concern being the simulated consequences (rather
than real life ones) in case of failure. Second, the relative
ease with which simulations are configurable allows the
educator to introduce a wide variety of unknown situa-
tions for the student to experience. Finally, because simu-
lations operate at a faster pace than real life, students can
practice the process many more times than would be fea-
sible in the real world.

4.2 Software engineering education

Software engineering educators have invented new and
innovative ways of teaching the subject in recent years.
Some of these approaches have included software process
simulation designed specifically for education
[13, 17, 18]. To date, the most advanced of these is
SESAM, a software engineering simulation environment
in which students manage a team of virtual employees to
complete a virtual project on schedule, within budget, and
at or above the required level of quality. The student
drives the simulation by typing in textual commands
which can consist of hiring and firing employees, assign-
ing them tasks, and asking them about their progress and
the state of the project [13]. Although SimSE and SESAM
share the purpose of teaching students the software engi-
neering process in a game-based setting, SESAM, unlike
SimSE, lacks a visually interesting graphical user inter-
face, which is considered essential to any successful edu-
cational simulation [9]. Moreover, despite the fact that the
SESAM language is highly flexible and expressive, the
model building process is learning- and labor-intensive
and requires writing code in a text editor. Despite these
drawbacks, SESAM’s models do provide a source of
some well-documented software engineering rules of be-
havior that we plan to leverage in our SimSE models.

4.3 Software process simulation

The area of software process simulation deals with creat-
ing models of software processes in order to analyze and
predict certain properties and behaviors of these processes
[19-21]. For example, process simulations have been cre-
ated to predict the effects of different managerial deci-
sions on the resulting project attributes, such as cycle
time, cost, and quality [21]. Because SimSE also simu-
lates a software engineering process, the work done in this
area provides useful process models upon which we can
base present and future versions of the game. However,
since these models were created for the purpose of analy-
sis and discovery rather than education, certain aspects
and portions of them are not relevant to the pedagogical

goals of the game, and we are adjusting them accordingly
as we incorporate them into our models.

5. Conclusions and Future Work

We have presented SimSE, an interactive, graphical, cus-
tomizable simulation game for software engineering edu-
cation. SimSE attempts to address the lack of process
education present in the typical software engineering
course by providing students with a practical, high-level
experience of a realistic software engineering process in
an engaging manner.

To date, the SimSE model builder and code generator
have been completed, and development of the graphical
user interface is nearing completion. In parallel, we are
designing the explanatory tool and developing two initial
simulation models: a high-level model in which an overall
software engineering process is simulated and a number
of general lessons about the process as a whole are taught,
and a second, more detailed model that teaches the roles
and regulations of the inspection process by making the
student organize and perform a code inspection. In the
near future, we plan to evaluate the teaching potential of
SimSE by conducting experiments involving undergradu-
ate computer science students at UC Irvine, refine and
enhance SimSE based on these results, and continue to
build different types of models to demonstrate various
phenomena.

6. Acknowledgments
We thank Ethan Lee, Calvin Lee, and Beverly Chan for
their contributions to the implementation of SimSE.

Effort partially funded by the National Science Foun-
dation under grant numbers CCR-0093489 and IIS-
0205724. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the National Science
Foundation. Effort also funded by the UC Irvine
CORCLR program.

References:

1. ACM Committee on Computers and Public Policy,

RISKS-FORUM Digest, 2004:
http://catless.ncl.ac.uk/Risks.

2. Jones, C., Software assessments, benchmarks, and
best practices (Boston, MA: Addison-Wesley, 2000).

3. Callahan, D. and B. Pedigo, Educating Experienced
IT Professionals by Addressing Industry's Needs,
IEEE Software, 19(5), 2002, p. 57-62.

4. Conn, R., Developing Software Engineers at the C-
130J Software Factory, IEEE Software, 19(5), 2002,
p. 25-29.

5. McMillan, W.W. and S. Rajaprabhakaran, What
Leading Practitioners Say Should Be Emphasized in
Students' Software Engineering Projects, Proceedings

of the Twelfth Conference on Software Engineering
Education and Training, 1999, p. 177-185.

6. Shaw, M., Software Engineering Education: A
Roadmap, The Future of Software Engineering, 2000,
p. 373-380.

7. Brooks, F.P., The mythical man-month: essays on
software engineering (Boston, MA: Addison-Wesley,
1995).

8. Perry, D.E., H.P. Siy, and L.G. Votta, Parallel
Changes in Large-Scale Software Development: An
Observational Case Study, ACM Transactions on
Software Engineering and Methodology, 10(3),
2001, p. 308-337.

9. Ferrari, M., R. Taylor, and K. VanLehn, Adapting
Work Simulations for Schools, The Journal of Edu-
cational Computing Research, 21(1), 1999, p. 25-53.

10. Beck, K., Extreme programming explained: embrace
change (Reading, MA: Addison-Wesley, 2000).

11. Higbee, K.L., Recent Research on Visual Mnemon-
ics: Historical Roots and Educational Fruits, Review
of Educational Research, 49, 1979, p. 611-629.

12. Shneiderman, B., Designing the user interface:
strategies for effective human-computer interaction
(Boston, MA: Addison-Wesley, 1992).

13. Drappa, A. and J. Ludewig, Simulation in Software
Engineering Training, Proceedings of the 22nd Inter-
national Conference on Software Engineering, 2000,
p. 199-208.

14. Rolfe, J.M., Flight simulation (cambridge aerospace
series) (Cambridge, UK: Cambridge University
Press, 1988).

15. Lindheim, R. and W. Swartout, Forging a New Simu-
lation Technology at the ICT, IEEE Computer, 34(1),
2001, p. 72-79.

16. Skrien, D., CPU Sim 3.1: A Tool for Simulating
Computer Architectures for Computer Organization
Classes, ACM Journal of Educational Resources in
Computing, 1(4), 2001, p. 46-59.

17. Sharp, H. and P. Hall, An Interactive Multimedia
Software House Simulation for Postgraduate Soft-
ware Engineers, Proceedings of the 22nd Interna-
tional Conference on Software Engineering, 2000, p.
688-691.

18. Collofello, J.S., University/Industry Collaboration in
Developing a Simulation Based Software Project
Management Training Course, Proceedings of the
Thirteenth Conference on Software Engineering Edu-
cation and Training, 2000, p. 161-168.

19. Abdel-Hamid, T. and S.E. Madnick, Software project
dynamics: an integrated approach (Upper Saddle
River, NJ: Prentice-Hall, Inc., 1991).

20. Cass, A.G., et al., Little-JIL/Juliette: A Process Defi-
nition Language and Interpreter, Proceedings of the
22nd International Conference on Software Engi-
neering, Limerick, Ireland, 2000, p. 754-757.

21. Rus, I., J.S. Collofello, and P. Lakey, Software Proc-
ess Simulation for Reliability Management, The
Journal of Systems and Software, 46(3), 1999, p.
178-182.

