CS 164 \& CS 266:
 Computational Geometry
 Lecture 10
 LP-type problems

David Eppstein
University of California, Irvine

Fall Quarter, 2023

Minimum enclosing circle

Minimum enclosing circle

Problem: Given n points in the plane, find min-radius circle containing them
May be either of two cases:

Two points form its diameter

Circle through an acute triangle

Why only those two cases?

Any other circle can be shrunk

Cannot be a linear program

In a d-dimensional linear program, optimal solution is determined by exactly d constraints, but here solution sometimes comes from pairs of inputs and sometimes comes from triples

Circle primitives

Representation of circle
center, radius 2
Does it contain a given point?
compare point-to-center dist ${ }^{2}$ to radius ${ }^{2}$

Circle from two points
center $=$ average coords radius $^{2}=$ dist $^{2} / 4$

Circle from three points
Construct lines through pairs
Rotate 90° at midpoints They meet at circle center radius $^{2}=$ dist 2 to any point

As a nonlinear program

Given points x_{i}, y_{i} :

Find center X, Y and squared radius R

Obey nonlinear constraints $\left(x_{i}-X\right)^{2}+\left(y_{i}-Y\right)^{2} \leq R$

Minimize linear objective R

Define $S=R-X^{2}-Y^{2}$
Find X, Y, S with linear constraints
$x_{i}^{2}-2 x_{i} X+y_{i}^{2}-2 y_{i} Y \leq S$
Minimize nonlinear objective $S+X^{2}+Y^{2}$

LP-type problems

Key properties of circle problem

- We can describe it as a function mapping sets of points to their optimal solution (X, Y, R)
- Monotonic: We can compare solutions, and if $A \subset B$ are two sets of points then A's solution is at least as good as B's
- Local: If adding p or q separately to a set doesn't change its solution, then neither does adding both at once
- Low-dimensional: Every set has a basis of ≤ 3 points with same solution (diameter points or acute triangle)
- Primitives: Find circle defined by two or three points
"Violation test": is point inside circle?

LP-type problem

Define a class of problems with the same properties:

- We can describe it as a function mapping sets of inputs to their optimal solution
- Monotonic: We can compare solutions, and if $A \subset B$ are two sets of inputs then A's solution is at least as good as B's
- Local: If adding p or q separately to a set doesn't change its solution, then neither does adding both at once
- Low-dimensional: Every set has a basis of $O(1)$ inputs with same solution ("dimension": maximum size of a basis)
- Primitives: Find solution for basis
"Violation test": does adding p to B change its solution?
Goal: Find optimal solution using a small number of primitives

Linear programming is LP-type

Fix objective function, and consider subsets of constraints. Then:

- We can describe it as a function mapping sets of constraints to their optimal solution points and its objective value
- Monotonic: We can compare solutions by their objective value, and if $A \subset B$ are two sets of constraints then A's solution is at least as good as B's
- Local: If a solution point obeys constraints p and q when one of them is added to the set of constraints, it still obeys them when both of them are added.
- Low-dimensional: Every set has a basis of d constraints with same solution
- Primitives: Solving a basis means turning those inequalities to equalities \Rightarrow solve system of linear inequalities \Rightarrow Gaussian elimination
Violation test: check linear inequality on solution point

More example problems

Closest distance between disjoint convex hulls

Map subsets to hull distance $=$ max separation of parallel lines between hulls

Monotonic: More points \Rightarrow closer hulls
Local: if two points stay outside parallel lines when added separately, they stay outside when added together Low-dim: In \mathbb{R}^{d}, solution determined by $\leq d+1$ points
[Matoušek et al. 1996]

Like red-blue separation but Euclidean not vertical distance

Existence of continuous shrinking motion of polygon

Like star-shaped but more complicated
LP-type with dimension 3
Variables: center point and slope angle of logarithmic spirals traced by polygon vertices

Hard part: proving that dimension is 3
[Eppstein 2023]

Integer programming

Find best integer solution to a linear program

NP-complete when number of variables can be large, even when all variables are restricted to $\{0,1\}$
[Karp 1972]

For k variables, LP-type with dimension 2^{k}
[Bell 1977; Scarf 1977]

A problem that is not LP-type

Enclose n points between parallel lines as close together as possible Like L_{∞} regression, but Euclidean distance not vertical distance

It is monotonic and local
For input $=$ regular
$(2 n+1)$-sided polygon, optimal solutions use lines through one side and opposite vertex

If any point is removed, solution gets better

So all $2 n+1$ points are needed to determine the solution
\Rightarrow not low-dimensional

Algorithms

Seidel's algorithm

Instead of restricting recursive subproblems to a linear subspace, we pass them a subset of known basis elements, reducing the LP-type-dimension of the remaining problem by the number of these known elements

Call the following with Seidel(input set, empty set):

```
def Seidel(Inputs, Known):
    CurrentSolution = solution(Known)
    AlreadyProcessed = empty set
    For each element x of Inputs in random order:
    If x fails violation test for CurrentSolution:
    CurrentSolution = Seidel(AlreadyProcessed, Known }\cup{x}
    Add x to AlreadyProcessed
Return CurrentSolution
```


Random sampling

Choose and solve a random subset R of the items
Let $V(R)=$ items that fail violation test for solution

- Each x in V must be part of basis for $V \cup\{x\}$
- Probability that this is true for x is $\leq d /(|R|+1)$
- So expected size of $V(R)$ is $O(n d /|R|)$
- If $V(R)$ is non-empty, it includes at least one member of basis of whole problem
[Clarkson 1995]

Recursive sampling

$V=$ empty set
repeat d times or until no more violators are found:
Choose sample R of size $d \sqrt{n}$
Compute solution for $R \cup V$ (recursively using this or another algorithm)
Add its violators to V
Each time through the loop, adds $O(\sqrt{n})$ elements to V including at least one more basis element

Solves whole problem in $O(d n)$ violation tests and $O(d)$ recursive calls on problems of size $O(d \sqrt{n})$

When $n=O\left(d^{2}\right)$, sample size is already n, does not make progress
Branching factor of d quickly blows up; better to use this only once and solve subproblems using a different algorithm

Iterated reweighting

Give all elements weight 1
Repeat:
Select a random subset of $2 d^{2}$ elements, with probability proportional to their weights
Compute solution for subset and its set V of violated elements
Double the weights of the members of V

Total expected weight of all items increases by $(1+1 / 2 d)$ factor
Weight of optimal basis increases by larger $(1+1 / d)$ factor
Can only happen $O(d \log n)$ times until subset has bigger weight than whole set (impossible) or we find optimal solution

Solves whole problem in $O(d n \log n)$ violation tests and $O(d \log n)$ recursive calls on problems of size $O\left(d^{2}\right)$

Putting it together

Outer level of algorithm: use random sampling

- $O(d n)$ violation tests
- $O(d)$ second-level calls on subproblems of size $O(d \sqrt{n})$

Second-level calls: use iterated reweighting

- Each subproblem has size $O(d \sqrt{n})$
- It does $O\left(d^{2} \sqrt{n} \log n\right)$ violation tests
- $O(d \log n)$ third-level calls on subproblems of size $O\left(d^{2}\right)$

Third-level calls: use Seidel's algorithm

- Each subproblem has size $O\left(d^{2}\right)$
- $O\left(d!d^{2}\right) \Rightarrow d^{O(d)}$ solution primitives

Total: $O(d n)$ violation tests, $d^{O(d)} \log n$ solution primitives
Can reduce $d^{O(d)}$ to $d^{O(\sqrt{d})}$: use algorithm of Matoušek et al. [1996] in place of Seidel

References

David E. Bell. A theorem concerning the integer lattice. Studies in Applied Mathematics, 56 (2):187-188, 1977. doi: 10.1002/sapm1977562187.

Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM, 42(2):488-499, 1995. doi: 10.1145/201019.201036.

David Eppstein. Locked and unlocked smooth embeddings of surfaces. Computing in Geometry and Topology, 2(2):5.1-5.20, 2023. doi: 10.57717/CGT.V2I2.28.
Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computations, pages 85-103. Plenum, New York, 1972. doi: 10.1007/978-1-4684-2001-2_9.
Jirí Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming. Algorithmica, 16(4-5):498-516, 1996. doi: 10.1007/BF01940877.

Herbert E. Scarf. An observation on the structure of production sets with indivisibilities. Proc. National Academy of Sciences, 74(9):3637-3641, 1977. doi: 10.1073/pnas.74.9.3637.
Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related problems. In STACS '92: 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture Notes in Computer Science, pages 567-579. Springer-Verlag, 1992. ISBN 978-3-540-55210-9. doi: 10.1007/3-540-55210-3_213.

