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Basic concepts



Depth ordering

Goal: Sort objects in scene from back to front

Enables “painter’s algorithm”:

Draw the objects in back-to-front order,
with each one covering up parts of the objects behind it

Necessary for some vector graphics formats



Depth orderings do not always exist!

When there is a cycle in the visibility ordering,
we will need to cut the objects into smaller pieces



The main idea

Recursively cut plane (or 3d) into cells along cut lines (or planes)

Each cell is convex and has two children

We will use this in a recursive depth ordering:

Scenery in the farther top-level halfplane first

Scenery in the nearer top-level halfplane last



When input = non-crossing line segments

Goal: choose recursive split lines that do not cross any of the segments

Not always possible!

For this input, the first cut
must cross a linear # of input
segments

So some segments will be subdivided into pieces that participate in multiple tree nodes
⇒ nonlinear complexity



Binary Space Partition

Given non-crossing line segments, recursively cut into convex cells

When a line segment lies on the cut line, it stays at that node

When a line segment is cut, put its pieces into both children

Keep recursing until all pieces of line segments lie on cuts



Applications



Point location?

Simpler than trapezoidal decomposition + history DAG:
follow a path in a tree, checking at each step which side of the cut line to recurse into

Needs a partition for which these paths are short

(true for some BSP constructions but not all)

Uses more space than trapezoidal decomposition: O(n log n) instead of O(n)

Conclusion: Ok to re-use BSP for point location if you’re going to build the BSP for
some other reason, but if you only want point location, choose something else



Depth ordering from BSP

2d version of the problem: Given line segments in the plane, and a viewpoint in the
plane, find a depth order of pieces of the line segments

For any viewpoint p:

▶ Compare p to root cut

▶ Recursively order subtree on far
side of cut

▶ Output pieces that lie on the cut

▶ Recursively order subtree on near
side of cut
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⇒ Depth ordering of all pieces

Time = O(BSP size)



Constructive solid geometry

Goal: Represent complicated area as intersection or union of simpler shapes
(half-spaces)

Any shape whose boundary has been represented by a BSP is union of:

▶ Shape on one side of cut, intersected with half-space bounded by cut

▶ Shape on other side of cut, intersected with half-space bounded by cut

Produces union-intersection formula with complexity = BSP size



2 1
2-dimensional graphics

Problem: Render background scenery quickly on slow hardware in first-person games
like Wolfenstein 3D (1992), Doom (1993)

“2 1
2 -dimensional”: 2d floor plan of rooms, displayed as a three-dimensional scene



Ray tracing

Ray tracing (fully 3D rendering technique):

▶ Viewpoint = a point in 3d scene

▶ Each pixel = a ray from viewpoint into scene

▶ Find first object hit by ray

▶ Use object color and illumination to determine pixel color

Light Source

Scene Object

Shadow Ray
View Ray

Image

Camera

[Henrik 2008]



Ray casting

Ray casting (2 1
2 -dimensional):

▶ Viewpoint = a point in 2D floor plan

▶ Each column of scene = 2D ray

▶ Find first object hit by ray

▶ Look up appearance of entire column of pixels



Ray casting from BSP

To find first object hit by ray in 2d scene:

Recursively search BSP starting at root

At each node, search the same side of the cut as the viewpoint first, then the other side

Stop whenever we find something blocking the ray

Search order automatically prioritizes closer obstacles

No theoretical analysis but works well for mostly-enclosed scenes



Randomized incremental autopartition



Autopartition

Special kind of BSP

Cut only on lines
through input
segments

Segments used for
cut are removed
from children

Recurse until each
polygon is empty

Root: bounding box
Cut diagonally
through one segment

Each child gets
an input segment
and a piece of a
crossed segment



Randomized incremental autopartition

Form binary space partition of a subset of segments, adding segments one by one in
random order

Initial state: no segments, one node representing bounding box of all segments

For each new segment, recurse down the tree into all cells that contain a piece of the
segment

When recursion reaches a leaf of the tree, split it into two along the segment



How big is the tree?

It’s a binary tree, so
Tree size = 2 (# leaf cells) − 1

Splitting a cell on a piece of a segment adds one more leaf, so
Leaf cells = # pieces of segments + 1

# pieces in a segment = # crossings with cut lines + 1, so
total # pieces = n + total # crossings

Putting it together:
Tree size = O(crossings)



Counting crossings

For the cut line L through segment s, another segment t is crossed by L exactly when:

▶ t extends across line L

▶ Among s, t, and all segments between them, s is added first

s

t

Pr=1/2 Pr=1/2 Pr=1/3Pr=1/3 Pr=1/4



Counting crossings

Probability that s is chosen first, cutting t
= 1/# segments from s to t

s

t

Pr=1/2 Pr=1/2 Pr=1/3Pr=1/3 Pr=1/4

Summing over all segments that extend across the line, expected number of cuts by s
≤ 2

∑ 1
i = O(log n)

Total expected size of binary space partition = O(n log n)



Other constructions



Autopartition tree can have linear depth



Shallow partition strategy

Recursively subdivide so that each recursive subproblem is a “slab” between two
horizontal lines, possibly bounded on the left and right by pieces of input segments

If any piece of a segment extends all the way from the top line of a slab to the bottom
line, pick the one that splits the segment endpoints as evenly as possible

Otherwise, split by a horizontal line at the median y -coordinate



Shallow partition analysis

After two levels of subdivision, number of segment endpoints goes down by a factor of
two ⇒ depth is ≤ 2 log2 n

Pieces of segments only split near the endpoints of the segment

Each endpoint partipates in O(log n) splits
(at most one per level in the tree)

⇒ Total size is O(n log n)

[Paterson and Yao 1990]



Some more results

Optimal size for 2D BSP is Θ

(
n

log n

log log n

)
[Tóth 2011]

Perfect BSP (autopartition that makes no splits),
if it exists, can be found in polynomial time

[de Berg et al. 1997]

Axis-parallel segments ⇒ linear-size BSP

3D axis-parallel rectangles ⇒ size O(n3/2)

[Paterson and Yao 1992]

3D triangles random autopartition O(n2) (in textbook)

Well-behaved 3d scenes (no long thin objects) ⇒ near-linear

[de Berg 2000; Agarwal et al. 2000; Tóth 2008]



3D lower bounds

Axis-parallel ⇒ Ω(n3/2)

“Tetrastix”

Each cubical hollow requires a
separate piece

Arbitrary ⇒ Ω(n2)

Top and bottom are
perpendicular spiral staircases

Interior = grid of solid spaces
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Csaba D. Tóth. Binary plane partitions for disjoint line segments. Discrete &
Computational Geometry, 45(4):617–646, 2011. doi: 10.1007/s00454-011-9341-0.


	References

