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Reweighting



Intuition

Shortest path problems have lengths on
their edges

What if we also have heights on the
vertices?

▶ Easier to travel downhill: makes
those edges appear shorter

▶ Harder to travel uphill: makes
those edges appear longer

▶ Height difference from start to
goal doesn’t depend on the path
you use to get there opentopomap.org



Reweighting

Suppose we have a directed graph G with edge lengths ℓ(u → v)

and vertex heights h(v) (maybe input, maybe calculated)

Define new lengths ℓh(u → v) = ℓ(u → v)− h(u) + h(v)

Decreases length of downhill edges
(
h(u) > h(v)

)
Increases length of uphill edges

(
h(u) < h(v)

)
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Same transformation happens to lengths of all paths!

Subtract h(start of path), add h(end of path)

. . . so comparison between paths is unaffected



If it doesn’t change shortest paths, what good is it?

Changes how algorithms compute the paths

▶ Carefully chosen heights can eliminate negative edges
▶ Cannot eliminate negative cycles

▶ Allows Dijkstra to work, faster than Bellman–Ford

▶ Johnson’s algorithm, paths between all pairs of vertices

▶ Suurballe’s algorithm, two non-overlapping paths

▶ Can change order of computation
▶ Combines well with easy optimization in Dijkstra:

stop as soon as destination vertex has been found
instead of computing distances to all remaining vertices

▶ Dijkstra + reweighting is called A*



All-pairs shortest paths



What we already know

All three algorithms from last time compute distances and paths from a single source
vertex to all of the other vertices

We can find distances between all pairs of vertices by running the same algorithm
repeatedly for all possible starting vertices

Directed acyclic graphs: linear-time per vertex, total O(mn)

Positive (or non-negative) edge lengths: Dijkstra once per vertex, O(mn + n2 log n) for
Fibonacci-heap version

Graphs with negative edges but no negative cycles: run Bellman–Ford once per vertex,
O(mn2)



Johnson’s algorithm, step 1

Given an input graph G with negative edges (but no negative cycles) in which we want
all-pairs shortest paths

Add a new extra vertex s to G ,
with zero-length edges from s to all other vertices
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Johnson’s algorithm, step 2

Use Bellman-Ford only once,
to compute shortest paths from s to all other vertices

a b

s

c d
–3

–3 –7 –12

–4 –5

108

0 0 0 0

0
distance
from s:

Distances will all be either zero or negative



Johnson’s algorithm, step 3

Reweight by absolute value of distance from s (zero or positive)
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Changes edge lengths but doesn’t change which paths are shortest



Johnson’s algorithm, step 4

Use Dijkstra once from each starting vertex in reweighted graph
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For every edge u → v with original length ℓ(u → v),

distance(s, u) + ℓ(u → v) ≥ distance(s, v)

(path s to u + edge u → v is path to v ; all paths ≥ shortest path)

⇐⇒ ℓh(u → v) = distance(s, u) + ℓ(u → v)− distance(s, v) ≥ 0

(all reweighted edge lengths are non-negative)



Johnson’s algorithm analysis

We run Bellman–Ford once, in time O(mn)

Reweighting takes linear time

We run Dijkstra n times, total O(mn + n2 log n)

Grand total O(mn + n2 log n)

[Johnson 1977]



Two disjoint paths



The two-paths problem

Input: A weighted directed
graph, starting vertex s,
destination vertex t

Goals:

▶ Find two paths from s to t

▶ Paths can repeat vertices
but cannot share edges

(Can modify algorithm to
forbid shared vertices,
more complicated)

▶ Minimize total length of
both, added together



An obvious attempt that fails

Find a shortest path, delete it from the graph, and find a second shortest path

▶ Second path might not exist even when two paths exist

▶ If it succeeds, might find non-optimal solution
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Allowing the second path to backtrack

After finding a shortest path, allow the second path to follow its edges backwards

Backwards edges cancel forward ones so they have negative cost
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Second idea: avoid negative edges by reweighting before reversing



Suurballe’s algorithm

Assuming all input edges are non-negative:
▶ Use Dijkstra to find single-source paths and distances from s
▶ Reweight using (negated) distance from s, same as Johnson’s algorithm — edges

in shortest paths get zero, otherwise > 0
▶ Find shortest path P from s to t, and reverse its edges
▶ Find a second shortest path from s to t in the modified graph
▶ Cancel edges used both ways and reconnect remaining paths
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Suurballe analysis

Two runs of Dijkstra

Linear time for reweighting and reversing

Total time O(m + n log n)

[Suurballe 1974; Suurballe and Tarjan 1984]



A*



Intuition

ts s t

Dijkstra: explore in all directions
in order by distance from s,
without regard to the destination

Better: prioritize vertices
that appear to lead towards
the eventual destination

How? Reweight to make edges towards t shorter,
and edges away from t longer 



A* algorithm

Choose a height function for each vertex v that is easy to calculate and estimates
distance(v , t) as accurately as we can

▶ E.g., straight-line distance instead of road-network distance

▶ Must be underestimate so paths to t eventually go downhill

▶ Should not decrease too quickly: for each edge u → v , height at v can be smaller
than height at u by at most ℓ(u → v)

Reweight by height function

▶ All edge weights non-negative (by not-too-quick decrease)

▶ Edges that lead to smaller estimates appear shorter

Run Dijkstra on reweighted graph, stopping when destination found



Alternative description of A*

Instead of changing the edge weights, change the prioritization

Priority of a vertex = current tentative distance

+ estimated distance to goal

[Hart et al. 1968]

It’s the same algorithm!

It chooses the same vertices in exactly the same order



Landmark-based distance estimation

Preprocessing (before handling
any distance queries):

▶ Choose a small set of
“landmark” vertices

▶ Use Dijkstra to compute
distances Li (v) from ith
landmark to each vertex v

To compute distance between
two vertices s and t:

▶ Estimate distance(v , t) ≈
maxi Li (t)− Li (v)

▶ Use this estimate for A*
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[Goldberg and Harrelson 2005]



Why does this work?

Estimate: distance(v , t) ≈ maxi Li (t)− Li (v)

v
t

estimatelandmark

actual
distance

▶ Underestimate of true distance (triangle ineq.)

▶ Max in formula chooses the most accurate landmark (closest to directly behind v)



Morals of the story

Can use vertex heights to adjust edge weights and change algorithm behavior without
changing which paths are shortest

Useful for eliminating negative edges in all-pairs computation (Johnson’s algorithm),
finding two paths (Suurballe’s algorithm), guiding Dijkstra to find destination more

quickly (A* algorithm)
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