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What we did last time



Minimum spanning tree problem definition
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Input:

▶ Undirected graph

▶ Numbers (“weights”) on
its edges
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Output:

▶ Tree connecting all
vertices

▶ Minimize total weight



Cut property (more useful in algorithms)

If we cut the vertices of the graph into any two subsets X and G − X , and e is the
lightest edge with endpoints in both subsets

then e must be in in the MST
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We can safely add it to the output



Cycle property (sometimes useful, less often)

If C is any cycle and e is its heaviest edge

then e cannot be in the MST
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We can safely remove it from the graph



History



Three classical algorithms

Bor̊uvka’s algorithm (Otakar Bor̊uvka, 1926)
▶ Rediscovered by Choquet (1938), Florek,  Lukaszewicz, Perkal, Steinhaus, &

Zubrzycki (1951), and Sollin (1965)

▶ Often called Sollin’s algorithm

Jarńık’s algorithm (Vojtěch Jarńık, 1930)
▶ Rediscovered by Prim (1957) and Dijkstra (1959)

▶ Often called Prim’s algorithm or Prim–Dijkstra algorithm

Kruskal’s algorithm (Joseph Kruskal, 1956)
▶ Rediscovered by Loberman & Weinberger (1957)

▶ Closely related to single-linkage hierarchical clustering
(Florek et al. 1951; McQuitty 1957; Sneath 1957)

All use only the cut rule: they find edges to include by cutting vertices into subsets and
choosing min-weight edge across the cut

All slower than linear time by a logarithm (similar to sorting)



Some other faster algorithms

Fredman & Willard 1994

▶ Use bit-manipulation operations on weights

▶ Linear time when weights are machine integers

Karger, Klein, & Tarjan 1995

▶ Randomized, linear expected time on any graph

▶ Only uses comparisons of weights

▶ Alternates between two methods: Bor̊uvka-like (cut rule) reducing #vertices, and
cycle rule reducing #edges

Chazelle 2000

▶ Non-random, very slightly non-linear (inverse Ackermann func.)

Pettie & Ramachandran 2002

▶ Non-random, optimal but unknown time complexity



An unsolved research question

Is it possible for a non-random comparison-based algorithm to find minimum
spanning trees in linear time?

Recent algorithms with small O-notation are too complicated to be practical so it
would also be interesting to find the best complexity for a practical algorithm



Jarńık’s algorithm



Main idea of Jarńık’s algorithm

▶ Choose an arbitrary starting vertex s (this choice affects the steps of the
algorithm but not its output)

▶ Build a tree T one edge at a time, starting with a one-vertex tree containing only
s

▶ Repeat:
▶ Partition the graph into two subsets T and G − T
▶ Find the minimum-weight edge e connecting T to G − T
▶ Add e and its endpoint in G − T to the tree
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Data structures for Jarńık’s algorithm

Root the tree T at s, and decorate each vertex v with its parent, so the tree edges are
pairs v — parent[v ]

When a vertex v is not yet in T , use parent[v ] to store the minimum-weight edge
connecting v to T

Maintain a priority queue Q of vertices that are not yet in T , prioritized by the weight
of this connecting edge



Jarńık pseudocode

def jarnik(G):

let s be any vertex of G

parent = {v : none for v in G}

Q = priority queue of all vertices,

priority = 0 for s, infinity for others

while Q is non-empty:

remove the minimum-priority vertex v from Q

for each edge v-w in G:

if w in Q and weight(v-w) < priority(w):

parent[w] = v

change priority of w to weight(v-w)



Jarńık analysis

Two nested loops:

▶ Outer loop over all the vertices, in priority queue order

▶ Inner loop over the edges at that vertex

Each edge looped over twice (once for each endpoint) so total number of times
through inner loop is 2m

Except for priority queue, everything else is O(m)

Priority queue:

▶ n find-and-remove operations, ≤ m reduce-priority operations

▶ With binary heap, all operations O(log n) ⇒ total O(m log n)

▶ With Fibonacci heap [Fredman and Tarjan 1987], reduce-priority operations take
only O(1) time ⇒ total O(m + n log n)



Other classical algorithms



Kruskal’s algorithm

▶ Start with a forest of one-vertex trees, one for each vertex
▶ Sort the edges from smallest to largest weight
▶ For each edge in sorted order, if it connects two different trees, add it to the forest

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

a
s

b c

d
5

9

7 11

10
15

12

Analysis:
▶ Sorting: your favorite sorting algorithm

O(m logm) for comparison sorting
▶ Testing for same tree: “union-find data structure”, slightly more than constant

per edge (much faster than sorting)



Bor̊uvka’s algorithm

▶ Start with a forest of one-vertex trees, one for each vertex
▶ While there is more than one tree:

▶ Label vertices by their tree (connected components)
▶ Assign graph edges to sets of edges that go out of each tree (two sets/edge),

ignoring edges with both endpoints in one tree
▶ Add to forest the minimum weight edge out of each tree
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Analysis:

▶ Each time through while loop, #trees goes down by factor ≥ 2
▶ Assigning edges to sets takes linear time ⇒ total O(m log n)



A hybrid algorithm

▶ Run Bor̊uvka’s algorithm until the number of trees goes down from n to ≤ n/ log n

▶ Then switch to Jarńık’s algorithm with Fibonacci heaps, using a priority queue on
trees rather than on individual vertices

Analysis:

▶ Bor̊uvka’s algorithm repeats ≤ log log n times ⇒ time O(m log log n)

▶ Jarńık’s algorithm takes O(m + (n/ log n) log(n/ log n)) = O(m)

▶ Both together: O(m log log n) + O(m) = O(m log log n)



Morals of the story

We can compute minimum spanning trees efficiently in practice (comparable time to
sorting) using several classical algorithms

Theoretical improvements are possible, including randomized linear expected time, but
the best possible time for a non-random comparison-based algorithm remains an

unsolved research problem
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