
CS 164 & CS 266:
Computational Geometry

Lecture 16

Range reporting, onion layers, and fractional cascading

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License

Half-plane range search

Warm-up: Range emptiness

Query: Is a given half-plane (the set above or below a line) empty?

Store upper and lower
convex hull edges in arrays,
sorted by slope

For a half-plane above line,
binary search for line’s
slope in upper hull

For half-plane below,
search lower hull

upper hull

lower hull

query range

extreme point

Edges with slopes closest to query slope are the endpoints of the extreme point in a
direction perpendicular to the given line

It is the deepest point in the range (if there is any point in the range) and the closest
point to the range otherwise

Listing all convex hull vertices in the range

Find extreme point

Walk left and right from it
listing points in range until
finding a point that is not
in range (or looping back
to start)

Time O(log n + k)

But only finds hull vertices!

upper hull

lower hull

query range

extreme point

Nested hulls

Find hull of given points, remove its vertices, and repeat

Result: A sequence of nested convex polygons

Can be constructed in time O(n log n) (but complicated)

Using nested convex hulls for range reporting

To list all points in a query halfplane:

Start at the outermost hull

While we have not yet found a hull that is separate from the query range:

▶ Do a binary search to find the extreme point

▶ If it is inside the range, walk around the hull to find all other hull vertices in
range, and move on to the next hull

▶ Otherwise, stop: this level has no results and none of the hulls nested inside it can
have any results

Analysis of the nested binary search algorithm

Each binary search except for the last one finds a point to report

Each walk step except for the last in a walk finds a point to report

Worst case: one point in range in each hull, k + 1 binary searches

Time: O(k log n)

Can we do better?

Insight: all binary searches use the same key (the slope)

Fractional cascading

What is fractional cascading?

Goal: Speed up related binary searches without too much space

A simplified version:

Data: k sorted lists of numbers S0,S1, . . .Sk−1

Total length: n = |S0|+ |S1|+ · · ·+ |Sk−1|

No repeated values, even in different lists

Query: find the successors of a given number q in each list

(si = successor of q in list Si)

Example

Data:

▶ S0 = [0, 10, 20, 30, 40, 50, 60, 70]

▶ S1 = [1, 2, 13, 25, 27, 51, 57]

▶ S2 = [21, 22, 31, 32, 33, 41, 99]

▶ S3 = [67, 68, 69]

Total length n = 8 + 7 + 7 + 3 = 25

Query for q = 24 would find
s0 = 30 s1 = 25 s2 = 31 s3 = 67

Näıve solutions

Do the binary searches separately

Space = O(n) for storing each Si as a sorted list

Query time = O(k log n) for k binary searches

Merge into one list

For each value x , store k-tuple of successors
for queries that return x as their smallest value

0:(0,1,21,67), 1:(10,1,21,67), 2:(10,2,21,67), 10:(10,13,21,67), 13:(20,13,21,67),

20:(20,25,21,67), 21:(30,25,21,67), . . .

Binary search in merged sorted array + look up k-tuple

Space O(kn), query time O(k + log n)

Fractional cascading

Working backwards through the sequence of lists Si ,
construct Ti : merged structure for (Si + half the elements of Ti+1)

Choosing the half of the elements that are in odd-numbered positions e.g. if
T = 1, 2, 3, 5, 7, 11, 20 then 1

2T = 2, 5, 11

So Ti consists of:

▶ A sorted array of the merged items from Si +
1
2Ti+1

▶ A dictionary mapping each merged item x to a pair (a, b) where one of a or b is
x , and the other one is the successor of x in the other merged list

▶ When there is no successor in the other list, use +∞

Example

▶ S3 = 67, 68, 69 T3 = S3 (nothing to merge) Half elements: 68

▶ S2 = 21, 22, 31, 32, 33, 41, 99

▶ T2 = 21:(21,68), 22:(22,68), 31:(31,68), 32:(32,68), 33:(33,68), 41:(41,68), 68:(99,68),
99:(99,+∞)

▶ Half the elements of T2: 22, 32, 41, 99

▶ S1 = 1, 2, 13, 25, 27, 51, 57

▶ T1 = 1:(1,22), 2:(2,22), 13:(13,22), 22:(25,22), 25:(25,32), 27:(27,32), 32:(51,32),
41:(51,41), 51:(51,99), 57:(57,99), 99:(+∞,99)

▶ Half the elements of T1: 2, 22, 27, 41, 57

▶ S0 = 0, 10, 20, 30, 40, 50, 60, 70

▶ T0 = 0:(0,2), 2:(10,2), 10:(10,22), 20:(20,22), 22:(30,22), 27:(30,27), 30:(30,41),
40:(40,41), 41:(50,41), 50:(50,57), 57:(60,57), 60:(60,+∞), 70:(70,+∞)

Searching fractionally cascaded lists

To find the successors of q:

▶ Binary search for successor t0 in merged list T0

▶ Set i = 0
▶ Then, repeat:

▶ Use dictionary for Ti to find the pair (a, b)
where a = si = successor in Si
and b is successor in 1

2Ti+1

▶ Output si
▶ Let c be the (skipped) element of Ti+1 just before b
▶ If q < c then ti+1 = c else ti+1 = b
▶ Set i = i + 1

Example (continued)

To search for the successor of q = 24:

▶ Binary search in T0 finds successor t0: 27:(30,27)

▶ Output s0 = 30, successor in S0
▶ Successor in T1 might be either 27 or previous item, 25

▶ Because q < 25, successor in T1 is 25:(25,32)

▶ Output s1 = 25, successor in S1
▶ Successor in T2 might be either 32 or previous item, 31

▶ Because q < 31, successor in T2 is 31:(31,68)

▶ Output s2 = 31, successor in S2
▶ Successor in T3 might be either 68 or previous item, 67

▶ Because q < 67, successor in T3 is 67

▶ Output s3 = 67, successor in S3

Fractional cascading analysis

Query time

One binary search + O(1) for each list after the first

Total O(k + log n)

Space and set-up time

Each element of Si contributes 1 to the length of Ti ,
1
2 to the length of Ti−1,

1
4 to the

length of Ti−2, . . .

So the total space and total set-up time is O(n)

Best combination of time and space from näıve solutions

Half-plane range reporting, revisited

Structure:

▶ Nested hulls

▶ Sorted lists of slopes of
upper and lower hull
edges, ordered from
outer hull to inner

▶ Fractional cascading

Query: One binary search to start fractional cascading, after which we can find
extreme point in each level in constant time

List vertices on each hull, starting from its extreme point, stopping when we reach a
hull that is entirely outside the range

Total O(log n + k)

