
CS 163 & CS 265: Graph Algorithms

Week 1: Basics

Lecture 1a: Course overview
Web search engines and pagerank algorithm

David Eppstein
University of California, Irvine

Winter Quarter, 2024

This work is licensed under a Creative Commons Attribution 4.0 International License

Course overview

Who is running the course?

Instructor

David Eppstein
eppstein@uci.edu

Teaching assistants

Arushi Arora, Alvin Chiu, and Ryuto Kitagawa

Online resources

Course web site:
https://www.ics.uci.edu/~eppstein/163/

Online course discussion forum: Ed Discussion, via Canvas

Return graded exams: Gradescope

Confidential questions about your performance: Email us!

https://www.ics.uci.edu/~eppstein/163/

Course material

Lecture notes will be linked on course web site before each lecture

Weekly problem sets

Not graded!

We will provide answers the following week

Strongly recommended as preparation for exams

Midterms and final exam

In person!

Three exams in total, all equally weighted (final is not comprehensive)

But what about a textbook?

There are many graph theory textbooks but not so
many on graph algorithms, and the ones I know
about are at too low a level

They don’t cover enough of the topics I want to
cover in this course

Instead, the course web page has links to online
readings, mostly from Wikipedia

Their quality is variable but they’re all we have

Expectations

What do I expect you to know already?

▶ Undergraduate-level algorithm design and analysis
(as covered in CS 161): recursion, divide and conquer, dynamic programming,
O-notation

▶ Some previous exposure to basic graph algorithms
including depth-first search, topological sorting,
and Dijkstra’s algorithm

(we will go over them again, but as review)

Web search

Graphs

A graph is just a set of objects related to each other in pairs

One object is called a vertex; more than one are vertices

(Do not ever call one of them a “vertice”; that is not a word.)

Pairs are called edges and their two vertices are endpoints

Undirected graph:
The endpoints are unordered

Directed graph:
Each edge goes from one

endpoint to another

We will see many real-world examples and applications

The web graph

Vertices = all web pages in the world-wide web

Directed edges = links from one web page to another

www.ics.uci.edu/~eppstein/163/ en.wikipedia.org/wiki/PageRank

Web search engines

You type words or phrases

Database server looks up matching web pages

Shows them to you in some order

Examples: Google, Bing, DuckDuckGo, . . .

A big change in the mid-1990s

Previous search engines:

Order search results by text (ignoring the graph structure)
Pages with many matching words shown first

Google (1998):

Order by number of incoming links (graph structure)

Intuition: if many other pages link to it, it’s probably good

Refined version: Give more weight to links that come from
other pages with many incoming links

This worked much better!

How Google worked circa 1998

(How they work today: known only to Google insiders)

When you make a query on Google’s servers:

▶ Use text data structures (beyond the scope of this class) to find a set of matching
web pages (limited to 500 results)

▶ Show these pages to you in sorted order by pagerank

What is pagerank?

▶ A number associated with each web page

▶ Bigger number = earlier in search results

▶ Computed by Google using only the link structure
(does not depend on text of page)

Pagerank, definition 1 (mathy version)

pagerank(x) = 0.05
1

vertices
+ 0.95

∑
edge y → x

pagerank(y)

edges out of y

Gives large system of linear equations that can be solved to compute pageranks

When x has many incoming links from pages with high pageranks, its own pagerank
will be high

But why this equation? What does it mean?

Pagerank, definition 2 (intuitive version)

“Lazy web surfer”: mathematical model of
how a person might view web pages

▶ Start at a random web page

▶ Repeatedly go to a new page:
▶ Probability 0.95:, random outgoing link

▶ Probability 0.05: get bored, restart at
new random page

Define Pi [x] = probability of looking at page x on step i , with P0[x] =
1

vertices

After many steps, Pi will get close to a “stable distribution” Pi [x] → P∞[x]

Pagerank is just this limiting probability: pagerank(x) = P∞[x]

(0.05 and 0.95 are arbitrary and could be changed to any other numbers p and 1− p.
For p = 0.05, it takes 20 = 1/0.05 steps on average to get bored.)

How to compute pagerank? Option 1

We have a large set of linear equations

pagerank(x) = 0.05
1

vertices
+ 0.95

∑
edge y → x

pagerank(y)

edges out of y

Use Gaussian elimination to solve them

But that takes time O(n3), far too slow when n = billions

How to compute pagerank? Option 2

Simulate the lazy web surfer

Estimate pagerank as the number of times
the simulated surfer visits each page

But to get an accurate estimate we need to run the simulation long enough to get
many visits to each page (theoretically at least proportional to n log n steps)

Still too slow

How to compute pagerank? Option 3

Compute probability Pi [x] for ith step of lazy surfer, using almost the same equations:

P0[x] =
1

vertices

and, for i > 0,

Pi [x] = 0.05
1

vertices
+ 0.95

∑
edge y → x

Pi−1[y]

edges out of y

Option 3 in pseudocode

▶ Allocate an array P[i , x]

▶ For each vertex x , set P[0, x] = 1/# vertices
▶ For i = 1, 2, . . .# iterations:

▶ For each vertex x , set P[i , x] = 0.05/# vertices
▶ For each edge y → x , add 0.95 ∗ P[i − 1, y]/(# edges out of y) to P[i , x]

Time: O(# iterations ·# edges)

We only need approximate pageranks rather than exact solutions, and this converges
quickly, so we only need very small # iterations (maybe 5) ⇒ linear time

The morals of the story

Throwing away other information about the vertices of a graph and using only their
link structure can still provide meaningful information about the graph

By doing this, Google produced a much better search engine than previous competitors
and dominated the search engine market

Getting it to work required an efficient algorithm for pagerank
(for problem sizes so big they don’t fit into a single computer)

