
CS 164 & CS 266:
Computational Geometry

Lecture 11

The locus method, point location,
and trapezoidal decomposition

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License



The locus method



The locus method

“Locus”: Latin word for “place”.

In geometry, used to describe a set of points satisfying
some condition.

“Locust”: kind of insect

General method for building data structures to answer questions about geometric data

▶ Formulate questions as calls to a “query” subroutine with a point as its argument

▶ Divide the space of points into regions in which the answer is the same or similar

▶ Build a “point location” data structure to find the region containing a query point



Example: Lines below a point

Problem: Given n lines, count lines below each query point

0
1 1

11
2

2

2

3 33
3

3
34

4

444

5

5 5 5
5

5

6

6

67

Solution: Construct an arrangement of lines (week 2)
and label each cell with how many lines are below it



Example: Points in a halfplane

Problem: Given n points, count points in a query halfplane

22 points in range

Solution: Projective duality transforms the boundary line of a query into a point and
data points into lines; use previous example



Example: Nearest larger value

Input: List of numbers

(Here: 1, 5, 2, 8, 7, 6, 9, 4)

Query: Given query x , y , find a
number in the list that occurs after
position x , has value greater than y ,
and is as close to position x as possible

Solution: For each input value y in
position i , make a quadrant below and
to the left of (i , y)

Overlay these quadrants, in
left-to-right order

(1,1)

(2,5)

(3,2)

(4,8)

(5,3)

(6,7)

(7,6)

(8,9)

(9,4)



The point location problem



The point location problem

Input: Subdivision of plane by non-crossing line segments

Goal: Data structure that can quickly look up the region containing query point



Vertical ray shooting

Input: Non-crossing and non-vertical line segments,
might not divide the plane into regions

Goal: Look up segments immediately above and below query point



Solving point location by ray shooting

Given a subdivision of the plane:

Label each segment by the region below it

To find region containing a query point q:

▶ Find the line segment s directly above q

▶ If s does not exist, then q is in the (unique) unbounded region

▶ Otherwise, look up the region below s, stored as the label for s, and return it as
the region that contains q



The locus method for ray shooting

Regions where answer is the same partition the plane into trapezoids, by vertical walls
through the endpoints of the segments



Summary (so far)

Many geometric data structures can be split into two steps:

▶ Construct a partition of the plane (or of a higher dimensional space) so that, in
each region, the answer is constant

▶ Build a point location data structure to find the region containing each query

Point location part can be solved by transforming into ray shooting

But ray shooting can be approached by the locus method ⇒ trapezoidal
decomposition + point location

We will resolve this loop by finding an algorithm that constructs both the trapezoidal
decomposition and a point location data structure in it, simultaneously



Randomized incremental
trapezoidal decomposition



Main ideas of algorithm

Add segments one by one in a random order

Because we are constructing a trapezoidal decomposition, not a point location
structure for the arrangement of segments, it doesn’t matter that they won’t meet up

to form polygons

Maintain trapezoidal decomposition of the segments added so far

Maintain a point location data structure for the current trapezoidal decomposition to
help find where to insert each new segment

When we are done the same structure can also be used for point location or ray
shooting for the original input segments



How to represent the trapezoidal decomposition

Allow segments to share endpoints but break ties so all endpoints have distinct
x-coordinates

Each trapezoid stores: endpoints on left and right walls (or ∞ if unbounded in that
direction), segments above and below (or ∞), pointers to ≤ 2 neighboring trapezoids
across each wall



When a new segment is added

Each trapezoid that it crosses can split into ≤ 4 parts, depending on how many of the
segment endpoints belong to the trapezoid

0 segment endpoints
in trapezoid

2 segment endpoints
in trapezoid

1 segment endpoint
in trapezoid

above
above above

below

below below

right rightleft

Some of those parts can merge with parts coming from neighboring trapezoids,
because the new segment blocks part of an existing wall



To add a new segment

Use the point location data structure (not yet described) to find the trapezoid
containing its left endpoint

Use pointers on trapezoid objects to walk left-to-right through the trapezoids finding
all trapezoids crossed by the new segment

Construct new trapezoids for each part formed by splitting these crossed trapezoids,
following the case analysis on the previous slide

Merge new trapezoids when the wall separating them is blocked by the added segment



Backwards analysis

After i segments have been added, there are ≤ 2i vertical walls, with three
trapezoids/wall and two walls/trapezoid, so there are at most 3i + 1 trapezoids

A trapezoid T was just added if and only if the last segment that was added is one of
≤ 4 segments: the ones above it or below it, or the only segment having an endpoint
on its left or right wall

For each trapezoid in the current decomposition, the probability that it was just added
is ≤ 4/i ⇒ the expected number of trapezoids that were just added is
(3i + 1)× 4/i = O(1)

Summing over all steps in which we add a segment, the total expected number of
trapezoids created or destroyed is O(n)



Point location via
the history DAG



Main idea

We still need a data structure for finding the trapezoid containing the left endpoint of
each added segment

When we break a trapezoid
into parts, don’t delete it
from memory

Instead, flag it as deleted and
add links from it to the
segment that split it and the
≤ 4 new trapezoids that were
formed from it

The result is a directed acyclic graph (not a tree, because of merged trapezoids) whose
root is the trapezoid for the empty set of segments (covering the whole plane)



Point location queries

To find the current trapezoid containing a point p:

T = root trapezoid (the one for the whole plane and the empty set of segments)

While T is marked as a deleted trapezoid:

▶ Find the segment s that caused T to be split

▶ Compare the x-coordinates of p to the endpoints of s, and test whether p is
above or below s, to find which part of T contains p

▶ Follow the link from T to the trapezoid representing that part



Analysis of point location

For any point p whose location does not depend on the order in which previous
trapezoids were added:

After the ith previous segment was added, the probability that it caused a split to the
trapezoid containing p is ≤ 4/i (same as previous analysis)

If it caused a split, this increases the time for locating p by one more step

Therefore the total expected time for locating p is at most

n∑
i=1

O(1)× 4

i
= O(log n)

(the sum of 1/i is the harmonic series)



Summary of analysis

The total expected time for constructing trapezoids and the total expected space for
storing the history DAG is O(n)

The total expected time for using the history DAG to locate the left endpoint of each
new segment is O(n log n)

Once constructed, the history DAG can be used to handle additional point location
queries in O(log n) expected time per query

More careful analysis: with high probability, the longest search path in the history DAG
is O(log n)


