

Adapting Game Technology to Support Individual and Organizational Learning

Emily Oh and André van der Hoek
Institute for Software Research
University of California, Irvine
Irvine, CA 92612–3425 USA

emilyo@uci.edu and andre@ics.uci.edu

Abstract
It is well known that traditional educational techniques
can be complemented by simulation to achieve a more
effective learning experience. One would expect the same
phenomenon to be true in software development. However,
the simulation techniques used thus far have not been ef-
fective. This paper introduces a novel approach to simula-
tion for software development education that is based on
the adaptation of game technology. Specifically, we pro-
pose to build a simulation environment that interacts with
its users much like games such as SimCity and The Sims.
In providing direct, graphical feedback, we hypothesize
that this approach allows individuals to develop an under-
standing of the software processes used in their organiza-
tion, while organizations as a whole benefit from the abil-
ity to explore different approaches to their software devel-
opment process.

1. Introduction
The ever-increasing presence of software in our society
necessarily demands faster, higher-quality software devel-
opment processes that do not impose a large financial bur-
den on the organizations employing them. Consequently, a
great need has arisen to find effective ways to improve the
software process by building up knowledge both on the
organizational and individual levels. In response to this
need, much research has been devoted to software devel-
opment education and training in recent years—not only
within organizations themselves, but also at the universi-
ties and colleges that are normally first in introducing
software development practices and processes to students.

Typically, this kind of education and training involves one
or more of the following:

1. A series of theoretical lectures in which the nature
of software development is introduced, covering
life cycle models, methodologies, modeling tech-

niques, example processes, and desired properties
of the set of artifacts to be produced.

2. A small project in which software development is
practiced, some example processes are followed,
and direct feedback is provided by the project
teacher.

3. A highly focused, “shotgun”-like seminar in
which a particular aspect of software development
is meticulously described, analyzed, and applied
to the situation at hand.

However, none of these approaches provide sufficient
theoretical background and sufficient practical experience
to adequately teach the software process in its fullest. Par-
ticularly in the context of individual and organizational
learning, this presents a problem: individuals need to un-
derstand their role within the larger process and organiza-
tions need to understand the process as a whole in order to
be able to make any improvements.

This paper describes our initial approach to building an
educational software development simulation environment
that facilitates individual and organizational learning. The
environment supports individual learning by allowing a
user to operate in a simulated environment that mimics the
particular process of their organization. Organizational
learning is promoted by allowing an organization itself to
examine the simulated process and anticipate, through ex-
perimentation, the effects, benefits, and drawbacks of dif-
ferent decisions.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the educational challenges surrounding the
inherent nature of software development. Section 3 pro-
vides background on educational simulation techniques,
emphasizing those used in software development. Section
4 discusses simulation games and their relevance to this
research. Section 5 presents the central hypothesis underly-
ing this project. Section 6 describes our initial approach to

mailto:emilyo@uci.edu
mailto:andre@ics.uci.edu

developing an educational software development simula-
tion environment. Our conclusions and plans for future
work are presented in Section 7.

2. Nature of software development
Software development has a number of characteristics that
make teaching the software process with traditional
mechanisms (such as lectures or class projects) rather dif-
ficult. Specifically, the combined difficulties posed by the
following five characteristics have sparked our research
into new methods of teaching the software development
process.

1. Software development is non-linear. Activities,
tasks, and phases are repeated. Multiple events
happen at the same time. Managing a project in
the same way every time will generally not pro-
duce the same outcome due to the presence of
several random factors (e.g., human factors, new
technical advances, customer’s erratic behaviors).
Although this kind of lesson can be conveyed in a
lecture, practical experience is necessary to really
understand the powerful nature of the non-
linearity of software development. Unfortunately,
the time schedule associated with most class pro-
jects does generally not allow one to repeat the
same process over and over.

2. Software development involves several inter-
mediate steps and continuous choices between
multiple, viable alternatives. Even with careful
planning, all possible events that can occur cannot
be anticipated at the start of a project. Difficult
decisions must be made, tradeoffs must be con-
sidered, and conflicts must be handled constantly
throughout the software life cycle. Generally a
project moves along following precisely the steps
prescribed by the instructor. Other than deciding
upon the actual content of a design and imple-
mentation, decisions regarding the process do not
have to be made. This is precisely the problem—
process decisions are often some of the hardest
ones to make.

3. Software development may exhibit dramatic
effects with non-obvious causes. Although the
software process has several more obvious cause-
and-effect relationships (e.g., changes made in
later phases of development are more time-
consuming and expensive than those made early
in development), there are several common situa-
tions that may arise in which the cause is not so
apparent. For example, it is well known that add-
ing people to a project that is already late typi-
cally makes that project later (Brooks’ Law) [6].
However, the underlying cause of this phenome-

non, namely the increased amount of communica-
tion necessitated by the greater demands for
learning and coordination among a larger number
of people, may not necessarily be so clear. Once
again, some of these lessons can be taught in a
lecture, but practical experience is required to
fully understand their implications. Most class
projects however, are of limited size and scope
and—other than an influence on a students’
grade—have no real consequences.

4. Software engineering involves multiple stake-
holders. People other than developers and pro-
ject managers, including customers and persons in
non-development roles in an organization, all
make decisions that affect development. In a typi-
cal class project, these roles are ignored. At best,
an instructor plays the role of a customer and puts
some hypothetical restrictions on the process on
behalf of a virtual management team. It is desired,
however, that students be able to learn the influ-
ence of all potential stakeholders and the powers
that their desires exhibit over the software devel-
opment process.

5. Software engineering often has multiple, con-
flicting goals. The software process is fraught
with tradeoffs between such things as quality ver-
sus cost, timeliness versus thoroughness, or reli-
ability versus performance. In a typical software
development class, these tradeoffs are introduced
in lectures, but normally ignored in the class pro-
ject. A relatively complete requirements docu-
ment, a working design, and a prototype imple-
mentation are usually sufficient for a passing
grade. This is a significant simplification and
hardly touches upon the difficult tradeoffs that are
often present in practice.

It is crucial for any educational experience of the software
development process to communicate these issues in order
to create a full understanding of the depth and complicated
nature of the software process. Although simple illustra-
tions of these kinds of complications are nowadays becom-
ing more standard in software development education [9],
none of the individual and organizational software process
learning techniques developed thus far have achieved a
high level of inclusiveness for all of the above dimensions.
Most problems are introduced in lectures, but the practical
experience falls far short of what a student can expect “in
the real world”, thus preparing them for a rather significant
shock once they move to industry and requiring industry to
provide their own, comprehensive training programs.

3. Simulation
Simulation is a powerful educational tool that has been
used successfully in many different settings, such as flight
simulation [22], military training [16], and hardware de-
sign [7]. Learning via simulation provides significant edu-
cational benefits: valuable experience is accumulated
without the potentially dramatic consequences that may
occur in case of failure. Moreover, unknown situations
can be introduced and practiced, experiences can be re-
peated, alternatives can be explored, and a general freedom
of experimentation and “play” is promoted in the training
exercise [15]. We believe simulation is the ideal platform
upon which to teach software development and, in particu-
lar, software development processes. As compared to lec-
tures and employee training seminars, simulation has the
distinct benefit of showing and teaching users cause and
effect in a practical manner: if they make a wrong decision
in the simulation, it will (hopefully) become clear to them
because the simulation environment will show them cer-
tain undesired effects. As compared to on-the-job training,
simulation has the distinct benefit of being much quicker:
one does not have to wait days, weeks, or even months to
see the effects of a decision, since the simulation environ-
ment is able to operate at a faster pace than real life. In
general, simulation allows a practical experience without
the additional, distracting burden of having to produce
project deliverables.

In essence, education via simulation allows students to
learn cause and effect relationships and consequences of
decisions in a practical manner, while significantly reduc-
ing costs in time, money, and adverse real-world conse-
quences. Moreover, simulation promotes practice with
unknown situations, allows repeat experiences and explo-
ration of different alternatives, provides the freedom of
experimentation and “play” that is typically absent in other
teaching techniques, and promotes insight into the rela-
tionships among the various components of the process, as
well as an overall understanding of the behavior of the
process being modeled. Through all of this, simulation
equips students with an increased ability to predictably
understand the behavior of real-world systems [15].

Several software process simulators have already been
developed [4, 14, 21]. All of these operate according to
the following basic philosophy: create a model of the real
world, choose a set of input parameters, run the model, and
examine the outputs together with traces of the model
simulation to understand the workings of the environment
and discover possible areas for improvement. This ap-
proach has been used for both organizational learning [19,
23] (providing management of an organization with in-
sights into the process as a whole and the influences on the
process of such decisions as to hire more personnel or to
introduce specific software tools and methodologies) and
individual learning [8, 10] (supporting individuals in their

day-to-day decisions by providing them with learning tools
and simulations to predict the outcome of some of their
tasks based on certain input parameters). However, these
simulations are, for the most part, continuous (they run
without interruption) and non-graphical (at best, consisting
of buttons, graphs, tables, diagrams, and text). This leaves
the user with a passive role and portrays software devel-
opment as a linear, non-interactive, one-sided process.
Moreover, none of the simulators have achieved an appro-
priate level of interactivity, collaboration, and complete-
ness while competently addressing each of the five afore-
mentioned fundamental aspects of software development.

4. Games
Simulation games represent a tremendous source of ex-
perience that can be leveraged in creating new software
development training and education approaches. A class of
games that is particularly relevant is the one derived from
the so-called “adventure games” of the olden days—now
represented by such popular games as SimCity [11], The
Sims [12], Escape from Monkey Island [17], Myst [20],
Ultima Online [13], various multi-user dungeon games
(MUDs) [18, 24, 26], MUDs-object-oriented (MOOs) [1-
3] and many others. In these games, players live their lives
in a virtual world and have to work towards achieving cer-
tain, sometimes conflicting, goals. For example, in The
Sims the goal is to live as prosperous a life as possible by
purchasing a house, working to earn money, falling in
love, buying food and furniture, and performing other do-
mestic kinds of activities. However, The Sims is full of
complicated tradeoffs that hinder the achievement of all of
the goals in parallel. For example, purchasing a bigger
home (necessary to house a family) leads to fewer funds
available for purchasing food (necessary to stay healthy).
These kinds of tradeoffs are inherent to The Sims (and
other games) and form the essence of its game play: the
eventual outcome is determined by player’s choices to
work towards certain goals while ignoring others.

An important characteristic of these games is that the game
itself is typically responsible for simulating random events
and providing all auxiliary characters, along with their
own, often unexpected, behaviors. The player must handle
and interact with these characters and events in order to
successfully advance in the game.

It is interesting to observe that these games exhibit
strengths in addressing exactly those dimensions that make
teaching software development processes so difficult:

• They are non-linear. Multiple events happen at
the same time; one has to frequently interrupt cer-
tain activities to tend to others; and generally
playing the game in the same way every time will
not lead to the same results, due to the presence of

several random factors in the simulated characters
and events.

• They allow for the exploration of alternatives.
All games allow a player to save the state of the
game, in effect providing a checkpoint ability that
can be leveraged to explore different directions
without committing oneself—simply returning to
the saved state allows for exploration of a differ-
ent alternative.

• They exhibit dramatic consequences and illus-
trate their causes. For example, if a player in the
Sims has a guest in their house, and after a while
the guest leaves with an angry facial expression,
the game will tell the player why they left (e.g.,
the player did not feed them, the player did not
entertain them, the player did not talk to them
enough). Although not real, the graphical illustra-
tion of some of the possible consequences in
these games (which range from the player actu-
ally being killed, to buildings being destroyed by
natural disasters, to dirty houses being invaded by
rats) has a profound impact on the player and
their advancement throughout the game.

• They generally involve multiple stakeholders.
In some games, these stakeholders are represented
by the different players that each try to optimize
their own results. In other, single-user games, the
game simulation provides the stakeholders. For
example, SimCity has unions and green party rep-
resentatives that the player has to keep happy in
making decisions regarding city planning.

• They involve multiple, conflicting goals. As
exemplified above with the house purchase ex-
ample, the games involve optimizing multiple
goals that sometimes interfere with each other.
Player’s actions inherently weigh certain goals as
more important than others, and generally lead to
the attainment of some goals and only the partial
fulfillment of others.

On top of that, these games illustrate many other examples
of good and effective design that can be leveraged in creat-
ing a simulation environment for software development.
They are fun to play, encourage experimentation, usually
have an excellent graphical user interface, have immediate
as well as time-delayed cause and effect relations, and
bring the player into unexpected, unknown situations that
need to be resolved. It is clear that a careful study of how
games achieve all of these properties is essential for us to
be able to build a comparable kind of simulation environ-
ment for software development education.

5. Hypothesis
We observe that simulation game technology is an excel-
lent vehicle for reducing the difficulties faced in teaching
the software development process. It should come as no
surprise, therefore, that the central hypothesis underlying
our research is the belief that the creation of a game-like,
educational software development simulation environment
is the answer to solving the problem of adequately teach-
ing the software development process. Using such an envi-
ronment, the software development process can be prac-
ticed in a rapid, real-world-like setting without the addi-
tional burden of actually having to produce artifacts. Of
course, we do not propose that these simulation environ-
ments replace existing techniques such as lectures and
class projects. Instead, we believe that simulation best
serves in a complementary fashion—used in parallel with
existing techniques to teach a broad perspective of soft-
ware development. In particular, lectures are still required
to introduce the topics to be simulated and class projects
are still required to demonstrate and reinforce some of the
lessons learned in the lectures and simulations.

We furthermore observe that an educational software engi-
neering simulation environment is as useful for individual
learning as it is for organizational learning. While “play-
ing” in such an environment, individuals can learn about
their place in the software development process, under-
stand the impact of their decisions (and non-decisions!),
and generally get an overview of the broad software devel-
opment process as it exists in an organization. Organiza-
tions can use the simulation environment to experiment
with ways in which to select and instrument their organiza-
tional process. Specifically, by setting up the environment
with different processes and running a series of simula-
tions, they can understand the tradeoffs of different organ-
izational structures and processes, see visual feedback on
the consequences of each choice, and choose the particular
process to be instituted in their organization. Of course,
most often this process will be incremental: organizations
can periodically use the simulator to fine-tune their proc-
ess.

6. Approach
We are in the very preliminary stages of addressing the
above hypothesis. Our research thus far has concentrated
on setting requirements and creating an initial design for
our version of an educational software development simu-
lation environment. The most important lesson learned in
this effort is the fact that we need a three-pronged ap-
proach. Specifically, we will need to collect the fundamen-
tal rules of software development, design and implement
the environment, and create models that encapsulate sets of
rules and are used to drive the simulation environment
with particular scenarios.

6.1. Fundamental Rules of Software Development
Like any other discipline, software development has many
underlying empirical rules. For example, it is well known
that skipping design and going straight to coding leads to
problems during the integration process. Our simulation
environment has to provide a real-world experience and,
thus, has to be solidly rooted in such real-world phenom-
ena. Unfortunately, the set of rules of software develop-
ment is published in a wide variety of media (software
engineering journals and conferences, computer-supported
collaborative work journals and conferences, books, trade
literature, etc.) and no single source exists in which all are
compiled. Therefore, the first exercise towards our goal of
creating an educational software development simulation
environment has been to research, identify, and compile a
compendium of the set of fundamental rules of software
development. Simultaneously, descriptions of simulation
scenarios that would effectively illustrate these rules on
both the individual and organizational levels have been
created.

As an example of how the simulator facilitates software
process learning, consider Brooks’ Law. A possible sce-
nario demonstrating this law might be the following:

The project is late. The project manager decides to
handle this by hiring a few more people, figuring
that more manpower will result in a higher produc-
tivity. Much to her surprise, each developer’s pro-
ductivity level drops as they spend a significant part
of their work hours meeting and communicating
with each other, trying to bring the new employees
up to speed. She also notices that the productivity
levels of the new employees are significantly lower
than those of the trained employees. All of this re-
sults in an overall decrease in team productivity and
an even later project.

The user going through this scenario would be able to
make an assessment of the situation (the project is late),
make a decision and perform a subsequent action (hire
more people), experience the consequences of his action,
both short-term (lower team productivity levels) and long-
term (late project), and see the underlying, non-obvious
causes of those consequences (developers spending more
time communicating and less time developing software).
As a result, the individual would gain a concrete, experien-
tial understanding of this important, yet complex concept.

Note that this particular example shows results at both the
individual and organizational level. An individual, in this
case the manager, is able to understand the consequences
of her action. Similarly, however, the organization as a
whole learns: if upper management pressured the manager
into hiring more personnel, the manager would be able to
provide concrete evidence that this may not be a wise deci-

sion. Similarly, if the manager encountered a colleague in
the same situation as her (a late project and considering
hiring more people), she would be able to share the lesson
she learned. Thus, even if an individual uses the simulation
environment, the organization as a whole may experiences
positive effects from this exercise.

6.2. Models
Any simulation environment is driven by a model of the
real world. Rather than constructing one such overarching
model, we plan to construct a series of models of incre-
mental complexity, each model based on a subset of the
rules identified in Section 6.1. Simpler models can be used
in focused lessons to highlight small sets of rules that illus-
trate particular issues. Models of more complexity, con-
structed out of larger sets of these general software devel-
opment rules, can be used to illustrate the difficulty of the
overall process of software development. When built on
rules that embody a specific organization’s software proc-
ess, the simpler models can be used to teach particular
aspects of the organization’s process to the individual in
training. Complex models built on organization-specific
rules can be used both to teach the overall process to the
individual and to aid the organization in viewing the soft-
ware process in such a way as to discover areas for im-
provement. In general, the use of models allows tailoring
of the simulation environment to portray organizations’
unique software processes and to provide different lessons
as part of different simulation runs.

In creating the model, one particular difficulty we antici-
pate involves the encoding of the software engineering
rules. Several questions about the parameterization of the
model must be addressed: a) what are the constraints and
the variables whose values must obey those constraints; b)
what are the constants that influence the values of those
variables; c) what are the equations that embody the cause
and effect rules determining the behavior of the model; d)
how are the (often conflicting) overall goals of software
engineering and the individual goals of each entity in-
volved in the simulation encoded into the model?

As an example, consider the following simulation scenario
that illustrates the software engineering “law” which says
that skipping the design phase leads to highly problematic
integration:

The developers proceed directly from the require-
ments phase to implementation, skipping the design
phase completely. When they begin to integrate, the
error rate of the software skyrockets, the quality of
the software drops dramatically, and each devel-
oper’s mood plummets. They must spend several
months (while the cost meter is ticking away) inte-
grating all of the different developers’ pieces of
code before the system works.

Expressed qualitatively, this situation is easily described
and well understood. However, in order to make this sce-
nario executable in a simulator, a quantitative representa-
tion of its behavior, including mathematical equations de-
scribing the relationships between all of the different vari-
ables and factors involved, is needed. For instance, exactly
how many person-months longer does development take
when the design phase is skipped? Precisely how many
more bugs are present in a piece of software that was de-
veloped without a design phase than one that was thor-
oughly designed before it was implemented? How much
does each developer’s motivation actually drop as the re-
sult of such a situation, and how, in turn, does this affect
the resulting productivity of the team? In essence, an exact
schema with which to evaluate the precise cost of each
action the player can take must be adopted. We intend to
leverage information from sources such as COCOMO [5]
in creating models that are as close to the real world as
possible, neither overplaying nor underplaying the effects
portrayed in the simulation.

6.3. Simulation Environment
The most important feature of our proposed simulation
environment is that it will be graphical. Learning through
visual clues has proven to be far advantageous over simply
studying textual output [25] and our simulation environ-
ment intends to take full advantage of this fact. For exam-
ple, consider the rule that adding personnel to a project that
is already late typically makes that project later [6]. A
simulation environment like SESAM, which is text-based,
will show the effect of this rule in the eventual outcome
when a student decides to add people to a late project: the
project indeed will be later [10]. However, it is unclear as
to why the project may be later. This is where our simula-
tion environment will take full advantage of its visual
front-end: when a student decides to add people to a pro-
ject that is late, the simulation environment will graphi-
cally show that the number of meetings (both face-to-face
and as a group) increases. Specifically, it will show per-
sonnel assembling in meeting rooms at a greater fre-
quency; it will show complaints from existing personnel to
the project manager that they cannot get their work done
due to these meetings; and it will show that the project is
delivered at a later date. In effect, the graphical nature of
our simulation environment allows us to clearly illustrate
cause and effect, rather than effect only.

A second important characteristic of our proposed simula-
tion environment is that it is interactive and, as such, sup-
ports a student playing different roles. This kind of interac-
tivity is required to engage a student as much as possible in
the learning process—students continuously can influence
and steer the simulation to experiment with different deci-
sions leading to different situations and outcomes. Being
able to play different roles in this process allows a student
to examine the effects of a decision made in one particular

role on the job and responsibilities of another. For exam-
ple, in playing a project manager a student may decide
that, due to cost considerations, coding has to be per-
formed with fewer personnel. Switching to the role of a
coder, then, will allow a student to see such effects as the
coder receiving more tasks under heavier time-pressure
and consequently having to work overtime to get all work
finished. Although the student as a project manager could
see the overall effect, the ability to switch roles into that of
a coder provides a more detailed, hands-on illustration that
likely will increase the learning factor significantly be-
cause of the direct nature of its feedback.

Interactivity in our simulation environment goes beyond
the interactivity traditionally found in games. Whereas
time always continues in games, thereby forcing a player
to either let the simulation progress as is or to make deci-
sions under relative strict time pressure, the focus on edu-
cation that is present in our simulation environment re-
quires advanced facilities to stop, examine, rollback, and
continue simulations. Saving the state of a simulation pro-
vides rudimentary support for doing so but is cumbersome
to use effectively; more advanced support is necessary to
encourage a student to fully explore alternative scenarios.
In particular, we plan to base our simulation environment
on parallel timelines: each timeline represents a different
alternative (as chosen by a user) that evolves independ-
ently. By carefully differentiating the critical parameters of
each timeline, a student can in effect perform multiple
simulations at once and study the effects of varying certain
parameters while keeping other parameters exactly the
same. It should be noted that a student will be able to go
back to any point in time on one or all of the timelines to
examine—or even roll back, change, and continue—any
number of ongoing simulations. This feature is particularly
powerful for organizational learning: an organization can
quickly examine multiple different paths.

Although essential, the fact that our simulation environ-
ment is graphical and interactive represents a rather
straightforward design problem. However, several other
issues complicate this design problem considerably. Spe-
cifically, our simulation environment needs to be based on
careful tradeoffs among such considerations as faithfulness
to reality, level of detail, usability, teaching objectives, and
“fun factor”. For example, the more detail that is provided
in the simulation and the more faithful the actual simula-
tion is to the real world, the harder it may be for students
to extract from the simulation those rules that they are
supposed to learn: too many cause and effect relationships
may be occurring in parallel for the simulation to be edu-
cationally useful. As another example, educational pur-
poses and fun factors may call for visual feedback effects
to be “over the top” such that it can be easily recognized
by students that something is wrong. However, this would
directly contradict the issue of faithfulness to reality.

Clearly, a delicate balance has to be struck among all the
design parameters. Ideally, even, the simulation environ-
ment supports a certain amount of configurability that al-
lows each design parameter to vary per simulation.

As a final note, we will base our environment on lessons
learned by such games as SimCity [11] and The Sims [12]
in providing the desired level of functionality while main-
taining a graphical and entertaining environment in which
users can learn effectively. These games have succeeded in
doing so, and not surprisingly we aim for the same level of
success. We anticipate being able to leverage existing ge-
neric simulation engines such that we will be able to con-
centrate on building the actual graphical environment
through which users will interact and the interaction of the
environment with the models underneath.

7. Conclusions
We have identified and sketched a method for teaching
software development processes—both at the individual
and organizational levels. Our belief is that a game-based
software development simulation environment can effec-
tively facilitate software development process learning at
both of these levels. Individuals can use such an environ-
ment to create an understanding of the various dynamics
that underlie both their organization’s unique software
process and software development in general. Organiza-
tions can use such an environment to provide them with an
overall view of their process, allowing critical examina-
tions to discover possible areas for process improvement,
and specific paths through which such improvements can
be made. We are currently in the process of realizing this
vision. In particular, we have assembled a large set of rules
of software engineering and are in the process of encoding
these into several different models. In parallel, we have
started to design our simulation environment and are cur-
rently investigating the possibility of reusing existing
simulation infrastructure to make the development effort
simpler.

Acknowledgements
We would like to thank Compaq for their support of this
research, Eric Dashofy for valuable feedback on the idea
of using simulation for software engineering education,
and the anonymous reviewers for the many helpful sugges-
tions that have been incorporated in this paper.

References

1. Hogwarts MOO. 1999. dune.net:7500

2. LostAges. 1999. mudz.org:6969

3. UtopiaMOO. 1998. donald-duck.ele.tue.nl:1111

4. Abdel-Hamid, T., Lessons Learned from Modeling the
Dynamics of Software Development. Communications

of the ACM, 1989. 32(12): p. 1426-1438.

5. Boehm, B.W., et al., Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0. 1995, University
of Southern California.

6. Brooks, F.P., The Mythical Man-Month: Essays on
Software Engineering. 2 ed. 1995: Addison-Wesley.
336.

7. Chua, Y.S. and C. Winton, A Simulation Tool for
Teaching CPU Design and Microprogramming Con-
cepts, in Conference Proceedings on APL as a Tool of
Thought. 1989, ACM. p. 94-100.

8. Collofello, J.S., University/Industry Collaboration in
Developing a Simulation Based Software Project Man-
agement Training Course, in Proceedings of the Thir-
teenth Conference on Software Engineering Education
and Training, S. Mengel and P.J. Knoke, Editors. 2000,
IEEE Computer Society. p. 161-168.

9. Dawson, R., Twenty Dirty Tricks to Train Software
Engineers, in Proceedings of the 22nd International
Conference on Software Engineering. 2000, ACM. p.
209-218.

10. Drappa, A. and J. Ludewig, Simulation in Software
Engineering Training, in Proceedings of the 22nd In-
ternation Conference on Software Engineering. 2000,
ACM. p. 199-208.

11. Electronic Arts, SimCity 3000. 1998.

12. Electronic Arts, The Sims. 2000.

13. Electronic Arts, Ultima Online Renaissance. 2000.

14. Kusumoto, S., et al., A New Software Project Simulator
Based on Generalized Stochastic Petri-net, in Proceed-
ings of the 1997 International Conference on Software
Engineering. 1997, ACM. p. 293-302.

15. Law, A.M. and W.D. Kelton, Simulation Modeling and
Analysis. 3 ed. 2000: McGraw-Hill Companies, Inc.

16. Lindheim, R. and W. Swartout, Forging a New Simula-
tion Technology at the ICT. IEEE Computer, 2001.
34(1): p. 72-79.

17. Lucas Arts Entertainment Company, Escape From
Monkey Island. 2000.

18. Lyra Studios, Underlight. 2000.

19. Madachy, R., System Dynamics Modeling of an Inspec-
tion-Based Process, in Proceedings of the Eighteenth
International Conference on Software Engineering.
1996, IEEE Computer Society.

20. Mattel Interactive, realMYST. 2000.

21. Raffo, D., Modeling Software Processes Quantitatively
and Assessing the Impact of Potential Process Changes

on Process Performance, in Graduate School of Indus-
trial Administration. 1996, Carnegie Mellon Univer-
sity: Pittsburgh, PA.

22. Rolfe, J.M., Flight Simulation (Cambridge Aerospace
Series). 1988: Cambridge University Press.

23. Rus, I., J.S. Collofello, and P. Lakey, Software Process
Simulation for Reliability Management. The Journal of

Systems and Software, 1999. 46(3): p. 178-182.

24. Samu Games, Artifact. 2000.

25. Shneiderman, B., Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. 2nd
ed. 1992: Addison-Wesley Publishing Company.

26. Sony Online Entertainment, Everquest. 1999.

