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KL-Divergence Derivation
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The first term we need is the Kumaraswamy’s entropy, which is given in [6] as
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where γ is Euler’s constant and Ψ is the Digamma function. The second term, the log Beta’s
expectation under the variational Kumaraswamy, is
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The first integral above is also needed in the derivation of the Kumaraswamy’s entropy; [6] shows it
can be evaluated using a Gradshteyn & Ryzhik formula (4.253), yielding
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The second integral, unfortunately, requires a Taylor series approximation. We expand log(1 − vk )
around 1 following [1]:
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This infinite sum converges since |vk | < 1, and thus by the monotone convergence theorem, we can
write the expectation of the sum as the sum of expectations:
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where bφB
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is the formula for the Kumaraswamy’s mth moment. The low-order moments

should dominate the infinite sum, and thus we need only a few terms for a good approximation.
Substituting back into Equation 1 we have our final expression for the KL-divergence:
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Experiments and Optimization

Below we give more details about our experiments and model optimization. Also we have released
Theano implementations available at https://github.com/enalisnick/stick-breaking_
dgms. All experiments were run on AWS G2.2XL instances.

In regards to datasets, we used the following train-valid-test splits. Frey Faces was divided into
{1500, 100, 300}, MNIST into {45000, 5000, 10000}, MNIST+rot into {70000, 10000, 20000}, and
SVHN into {65000, 8257, 26032}. SVHNwas the only dataset that underwent preprocessing; following
[4], we reduced the dimensionality via PCA to 500 dimensions that capture 99.9% of the data’s
variance. No effort was made to preserve class balance across train-valid splits nor during label
removal for the semi-supervised tasks.

Regarding optimization, all models were trained with minibatches of size 100 and using AdaM [3] to
set the gradient descent step size. For AdaM, we used α = 0.0003, b1 = 0.95, and b2 = 0.999 in all
experiments. Early stopping was used during semi-supervised training with a look-ahead threshold of
30 epochs. For the semi-supervised deep generative models, classification loss needs up-weighted
in some way. In [4], an extra weight was placed on the label log likelihood term. We attempted
this strategy but attained better performance (for all models) by re-weighting the contribution of the
supervised data within each mini-batch, i.e. λ∇J̃ (θ,φ; xi, yi ) + (1 − λ)J̃ (θ,φ; xi ). We calibrated
λ by comparing the log likelihood of the supervised and unsupervised data in preliminary training
runs and setting the parameter such that the supervised data had a slightly higher likelihood. For the
MNIST datasets, λ = .375, and for SVHN, λ = .45.

As for the model architectures, all experiments used ReLUs exclusively for hidden unit activations.
The dimensionality / truncation-level of the latent variables was set at 50 for every experiment except
Frey Faces. All weights were initialized by drawing from N(0, 0.001 · 1), and biases were set to zero
to start. No regularization (dropout, weight decay, etc) was used, and only one sample was used for
each calculation of the Monte Carlo expectations. We used the leading ten terms to compute the
infinite sum in the KL divergence between the Beta and Kumaraswamy.

Decoder Capacity

The ‘component collapsing’ behavior of the variational autoencoder has been well noted [2, 5]: the
model will set to zero the outgoing weights of latent variables that remain near the prior. Figure 1
(a) depicts this phenomenon for the Gauss-VAE by plotting the KL divergence from the prior and
outgoing decoder weight norm for each latent dimension. We see the weights are only nonzero in
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(a) Gauss VAE (b) Stick-Breaking VAE

Figure 1: Sparsity in the latent representation vs sparsity in the decoder network. The Gaussian VAE
‘turns off’ unused latent dimensions by setting the outgoing weights to zero (in order to dispel the
sampled noise). The SB VAE, on the other hand, also has sparse representations but without decay of
the associated decoder weights.

the dimensions in which there is posterior deviation. Ostensibly the model receives only sampling
noise from the dimensions that remain at the prior, and setting the decoder weights to zero quells this
variance. While the behavior of the Gauss VAE is not necessarily improper, all examples are restricted
to pass through the same latent variables. A sparse-coded representation—one having few active
components per example (like the Gauss-VAE) but diversity of activations across examples–would
likely be better.

We compare the activation patterns against the sparsity of the decoder for the SB-VAE in Figure 1 (b).
Since KL-divergence doesn’t directly correspond to sparsity in stick-breaking latent variables like it
does for Gaussian ones, the black lines denote the average activation value per dimension. Similarly
to (a), blue lines denoted the decoder weight norms, but they had to be down-scaled by a factor of 100
so they could be visualized on the same plot. The SB-VAE does not seem to have any component
collapsing, which is not too surprising since the model can set latent variables to zero to deactivate
decoder weights without being in the heart of the prior. We conjecture that this increased capacity is
the reason stick-breaking variables demonstrate better discriminative performance in many of our
experiments.
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