Register allocation and Strahler number
The register allocation problem

A compiler converts...

- **Input**: Code you wrote, in a high-level language, using however many local variables is convenient to express your ideas

 ➞

- **Intermediate code**: Every subexpression like the “\((x + y)\)” in the expression \((x + y) \times z\) becomes a separate local variable

 ➞

- **Machine code**: Only a very small number of local variables can be stored in general-purpose machine registers (e.g. eax, ebc, ecx, edx); everything else is “spilled” into memory and more expensive to access
Special case: optimally ordering subexpressions

We can choose order to evaluate subexpressions of an expression (even when some operations are not commutative):

\[(x + y) * z - (x - y) * w:\]

Which ordering can be compiled into code with fewest registers?
Evaluation of orderings

Suppose we have already calculated

- Subexpression A can be evaluated using \(a\) registers
- Subexpression B can be evaluated using \(b\) registers

and we want to combine them into a single expression with one more operation

- If we calculate A first, and save it in a register while we calculate B, we need \(\max(a, b + 1)\) registers
- If we calculate B first, we need \(\max(b, a + 1)\) registers
- It never helps to mix the two calculations

We should try to perform trickier computations first so that the simpler parts are the parts that get the +1 penalty
For each node x of the expression tree, let $R(x)$ be the optimal number of registers needed to calculate the subexpression rooted at x

- If x is a leaf then $R(x) = 1$
- If x has two children y and z with $R(y) \neq R(z)$, then we want to evaluate the subtree with the larger R first, giving $R(x) = \max(R(y), R(z))$.
- If x has two children y and z with $R(y) = R(z) = r$, then it doesn’t matter which order we evaluate them; either order gives $R(x) = r + 1$.

[Ershov 1958; Flajolet et al. 1979]
Strahler number

We can repeat the same calculation abstractly on any rooted tree, not just expression trees and not just binary trees:

- At leaf nodes, \(R(x) = 1 \)
- At nodes where one child \(y \) has larger \(R \) than all other children, \(R(x) = R(y) \)
- At nodes where two or more children have the max value \(r \), \(R(x) = r + 1 \)

Called Strahler number or Horton–Strahler number
Original application of Strahler numbers

Evaluating the complexity of river networks in geography

[Horton 1945; Strahler 1952, 1957]
Graph coloring
Input: Undirected graph

Output: Assignment of colors to vertices so that each edge has different colors at its endpoints, using as few colors as possible

Special case: graphs needing only two colors are called “bipartite”
The four color theorem

If you can draw it without crossings in the plane, you can color it using at most four colors

[Appel and Haken 1977]

But many other graphs require many more than four colors

(complete graphs require \# colors = \# vertices)
Complexity of graph coloring

It’s NP-hard and hard to approximate

Testing whether 2 colors is possible is easy (bipartiteness) but testing whether 3 colors is possible is NP-complete, even for graphs that can be drawn without crossings

Trivial approximation algorithm with approximation ratio $n/3$: if it’s not bipartite, just give every vertex a different color

For every $\varepsilon > 0$ it is NP-hard to approximate better than $n^{1-\varepsilon}$

[Zuckerman 2007]
Greedy coloring heuristic

Since we can’t guarantee an approximation ratio, use a method that always finds a coloring but might be far from optimal

Greedy coloring:

- Order the vertices (somehow)
- Number the available colors 1, 2, 3, 4, \ldots
- For each vertex in the given ordering, give it the lowest-numbered available color (the smallest number that is not already used for a neighbor)

A bad example: remove a matching from a complete bipartite graph and order the vertices by matched pairs
Greedy coloring time analysis

Assuming the ordering has already been found (somehow)

Main remaining step: Find first unused color at each vertex

```python
def first_unused(v):
    used = { color(w) for w in neighbors of v }
    for c in 1, 2, ...
        if c not in used: return c
```

Time: $O(\text{degree})$ per vertex, $O(m)$ total

Same “minimum excluded value” computation also comes up frequently in combinatorial game theory
Coloring by degeneracy

Suppose G has degeneracy d

Use greedy coloring algorithm with the reverse of a degeneracy order (so each vertex has $\leq d$ earlier neighbors, rather than later neighbors)

\Rightarrow uses at most $d + 1$ colors

This is why degeneracy is also called coloring number
Register allocation and graph coloring
Register allocation as a graph coloring problem

Vertices: The local variables of the intermediate code

Edges: Two local variables that both need to be stored at the same time (their lifetimes, obtained from use-definition analysis, overlap)

Colors: Available registers

Try to color as much of the graph as possible using \# colors = \# registers, and then spill the remaining variables
Register assignment for straight-line code

Suppose that we have code that is just expressions and assignments
no if-then-else, no loops, no subroutines

Expression trees already been ordered, so we just have a sequence of instructions \(\text{var}_i = \text{var}_j \text{ op } \text{var}_k \), one assignment/variable

Lifetime of each variable is an interval from assignment to last use

Graph of conflicting vars (overlapping intervals) is an interval graph
Greedy coloring for interval graphs

Order vertices left-to-right by left endpoint
Give each vertex first available color (standard greedy coloring)

A: first free color is 1
B: color is 2 (A has 1)
C: color is 3 (A,B have 1,2)
D: color is 2 (A has 1)
E: color is 1
F: color is 1
G: color is 2 (F has 1)

Total: 3 colors used
Greedy is optimal for interval graphs

If the algorithm uses color k for interval X, then:

- X already has neighbors colored $1, 2, \ldots k - 1$
- Because these neighbors are already colored, they have earlier left endpoints, and all overlap X at the left endpoint of X
- They also overlap each other at the same point
- We have a **clique**, a set of vertices all adjacent to each other
- Within the clique, we can only use one color per vertex
- So the whole graph needs at least k colors
The morals of the story

Graph coloring is hard, and hard to approximate

Applications include register allocation in compilers

Two easy special cases for register allocation:
optimally ordering expression trees (Strahler number), and
straight-line code (greedy coloring of interval graphs)

