

Problems and Programmers: An Educational Software Engineering Card Game

Alex Baker, Emily Oh Navarro, and André van der Hoek
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

abaker@uci.edu, emilyo@uci.edu, andre@ics.uci.edu

Abstract

Problems and Programmers is an educational card
game that we have developed to help teach software en-
gineering. It is based on the observation that students, in
a typical software engineering course, gain little practical
experience in issues regarding the software process. The
underlying problem is time: any course faces the practi-
cal constraint of only being able to involve students in at
most a few small software development projects. Prob-
lems and Programmers overcomes this limitation by pro-
viding a simulation of the software process. In playing the
game, students become aware of not only general lessons,
such as the fact that they must continuously make trade-
offs among multiple potential next steps, but also specific
issues such as the fact that inspections improve the qual-
ity of code but delay its delivery time. We describe game
play of Problems and Programmers, discuss its underly-
ing design, and report on the results of a small experi-
ment in which twenty-eight students played the game.

1. Introduction

In surveying the state of software engineering educa-

tion as reported in conferences [3, 13, 14] and special
journal issues [1, 2, 4], it becomes clear that students gain
remarkably little experience in exercising the software
process. While the relevant theory certainly is taught in
lectures, the practical side of most courses typically
guides the students through a linear execution of the wa-
terfall model.

The underlying problem is simple: class projects must
be completed within the length of their course. Combined
with the need for students to at least once exercise creat-
ing a set of project deliverables (e.g., requirements docu-
ments, design documents, test cases), little room is left to
illustrate the many facets of the software process.

Industry has recognized this problem and over time has
requested academia to better prepare its students for their
future in the workplace [8, 9, 12, 16]. In response, many
attempts have been undertaken to improve software engi-
neering education. Some attempts involve basing an entire

course on the latest software development approach, such
as extreme programming [17] or PSP [5]. Other attempts
involve intentionally applying a series of real-world com-
plications during a class project, such as suddenly chang-
ing the requirements while design is in progress [10]. Un-
fortunately, none of these approaches addresses the core
of the issue, and all suffer from being spot solutions that
provide glimpses of at most a few difficulties.

As an initial investigation into the feasibility of a rather
different approach, we have developed Problems and Pro-
grammers, an educational software engineering card game
that simulates the software process. As a game-based
simulation, Problems and Programmers provides students
with an experience that is similar to a class project, but
requires no deliverables to be built. It can therefore be
played quickly and through repeated use illustrate many
different aspects of the software process.

Problems and Programmers is built as a physical card
game. Compared to computer-based simulations such as
SESAM [11] and OSS [15], this has the distinct advantage
of being easy and open to use. The complete game state is
present on the table; the results of actions are immediately
visible; and, because Problems and Programmers is set up
as a competitive game, interactive games ensue in which
students learn from each other.

To evaluate the educational value of Problems and Pro-
grammers, we conducted an experiment in which twenty-
eight undergraduate students played the game. All of the
students had already passed a sophomore-level software
engineering class and, after playing, were asked to
comment on the quality of the game and its value if it had
been a standard part of that class. Results are encouraging:
although some aspects of game play can certainly be
improved, the overall reaction is that use of Problems and
Programmers in a software engineering course would
enhance students’ understanding of the software process.

The remainder of this paper is structured as follows. In
Section 2 we first discuss the main objectives of Problems
and Programmers. We then discuss its design in Section 3.
Section 4 introduces the details of game play. We present
the results of our experimental study in Section 5, and
conclude in Section 6 with an outlook at future work.

2. Objectives

The first and foremost goal of Problems and Program-
mers is to enrich a student’s understanding of the software
process. To create this higher level of understanding, the
game makes careful tradeoffs among faithfulness to real-
ity, level of detail, usability, teaching objectives, and fun
factors. Our choices in these tradeoffs were guided by the
following high-level objectives.

• The game should advocate proper use of software
engineering techniques. Moreover, it should discour-
age taking exorbitant risks or cutting corners. For ex-
ample, while it is technically possible to skip design,
this should generally lead to a loss in the game.

• The game should illustrate both general and specific
lessons concerning the software process. General les-
sons concern such issues as the non-linearity of the
software process and the need to make decisions that
may have drastic consequences. Specific lessons in-
clude, among others, Brooks’ Law [6] and the fact
that the use of a configuration management system
normally improves the overall development process.

• The game should provide a student with clear feed-
back concerning their decisions. Consider, for exam-
ple, a student who rushes the implementation phase
and at a later stage in the game loses some progress.
The game must provide feedback and explain that the
loss is due to the fact that hasty code development in-
troduces a higher number of bugs than as compared
to normal code development.

• Game play should be easy and comparatively quick.
Without compromising the level of complexity that is
needed to make each round of game play unique, a
single game must neither be too difficult nor too long
in order to maintain the interest of students and, thus,
the game’s value as an educational tool.

• The game should encourage interaction among stu-
dents. It is well-known that collaborative learning has
significant advantages [7]. Because some lessons in
Problems and Programmers are not immediately visi-
ble and must be abstracted from repeated game play,
interaction typically plays a critical role in uncover-
ing these lessons.

Finally, we note that Problems and Programmers is explic-
itly meant to complement existing course materials in
software engineering. Instead of replacing those materials,
Problems and Programmers is best used in a role that
builds upon the theory presented in lectures and in turn
reinforces its lessons with actual experiences in subse-
quent (or parallel) project assignments.

3. Overall Design

Problems and Programmers is set up as a multiplayer
game in which two or more players each attempt to be the
first to complete a hypothetical software project. Different
players usually take different strategies as determined by
their own preferences and decisions, yet calibrated for the
particular cards they draw. One player, for instance, may
play cautiously by establishing solid requirements, care-
fully designing the system structure, and testing all code
immediately. Another player may be more optimistic, only
partially establish all requirements up front, rush the de-
velopment of their code, and completely skip testing until
integration time. In this scenario, the cautious player runs
the risk of losing the game due to slow progress, whereas
the optimistic player runs the risk of losing the game due
to delays incurred by, for example, integration problems.

A distinct advantage of the competitive nature of Prob-
lems and Programmers is the fact that it encourages inter-
action. Because different players follow different strate-
gies, more than one strategy is exposed per game. This
allows players to not only evaluate their own strategy, but
to also discuss and compare strategies followed by others.
As a result, players learn from each other, which enhances
the educational value of Problems and Programmers.

As shown in Figure 1, game play in Problems and Pro-
grammers follows the steps of the waterfall model. We
considered incorporating other life cycle models, but two
reasons prevent us from doing so. First, physically visual-
izing different life cycles creates non-uniform card layouts
that are difficult to compare and interpret. Second, the
need to establish different rules for different life cycles
violates our objective of game play being easy. Players
would be so burdened by the various rules as they apply in
different situations, that they would lose the focus on ac-
tually understanding the software process and its issues.

Figure 1. Different phases in Problems and Programmers.

By no means must players complete one phase of the
waterfall before moving on to the next. Returning to pre-
vious phases in the life cycle is allowed (although it incurs
a penalty to simulate the extra effort involved). As a re-
sult, players gain insight into two important, high-level
lessons regarding the software process: it is not a linear
sequence of actions and generally involves choosing
among multiple viable alternatives as to what to do next.

The particular project to be completed is determined at
the beginning of the game, when a single project card is
drawn and placed in the middle amongst all players. As
shown in Figure 2 with an example project card for a Pay-
roll Controller system, a project card specifies a project in
terms of its complexity, length, quality, and budget. The
complexity and length are parameters defining the nature
of the application to be developed. Complexity influences
the amount of progress each player can make during the
implementation phase (the higher the complexity, the less
code each programmer can produce per turn) and length
defines the size of the application to be developed as the
number of code cards that must eventually be integrated to
form the application.

The quality and budget represent other stakeholders in
the process. Quality represents the customer’s demands
and defines the number of code cards that will be in-
spected for bugs. The player that is first in completing the
integration process and succeeding in having all inspected
code cards be bug free, wins the game. Finally, budget
represents the development organization and constrains
the project in how many programmers can be hired.

Together with the overall need to be the first to com-
plete a project in order to win the game, a project card
captures the typical tension that exists between time (need
to win the game), quality (must pass the acceptance test
inspections), and money (cannot exceed the budget). The
game, thus, illustrates two more important lessons regard-
ing the software process: it always involves multiple
stakeholders and must balance multiple, conflicting goals
at the same time.

Figure 2 shows three additional kinds of cards used in
Problems and Programmers. First, programmer cards are
used during the implementation phase. Each programmer
is defined by a salary, skill, personality, and brief descrip-
tion. The salary defines the cost to the overall project of
hiring a programmer; the sum of all programmer salaries
may not exceed the project budget. The skill and personal-
ity of programmers define their behavior in terms of how
productive they are in developing code and how coopera-
tive they are within the organization, respectively. Finally,
the particular values for salary, skill, and personality are
explained with a brief textual description of the specific
traits of the programmer.

Problem cards are at the heart of game play in Prob-
lems and Programmers. They, in fact, create many of the
uncertainties that make winning the game difficult. Prob-
lem cards are drawn by one player and played upon an-
other player. If that other player matches the condition on
the problem card, they are penalized. The example prob-
lem card in Figure 2 illustrates this process. If played on a
player who has more than one “unclear requirements”
(e.g., a requirements card containing a problem that has
not been resolved as of yet), that player must concede two
code cards and one design card of their choice. Clearly,
this particular problem card addresses the need to first
establish unambiguous and clear requirements before code
is developed. Many other problem cards exist that high-
light all kinds of problems. Of note is that feedback is
immediately present on the card: it explains the condition,
names the problem, and describes the penalty.

Concept cards play the opposite role of problem cards:
they represent benefits to a project. For example, the card
shown in Figure 2 illustrates how a walkthrough helps to
reduce unclear requirements or design. A few concepts
will incur a cost. For example, one concept card increases
the motivation of each programmer with a bonus, resulting
in higher productivity. This card can only be played if its
cost, $30K, can be absorbed by the project budget.

Figure 2. Examples of a project card, programmer card, problem card, and concept card.

4. Game Play

Game play in Problems and Programmers is straight-
forward. Each turn, a player takes the following six steps:

1. Decide to move to the next phase of the life cycle, the
previous phase, or remain in the current phase.

2. Allow each opponent the chance to play one problem
card on them.

3. Draw cards.
4. Take actions, as allowed in the respective phase.
5. Play any programmer and concept cards.
6. Discard any extra cards.

Play starts in the requirements phase, and ends when one
player successfully completes their acceptance test.

Throughout the game, a player continues to draw cards
at each turn that may include programmer, problem, and
concept cards. These cards can be put into play after the
normal actions have been taken, and effectively create a
dynamic simulation in which different people slowly may
take the upper hand at different stages of the game.

A small number of rules exist that govern “exceptional
game states” (e.g., moving backwards to a previous phase
in the life cycle; replacing one programmer with another;
firing programmers that do not perform very well). Typi-
cally, certain negative consequences are associated with
these actions that parallel the effects in the real world.
Space limits us to further discuss these rules and the inter-
ested reader is referred to the web site of Problems and
Programmers: www.problemsandprogrammers.com. Here,
we focus on the actions that normally take place in each
phase of the life cycle.

4.1 Requirements

Creating a requirements document constitutes the first
phase of game play. Over a number of turns, a player must
create a single column of requirements cards, the length of
which simulates the size of the requirements document.
Based on the project’s complexity and length, a player
must decide when the document is “complete” for their
purposes. Some players will intentionally move on to the
design phase rather quickly, others will take a more cau-
tious approach and first build up a significantly sized re-
quirements document.

Requirements cards are either clear or unclear. The
presence of unclear requirements cards is problematic:
certain problem cards trigger unwanted negative progress
if too many requirements cards are unclear. Fortunately,
players may forgo some or all of their creation of new
requirements to rework existing unclear sections: at each
turn a player may choose to draw two new requirements
cards, draw one new and one replacement requirements
card, or draw two replacement requirements cards.

4.2 Design

The design phase is played much like the requirements
phase. Players create a—separate—stack for the design
document, and at each turn can choose to add new cards,
rework existing cards, or mix the two activities. Again, a
player has to decide (based upon experience with repeated
game play for projects with different complexities and
sizes) upon the desired number of cards that will consti-
tute a “good” design document for this project.

4.3 Implementation

Implementation is the most important phase in Prob-
lems and Programmers. Per turn, each programmer that a
player has hired can take four different actions: program
good code (cost equal to project complexity), program
rush code (cost equal to project complexity divided by
two), inspect code (cost one), and fix a bug (cost one or
more). Total cost cannot exceed the skill-level of a pro-
grammer. A programmer of skill-level four working on a
project of complexity two could choose to program two
good code, one good code and two rush code, inspect four
code cards, or any other combination totaling four or less.

Code is programmed by drawing code cards from the
code deck and placing the cards face down in a column
above the programmer. Good code is distinguished from
rush code by the card color that is put at the top (blue and
red, respectively). Inspection is not mandatory, but gives a
player insight into their code quality by turning cards over
and revealing whether the code has bugs. Three types of
bugs exist: simple, normal, and nasty. Code containing a
simple bug can be replaced with another code card when a
player chooses to fix the bug. Of note is that the new code
card is placed face down in the stack to simulate the fact
that bug fixes can contain bugs themselves.

Normal bugs are fixed by swapping them, one-by-one,
with the code cards above them until they are at the top of
the column and can be gotten rid of like a simple bug.
This process simulates that other code often must be
modified as well if it builds on buggy code and empha-
sizes the importance of early bug detection and resolution.

Finally, nasty bugs are what they are called: they wipe
out all progress above it in the column, and a player has to
redevelop that code.

Inspecting code clearly has the benefit of uncovering
bugs early in the process. Just like in the real world, how-
ever, improving code quality bears the cost of increased
time-pressures that exist to get coding completed.

Note that when a player has reached the implementa-
tion phase, problem cards may be played upon that player.
Some players may hold off on playing their problem cards
until later in the process to wreak even more havoc (mim-
icking the fact that later changes typically are costlier).

4.4 Integration testing

During the integration phase, a player can take all of

the code developed by a particular programmer and move
it into the integrated code column. Code that is known to
be buggy after inspection and code that has not yet been
inspected can both be integrated, but doing so exposes the
player to the risks described in the next section. Code is
integrated programmer by programmer, illustrating trade-
offs between having more programmers, which reduces
the time needed to build the overall system, and fewer
programmers, which makes integration quicker.

Note that once code has been integrated, problem cards
no longer have an effect on it. Note also that a player does
not have to wait until all programmers have finished cod-
ing in order to start the integration process.

4.5 Maintenance / acceptance testing

This is the final phase of the game and can only be en-
tered after the length of the integrated code column equals
or exceeds the length of the project. At that point, a player
has to decide whether to continue integrating code or at-
tempt to win the game. In the latter case, all integrated
code is placed face down, shuffled, and a number of cards
equaling the project quality (as stated on the project card)
are pulled from the top of the pile. If no bugs appear, the
player has won the game. If any bugs appear, however, the
penalty is severe: all code cards must be placed above a
single programmer of choice with the bugs that were dis-
covered at the bottom of the column. Play continues: the
bugs must be fixed, additional code can be inspected, and
the player is once again vulnerable to problem cards.

5. Experiment

To evaluate Problems and Programmers, we conducted
an experiment in which twenty-eight undergraduate stu-
dents played the game. Teamed in pairs, each student was
first introduced to the game, its objectives, and its me-
chanics of game play (30 minutes), then played twice
against the other person (45 minutes per game), and was
asked to fill out a questionnaire regarding their particular
experiences (10 minutes). Our primary objective was not
to observe or analyze the students’ play, but rather to sim-
ply let them play and report on whether they considered
the game helpful in learning about the software process.

To promote objectivity, the experiment was carried out
independent of any particular software engineering course.
Furthermore, while all students had passed the same soft-
ware engineering course as background material (ICS 52,
Introduction to Software Engineering), they did so in dif-
ferent quarters with different instructors. Finally, we ran-
domly chose subjects from a full pool of applicants.

The questionnaire consisted of questions regarding the
experience of playing the game and potential for the game
to be used as a teaching aid. Two kinds of questions were
asked: numerical score questions and open-ended ques-
tions. Table 1 presents the results for the numerical score
questions, with 1 indicating a strongly negative answer
and 5 indicating a strongly positive answer. Overall, the
results are very encouraging. With the exception of ques-
tion 4, which had an average score of only 2.6, all other
questions indicate positive feedback with average values
ranging from 3.3 (question 8) to 4.1 (question 1). Perhaps
most indicative is the 3.7 average score for question 6,
which is a clear vote of confidence in the game and its
merits by the students who participated in the experiment.

Table 1. Questionnaire numerical scores.

Question 1 2 3 4 5

1. How enjoyable is it to play? 6 13 9

2. How difficult/easy is it to play? 3 10 12 3

3. How well does it reinforce knowledge? 6 9 6 6

4. How well does it teach new knowledge? 7 8 6 3 4

5. How well does it teach the software process? 1 4 8 12 3

6. Incorporate it as standard part of SE course? 1 6 3 12 6

7. As an optional part? 1 5 4 10 8

8. As a mandatory part? 1 6 8 11 2

Also informative were the answers given to the open-

ended questions. Designed to present us with feedback to
assist in further improving the game, questions focused on
favorite and least-favorite parts, clarity, problematic parts,
lessons learned, suggestions for improvement, and overall
impressions. Again, results are encouraging: “I learn that
even though doing requirements and design take a lot of
time, but if we don’t do well on these parts of the project
might actually take longer to finish!”, “It reinforces the
ideas taught in ICS 52 with a fun way to learn it.”, “The
game illustrates in 1 hour or 2 almost half of the material
in ICS 52.”, “I think I learned that having many pro-
grammers = more time in integrations.”, and “Tells me
WHY it is important to create quality code.” Most impor-
tantly, a significant number of respondents considered the
competition aspects of the game enjoyable and helpful.

At the same time, the responses brought to light some
issues with the game, e.g.: “Requirements and design are
boring.”, “Add different life cycles.”, “It was unclear the
amount of time should be spent on requirements and de-
sign.” The majority of these comments were focused on
the early phases of the game and we will take these and
the other comments provided and examine whether we can
improve the game accordingly. In particular, we intend to
make the requirements and design phases more varied in
order to introduce both more alternative strategies and
more depth into the game.

6. Conclusions

Problems and Programmers represents a first attempt at
using a physical card game for educating students in the
many difficult issues inherent to the software process.
While it certainly is not designed to teach the “right” an-
swer to each particular situation (such an endeavor is im-
possible), repeatedly playing Problems and Programmers
prepares a student for the breadth of issues they may face
in their future careers, reinforces in a practical manner
many of the theoretical lessons presented in lectures, and
builds a student’s understanding of their actions and role
in the overall software development process.

Compared to existing automated simulations, our card-
based simulation has the advantage of being highly visual,
being easy and fun to play, engaging students in collabo-
rative learning, and providing almost instantaneous feed-
back on the actions that students take. While we had to
make some compromises to achieve this level of function-
ality and therefore were unable to include as many aspects
of the software process as we would have liked, we be-
lieve the current incarnation of the game achieves a good
balance among the objectives stated in Section 2.

The results of our experiments confirm our intuitions:
students largely believe that use of the game in their soft-
ware engineering class would have helped them in their
studies. Our research, however, does not end here. First,
we plan to actually use Problems and Programmers in our
introductory software engineering class. Using an im-
proved version based on the feedback received, we hope
to further build our understanding of how the game helps
in teaching the software process. Planned collaborations
with three other institutions will provide us a broad sam-
ple size in this process. Second, we will develop an auto-
mated version of the game. Although losing the physical
aspects of the game, automation facilitates easy distribu-
tion and allows us to build a version of the game that in-
corporates additional software engineering principles and
life cycle models—the advantage being that the program,
and not the player, enforces the rules of game play.

Acknowledgments

We thank the other members of our research group for
their invaluable suggestions regarding the design and im-
plementation of Problems and Programmers.

This research is supported by the National Science
Foundation under Grant Number CCR-0093489. Effort
also sponsored by the Defense Advanced Research Pro-
jects Agency, Rome Laboratory, Air Force Materiel
Command, USAF under agreement numbers F30602-00-
2-0599 and F30602-00-2-0607. The U.S. Government is
authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright annota-

tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency, Rome Laboratory or
the U.S. Government.

References

1. IEEE Software, Special Issue on Educating Software Pro-

fessionals. Vol. 19 (5), September/October. 2002: IEEE.
2. The Journal of Systems and Software. Vol. 49. 1999: El-

sevier Science Inc.
3. Proceedings of the Fifteenth Conference on Software En-

gineering Education and Training. 2002: IEEE.
4. Balci, O., Annals of Software Engineering. Vol. 6. 1998:

Baltzer Science Publishers.
5. Borstler, J., et al., Teaching PSP: Challenges and Lessons

Learned. IEEE Software, 2002. 19(5): p. 42-48.
6. Brooks, F.P., The Mythical Man-Month: Essays on Soft-

ware Engineering. 2 ed. 1995: Addison-Wesley. 336.
7. Bruffee, K.A., Collaborative Learning: Higher Education,

Interdependence, and the Authority of Knowledge. 1983:
John Hopkins University Press.

8. Callahan, D. and B. Pedigo, Educating Experienced IT
Professionals by Addressing Industry’s Needs. IEEE Soft-
ware, 2002. 19(5): p. 57-62.

9. Conn, R., Developing Software Engineers at the C-130J
Software Factory. IEEE Software, 2002. 19(5): p. 25-29.

10. Dawson, R., Twenty Dirty Tricks to Train Software Engi-
neers, in Proceedings of the 22nd International Conference
on Software Engineering. 2000, ACM. p. 209-218.

11. Drappa, A. and J. Ludewig, Simulation in Software Engi-
neering Training, in Proceedings of the 22nd International
Conference on Software Engineering. 2000, ACM. p. 199-
208.

12. McMillan, W.W. and S. Rajaprabhakaran, What Leading
Practitioners Say Should Be Emphasized in Students’ Soft-
ware Engineering Projects, in Proceedings of the Twelfth
Conference on Software Engineering Education and Train-
ing, H. Saiedian, Editor. 1999, IEEE Computer Society. p.
177-185.

13. Mengel, S.A. and P.J. Knoke, Proceedings of the Thir-
teenth Conference on Software Engineering Education &
Training. 2000: IEEE Computer Society.

14. Ramsey, D., P. Bourque, and R. Dupuis, Proceedings of
the Fourteenth Conference on Software Engineering Edu-
cation and Training. 2001: IEEE Computer Society.

15. Sharp, H. and P. Hall, An Interactive Multimedia Software
House Simulation for Postgraduate Software Engineers, in
Proceedings of the 22nd International Conference on
Software Engineering. 2000, ACM. p. 688-691.

16. Shaw, M., Software Engineering Education: A Roadmap,
in The Future of Software Engineering, A. Finkelstein,
Editor. 2000, ACM. p. 373-380.

17. Shukla, A. and L. Williams, Adapting Extreme Program-
ming for a Core Software Engineering Course, in Proceed-
ings of the Fifteenth Conference on Software Engineering
Education and Training. 2002, IEEE. p. 184-191.

