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Baseball elimination



Background

Pro baseball teams are grouped into divisions

▶ Currently six divisions, five teams each

▶ Both numbers have varied over time

All teams play same the same total number of games per season, both against teams
in their division and others

Baseball games always have a winner and a loser (no ties)

At the end of the season, the team from each division with the most wins goes on to
the post-season series of championships leading to the World Series (as do two
“wildcard” teams which are not important for this application)

If there is a tie for first place, the tied teams play another tie-breaker game



Elimination

Close to the end of the season, but with a small number of games remaining to play. . .

Team X still has a chance if some scenario for who wins each remaining game in the
division (no matter how unlikely) leaves Team X with the most wins or tied for the
most

Otherwise, Team X is mathematically eliminated

Example:

▶ Suppose remaining games are X vs W, and Y vs Z.

▶ Suppose also that Y and Z each have one more win than X.

▶ X can tie with the loser of the Y–Z game by winning the game against W, but will
still be eliminated by the winner of the Y–Z game, so X is mathematically
eliminated



Some simplifying assumptions

If we’re trying to test whether team X is eliminated, it’s safe to only think about
scenarios where X wins all of their remaining games, so we know how many wins team
X will end up with

Similarly, if a rival team Y from X’s division has a game against an out-of-division
team, it’s safe to assume that Y loses (because we’re looking for the most favorable
scenario for X).

The real question is: for the games between pairs of rival teams Y and Z, both from the
same division, is it possible to split the wins so that no rival ends up with too many?



A graphical view
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This kind of graph (with quantities that can flow from vertex to vertex, with limits on
how much can flow across each edge) is called a flow network, and finding a way to
get everything from start to finish obeying the limits is a flow problem.



Maximum flow



Another application: Traffic engineering
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How many cars/hour can get from Irvine to San Juan Capistrano?

Widest path (73) has 5k cars/hour, but we can do much better!

5k (73) + 4k (5) + 2k (405+133+73) = 11k

(Also useful for internet routing if multiple paths are allowed)



The maximum flow problem
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Input: Directed graph, designated start vertex s, end vertex t

Every edge is labeled with a positive number, its capacity

Output: flow amounts on each edge, 0 ≤ flow amount ≤ capacity

At vertices other than s and t, total flow in = total flow out

Goal: Maximize flow out of s = flow into t



Baseball elimination as maximum flow
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Left and center edges have capacity = 1

RIght edges have capacity = # of allowable wins

Goal: Find a flow with total flow amount = total # of games



Properties



Can be formulated as a linear program

Find flow amounts fi ,j for each edge i → j

Satisfy linear constraints 0 ≤ fi ,j ≤ ci ,j
(where ci ,j is the capacity of edge i → j

and∑
fi ,j =

∑
fj ,k for all vertices j /∈ {s, t}

Maximize linear function
∑

fs,i



Existence and computability

Even when the capacities are irrational numbers,
there always exists a maximum flow

. . . rather than an infinite sequence of flows converging to the maximum but never
quite reaching it

We can find it with an algorithm that runs in polynomial time

Linear programming and some specialized flow algorithms have running time that
depends on the numerical value of the capacities, but it can also be solved in time that

is polynomial in just n and m, independent of capacity



Integrality

If all the capacities are integers, then there exists a maximum flow all of whose flow
amounts are integers

Not true of some other linear programming problems
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We need this property for baseball elimination,
corresponding to the fact that every game has a winner (no ties)



Decomposition into paths

We can always decompose the flow into multiple paths
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. . . as we did in the traffic example



The max-flow min-cut theorem



Cuts
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Capacity of a cut
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Minimum cut problem

Given a flow
network, find
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smallest
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The max-flow min-cut theorem

For every flow network, maximum flow = minimum cut

max flow ≤ min cut is easy (can’t get more flow across the cut)

We will show that, for every flow (maximum or not), either there is an equal cut, or we
can increase the flow ⇒ max flow ≥ min cut



Morals of the story

Definition: at all vertices except s and t, flow in equals flow out

Maximum flow: obey capacity constraints, maximize flow out of s

Applications include baseball elimination, traffic, matching (next week)

Existence of integer flows for integer capacities

The minimum cut problem and max flow min cut theorem


