CS 163 & CS 265: Graph Algorithms
Week 9: Matching

Lecture 9a: Maximum matching, independent sets, and
rectangle partition

David Eppstein
University of California, Irvine

Winter Quarter, 2024

This work is licensed under a Creative Commons Attribution 4.0 International License

Overview

Bipartite graphs
Remember cut property of minimum spanning trees?

“Cut”: split vertices into two sets, look at edges from one to other

“Bipartite”: all edges are part of a single cut
= can color vertices red and blue so each edge has both colors

CS161 Fall 2021
CS162
CS163 Winter 2022
CS164
CS165 Spring 2022
CS166
Relations between two Structures where all cycles

different kinds of things have even length

Easy linear-time algorithm for testing bipartiteness

Find any spanning tree (BFS tree, DFS tree, etc)

Color vertices at even distance from root red, odd distance blue

If all edges have both colors, graph is bipartite

If not, bad edge + tree path = odd cycle, graph is not bipartite

Matchings

A matching is a set of edges that don't touch each other
(no two matched edges share a vertex)

Like the double bonds in this benzopyrene:

Maximum matching (a matching with as many edges as possible) can be found in
polynomial time, in any graph

We will only prove the (easier) case of bipartite graphs

Independent sets

An independent set is a set of vertices that don’t touch each other
(no two are endpoints of the same edge)

In bipartite graphs, both sets of vertices are independent, but there might be other
larger independent sets

Eight queens puzzle:
place 8 queens on chessboard,
no two attacking each other

Independent set in graph of
possible queen moves

Maximum independent sets are NP-hard to find in arbitrary graphs

But they can be found using matching in bipartite graphs!

Konig’'s theorem [Dénes Koénig, 1931]

Let M = # edges in maximum matching,
| = # vertices in max independent set
Then in bipartite graphs, M+ 1 =n

Easy direction: Independent set can only
include one vertex from each matched edge, so
I < n— M (true for all graphs)

Hard direction: We can find an independent
set with all unmatched vertices + one vertex
from each matched edge, so I > n— M

Proof: Later in lecture,
based on algorithm for finding matchings

Dénes Kénig
(1884-1944)

Father Gyula
Konig was also
a famous
mathematician

Rectangle partitions

Geometric application of bipartite independent sets

T

Input: polygon with
axis-parallel sides

Goal: slice into as few
rectangles as possible

If we only slice
horizontally or
only vertically
= too many pieces

We need a more careful
algorithm

Why slice polygons into rectangles?

Decomposition of lithography masks into simple shapes for VLSI
DNA microarray design
Convolution operations in image processing
Compression of bitmap images
Radiation therapy planning

Robot self-assembly planning

(as listed in Eppstein [2009])

What'’s really going on here?

Polygon corners are convex
(90° interior) or concave (270°)

We need to slice horizontally or
® vertically at concave corners to
make rectangular pieces

We can use fewer slices
whenever we can slice two
corners with a single cut

But we lose the improvement when two slices touch or cross each other or when a slice
reaches only one concave corner

New goal: Find many non-touching two-concave-corner slices

Bipartite graph of 2-corner slices that touch or cross

Independent sets and the rectangles they produce

Finding bipartite maximum matchings

Maximum bipartite matching as flow

Given a bipartite graph G:
» Add new vertices s connected to all red vertices, t connected to all blue vertices
» Direct all edges s — red — blue — t, with capacity =1
» Find an integer maximum flow; matching = edges with flow 1

G & @

Alternating paths

Suppose you have a matching that is not maximum, and you find a path starting and
ending at unmatched vertices, alternating between matched and unmatched edges

Can improve matching by changing unmatched <+ matched along the path

This is just an augmenting path in the flow problem!

Proof of Konig’s theorem

Max flow min cut theorem = cut S—-T .
with no residual capacity across cut

Independent set: red in S + blue in T 1

Includes all unmatched vertices
(with residual edge from s or to t)

Cannot avoid both endpoints of a
matched edge (would give a residual
edge across the cut)

So independent set size >
unmatched vertices + matched edges

Time bounds for bipartite matching

Repeated augmenting paths:
» Each path increases size of matching
» < n/2 paths, BFS per path = O(mn)

Hopcroft—-Karp—Karzanov [Hopcroft and Karp 1973; Karzanov 1973]:
» Use BFS to find many short augmenting paths in linear time
> After using these paths, shortest augmenting path gets longer
» Once length becomes > \/n, only O(y/n) paths left to find
> = time O(my/n)

New breakthrough [Chen et al. 2022]
> Convert bipartite matching to flow
» Fast new flow algorithm
» O(m'*¢) for any ¢ > 0

Non-bipartite matching

Algorithms
Non-bipartite version of Hopcroft—Karp—Karzanov by Silvio Micali and Vijay Vazirani
(now a UCI professor) from 1980, time O(m+/n)
An application

Kidney transplant donors and recipients enter the system together (usually the donor is
a friend or relative of the patient) but often don't have compatible immune systems

Form a graph whose vertices are donor-recipients pairs and whose edges represent
double compatibility (donor of one pair is compatible with recipients of the other and
vice versa)

Set up a double transplant operation with four patients (two donors and two
recipients) for each matched edge

Morals of the story

Bipartiteness is easy to test, natural in many matching problems, and makes those
problems simpler

In bipartite graphs, matching and independent sets are equivalent, but in other graphs
independent sets are hard

Application to optimal rectangle partition

Solve by converting to max flow

References

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proc. 63rd IEEE
Symposium on Foundations of Computer Science, 2022.

David Eppstein. Graph-theoretic solutions to computational geometry problems. In Proc. 35th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009),
Montpellier, France, 2009, volume 5911 of Lecture Notes in Computer Science, pages 1-16.
Springer-Verlag, 2009. doi:10.1007/978-3-642-11409-0_1.

John E. Hopcroft and Richard M. Karp. An n®/? algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2:225-231, 1973. doi:10.1137/0202019.

Alexander V. Karzanov. An exact estimate of an algorithm for finding a maximum flow, applied
to the problem on representatives. Problems in Cybernetics, 5:66—70, 1973.

Dénes Kénig. Grafok és matrixok. Matematikai és Fizikai Lapok, 38:116-119, 1931.

Silvio Micali and Vijay V. Vazirani. An O(\/|V/| - |E|) algorithm for finding maximum matching
in general graphs. In Proc. 21st IEEE Symp. Foundations of Computer Science (FOCS
1980), pages 17-27, 1980. doi:10.1109/SFCS.1980.12.

http://dx.doi.org/10.1007/978-3-642-11409-0_1
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1109/SFCS.1980.12

	References

