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Examples of planar and nonplanar graphs



The three utilities problem

Input: three houses and three utilities, placed in the plane

https://commons.wikimedia.org/wiki/File:3_utilities_problem_blank.svg

How to draw lines connecting each house to each utility, without crossings (and
without passing through other houses or utilities)?

https://commons.wikimedia.org/wiki/File:3_utilities_problem_blank.svg


There is no solution!

If you try it, you will get stuck. . .

https://commons.wikimedia.org/wiki/File:3_utilities_problem_plane.svg

But this is not a satisfactory proof of impossibility

https://commons.wikimedia.org/wiki/File:3_utilities_problem_plane.svg


Other surfaces have solutions

If we place the houses and utilities on a torus (for instance, a coffee cup including the
handle) we will be able to solve it

https://commons.wikimedia.org/wiki/File:3_utilities_problem_torus.svg

So solution depends somehow on the topology of the plane

https://commons.wikimedia.org/wiki/File:3_utilities_problem_torus.svg


Planar graphs

A planar graph is a graph that can be
drawn without crossings in the plane

The graph we are trying to draw in this
case is K3,3, a complete bipartite graph
with three houses and three utilities

It is not a planar graph; the best we
can do is to have only one crossing



Examples of planar graphs: trees and grid graphs



Examples of planar graphs: convex polyhedra



Mostly but not entirely planar: road networks

https://commons.wikimedia.org/wiki/File:High_Five.jpg

[Eppstein and Gupta 2017]

https://commons.wikimedia.org/wiki/File:High_Five.jpg


Properties



Some properties of planar graphs

I Euler’s formula: If a connected planar graph has n = V vertices, m = E edges,
and divides the plane into F faces (regions, including the region outside the
drawing) then V − E + F = 2

I Simple planar graphs have ≤ 3n − 6 edges
⇒ their degeneracy is ≤ 5 (at least one vertex of degree ≤ 5)

I Four-color theorem: Can be colored with ≤ 4 colors
(Appel and Haken [1976]; degeneracy-based greedy gives ≤ 6)

I Planar separator theorem: treewidth is O(
√
n)

(Lipton and Tarjan [1979]; ⇒ faster algorithms for many problems, e.g. shortest
paths O(n) [Henzinger et al. 1997], weighted matching O(n3/2) [Eppstein 2017])



Some of the history of Euler’s formula

Stated in 1537 for the five regular polyhedra by Francesco Maurolico (unpublished)
[Friedman 2018]

Related formulas for polyhedra (but not Euler’s formula itself) given by René Descartes
in 1630, not published, accidentally dumped into the river Seine after Descartes’ death,
rescued, copied by Leibniz before being lost again, copy also lost, finally rediscovered in
1860 [Federico 1982]

Announced 1750, published 1758 by Euler but with a buggy proof

First correct proof published by Legendre in 1794

There are many proofs; the one we will see (later this lecture) is by von Staudt, 1847



Euler’s formula implies few edges

Euler’s formula: V −E +F = 2
⇐⇒ F = E − V + 2

Every face has ≥ 3 sides, and
every edge forms exactly two
sides of faces, so

2E = # sides of faces ≥ 3F

Use inequality to eliminate F :

(2/3)E ≥ E − V + 2

Simplify: E ≤ 3V − 6

⇒ K5 is not planar

V = 5 and E = 10 = 3V − 5,
too many edges



Even fewer for bipartite planar graphs

Euler’s formula: V −E +F = 2
⇐⇒ F = E − V + 2

In bipartite graphs, every face
has ≥ 4 sides, so

2E = # sides of faces ≥ 4F

Use inequality to eliminate F :

(2/4)E ≥ E − V + 2

Simplify: E ≤ 2V − 4

⇒ K3,3 is not planar

V = 6 and E = 9 = 2V − 3,
too many edges



Kuratowski’s theorem

A graph is planar if and only if it does not have a subgraph formed from K3,3 or K5 by
subdividing edges into disjoint paths

So a certifying algorithm (week 3) can certify that a graph is planar by drawing it, or
that it is not by finding one of these subgraphs

[Kuratowski 1930; Frink and Smith 1930; Menger 1930]



Duality



Dual graphs

Start with a “primal” graph, drawn
without crossings in the plane

Draw a new “dual” graph with a dual
vertex in the middle of each primal face

Connect two dual vertices by an edge
when the corresponding primal faces
share an edge

It’s planar again, and the dual of the
dual is the starting primal graph



It’s a property of the drawing, not the graph

A given planar graph may have multiple different ways it can be drawn without
crossings, with different duals

The blue primal graphs are the same; its red duals are different
(the left one has a degree-5 vertex; the right one does not)



Duality ⇒ Euler

Spanning tree = subgraph with no cycles
that connects all the vertices

When a subgraph S has a cycle, it surrounds
some faces, disconnecting inside from outside
⇐⇒ the dual complement (subgraph of dual
formed by dual edges not crossed by S) is a
disconnected graph

Spanning tree ⇐⇒ no cycles and connected
⇐⇒ dual complement is connected and has no
cycles⇐⇒ also a spanning tree!

Spanning tree has V − 1 edges and dual complement spanning tree has F − 1 edges,
so total is E = (V − 1) + (F − 1)



More dual properties

In a planar graph with an Euler tour (all degrees even), color the faces dark if they are
surrounded an odd # of times by the tour, light otherwise ⇐⇒ 2-coloring of the dual

graph

Primal graph is Eulerian ⇐⇒ dual graph is bipartite



Even more dual properties

Can generalize duality to directed planar graphs

Acyclic ⇐⇒ dual strongly connected

Shortest path ⇐⇒ minimum cut in dual

(Cuts and flows can be computed faster in planar graphs than in other kinds of graphs)



Morals of the story

Planar graphs are important in applications where we want to visualize graphs
(because crossings can make drawings hard to read) or for road networks or polyhedra
where they naturally form

Some of their main properties (few edges, low degeneracy, low treewidth) can help in
finding fast algorithms for these graphs

Many problems have natural duals (e.g. Euler tour ⇔ 2-coloring), can be used to
transform problems into a different form that might be more recognizable

Duality of spanning trees ⇒ Euler’s formula ⇒ number of edges
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