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Minimum enclosing circle



Minimum enclosing circle

Problem: Given n points in the plane, find min-radius circle containing them

May be either of two cases:

Two points form its diameter Circle through an acute triangle



Why only those two cases?

Any other circle can be shrunk



Cannot be a linear program

In a d-dimensional linear program, optimal solution is determined by exactly d
constraints, but here solution sometimes comes from pairs of inputs and sometimes
comes from triples



Circle primitives

Representation of circle

center, radius2

Does it contain a given point?

compare point-to-center dist2

to radius2

Circle from two points
center = average coords
radius2 = dist2/4

Circle from three points
Construct lines through pairs
Rotate 90◦ at midpoints
They meet at circle center

radius2 = dist2 to any point



As a nonlinear program

Given points xi , yi :

Find center X ,Y
and squared radius R

Obey nonlinear constraints
(xi − X )2 + (yi − Y )2 ≤ R

Minimize linear objective R

Define S = R − X 2 − Y 2

Find X ,Y , S with linear
constraints
x2i − 2xiX + y2i − 2yiY ≤ S

Minimize nonlinear objective
S + X 2 + Y 2



LP-type problems



Key properties of circle problem

▶ We can describe it as a function mapping sets of points to their optimal solution
(X ,Y ,R)

▶ Monotonic: We can compare solutions, and if A ⊂ B are two sets of points then
A’s solution is at least as good as B’s

▶ Local: If adding p or q separately to a set doesn’t change its solution, then
neither does adding both at once

▶ Low-dimensional: Every set has a basis of ≤ 3 points with same solution
(diameter points or acute triangle)

▶ Primitives: Find circle defined by two or three points
“Violation test”: is point inside circle?



LP-type problem

Define a class of problems with the same properties:

▶ We can describe it as a function mapping sets of inputs to their optimal solution

▶ Monotonic: We can compare solutions, and if A ⊂ B are two sets of inputs then
A’s solution is at least as good as B’s

▶ Local: If adding p or q separately to a set doesn’t change its solution, then
neither does adding both at once

▶ Low-dimensional: Every set has a basis of O(1) inputs with same solution
(“dimension”: maximum size of a basis)

▶ Primitives: Find solution for basis

“Violation test”: does adding p to B change its solution?

Goal: Find optimal solution using a small number of primitives

[Sharir and Welzl 1992]



Linear programming is LP-type

Fix objective function, and consider subsets of constraints. Then:

▶ We can describe it as a function mapping sets of constraints to their optimal
solution points and its objective value

▶ Monotonic: We can compare solutions by their objective value, and if A ⊂ B are
two sets of constraints then A’s solution is at least as good as B’s

▶ Local: If a solution point obeys constraints p and q when one of them is added to
the set of constraints, it still obeys them when both of them are added.

▶ Low-dimensional: Every set has a basis of d constraints with same solution

▶ Primitives: Solving a basis means turning those inequalities to equalities ⇒ solve
system of linear inequalities ⇒ Gaussian elimination

Violation test: check linear inequality on solution point



More example problems



Closest distance between disjoint convex hulls

Map subsets to hull distance
= max separation of parallel lines
between hulls

Monotonic: More points ⇒ closer hulls

Local: if two points stay outside
parallel lines when added separately,
they stay outside when added together

Low-dim: In Rd , solution determined
by ≤ d + 1 points

[Matoušek et al. 1996]

separation distance

Like red-blue separation but Euclidean not vertical distance



Existence of continuous shrinking motion of polygon

Like star-shaped but more complicated

LP-type with dimension 3

Variables: center point and slope angle
of logarithmic spirals traced by
polygon vertices

Hard part: proving that dimension is 3

[Eppstein 2023]



Integer programming

Find best integer solution to a linear program

NP-complete when number of variables can be large,
even when all variables are restricted to {0, 1}

[Karp 1972]

For k variables, LP-type with dimension 2k

[Bell 1977; Scarf 1977]



A problem that is not LP-type

Enclose n points between parallel lines as close together as possible

Like L∞ regression, but Euclidean distance not vertical distance

It is monotonic and local

For input = regular
(2n+1)-sided polygon, optimal
solutions use lines through one
side and opposite vertex

If any point is removed,
solution gets better

So all 2n + 1 points are needed
to determine the solution

⇒ not low-dimensional



Algorithms



Seidel’s algorithm

Instead of restricting recursive subproblems to a linear subspace, we pass them a
subset of known basis elements, reducing the LP-type-dimension of the remaining
problem by the number of these known elements

Call the following with Seidel(input set, empty set):

def Seidel(Inputs, Known):

CurrentSolution = solution(Known)

AlreadyProcessed = empty set

For each element x of Inputs in random order:

If x fails violation test for CurrentSolution:

CurrentSolution = Seidel(AlreadyProcessed, Known ∪ {x})
Add x to AlreadyProcessed

Return CurrentSolution



Random sampling

Choose and solve a random subset R of the items

Let V (R) = items that fail violation test for solution

▶ Each x in V must be part of basis for V ∪ {x}
▶ Probability that this is true for x is ≤ d/(|R|+ 1)

▶ So expected size of V (R) is O(nd/|R|)
▶ If V (R) is non-empty, it includes at least one member of basis of whole problem

[Clarkson 1995]



Recursive sampling

V = empty set

repeat d times or until no more violators are found:

Choose sample R of size d
√
n

Compute solution for R ∪ V (recursively using this or another algorithm)

Add its violators to V

Each time through the loop, adds O(
√
n) elements to V including at least one more

basis element

Solves whole problem in O(dn) violation tests and O(d) recursive calls on problems of
size O(d

√
n)

When n = O(d2), sample size is already n, does not make progress

Branching factor of d quickly blows up; better to use this only once and solve
subproblems using a different algorithm



Iterated reweighting

Give all elements weight 1

Repeat:

Select a random subset of 2d2 elements,
with probability proportional to their weights

Compute solution for subset and its set V of violated elements

Double the weights of the members of V

Total expected weight of all items increases by (1 + 1/2d) factor

Weight of optimal basis increases by larger (1 + 1/d) factor

Can only happen O(d log n) times until subset has bigger weight than whole set
(impossible) or we find optimal solution

Solves whole problem in O(dn log n) violation tests and O(d log n) recursive calls on
problems of size O(d2)



Putting it together

Outer level of algorithm: use random sampling

▶ O(dn) violation tests

▶ O(d) second-level calls on subproblems of size O(d
√
n)

Second-level calls: use iterated reweighting

▶ Each subproblem has size O(d
√
n)

▶ It does O(d2√n log n) violation tests

▶ O(d log n) third-level calls on subproblems of size O(d2)

Third-level calls: use Seidel’s algorithm

▶ Each subproblem has size O(d2)

▶ O(d! d2) ⇒ dO(d) solution primitives

Total: O(dn) violation tests, dO(d) log n solution primitives

Can reduce dO(d) to dO(
√
d): use algorithm of Matoušek et al. [1996] in place of Seidel
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