
CS 164 & CS 266:
Computational Geometry

Lecture 2

Coordinates and primitives

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License

Area

A toy example

What is the area of this polygon?

Clever solution:

Cut along the grid lines

Flip the cut-off triangles into the lower
left kite

The result exactly covers a square,
area 1

x = 0

y = 0

1

1

2

2

Area of polygons

We want a solution without cleverness that a computer can follow

x = 0

y = 0

1

1

2

2

Vertex coordinates:

[(0, 0), (1, 2), (1, 1), (2, 1)]

Area: 1

Input: Clockwise sequence of vertices
Each given by integer Cartesian coordinates

Output: A number, the area

Idea: decompose into simpler shapes

Triangles

(x1,y1)

(x2,y2)

(x3,y3)

A =
1

2
det

x1 y1 1
x2 y2 1
x3 y3 1

=

1

2
(x1y2 − x1y3 + x2y3 − x2y1 + x3y1 − x3y2)

Trapezoids

(x1,y1)
(x2,y2)

A =
1

2
(x2 − x1)(y1 + y2)

Using trapezoids to compute area

(x1,y1)

(x0,y0)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

(x6,y6)

(x7,y7)

(x8,y8)positive negative

Add the areas of trapezoids below each upper edge of the polygon

Subtract the areas of trapezoids below each lower edge

Outside polygon, positive and negative areas cancel
Inside points all covered by one more positive than negative

Trapezoid formula for area

(x1,y1)

(x0,y0)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

(x6,y6)

(x7,y7)

(x8,y8)positive negative

A =
n−1∑
i=0

1

2
(xi+1 − xi)(yi + yi+1)

All indexes computed modulo n so (xn, yn) = (x0, y0)

Produces a positive number for positive trapezoids,
negative for negative trapezoids

Trapezoid formula as an algorithm

Summation ⇒ for-loop

def area(P):

area = 0

for i in 0, 1, 2, ... n-1:

j = (i + 1) mod n

xi,yi = P[i]

xj,yj = P[j]

area += (xj-xi)*(yj+yi)/2

return area

Easy, time = O(n)

Geometric primitives

What is a primitive?

A constant-time formula/algorithm/subroutine for higher-level information than the
input coordinates

Example: The area of a triangle

Another example (same subroutine, different interpretation):
If you travel from p to q, then turn and travel from q to r ,
which way did you turn?

p

q

r

straight:
area(p, q, r) = 0

p

q

r

right turn:
area(p, q, r) > 0

p

q

r

left turn:
area(p, q, r) < 0

Crossing test primitive

Idea: build more complicated primitives from simpler ones

Does line segment ab cross line segment cd?

a

b
c

d

Yes, if: abc turns the opposite way from abd , and
cda turns the opposite way from cdb

Distance/length primitive

Distance from (x1, y1) to (x2, y2) (length of segment)?

(x1,y1)

(x2,y2)

(x2,y1)

?

distance =
√
(x1 − x2)2 + (y1 − y2)2

(apply Pythagoras to right triangle with sides |x1 − x2|, |y1 − y2|)

Coordinate systems

Motivation

Cartesian coordinates — (x , y) pairs — are familiar and work well for many purposes

Sometimes other coordinates are easier to use

Example:

If we represent most lines as (m, b) where y = mx + b, finding the line
through two points uses division, problematic if we want integers

And what about vertical lines x = c?

Projective geometry eliminates both problems

Coordinate systems for points in the plane

Cartesian coordinates (x , y)
Simple, familiar
Generalize to higher dims
Widely used, familiar

Polar coordinates (r , θ)
Angle and distance from origin
Widely known, not as useful

Complex numbers
Built into some programming languages (Python)

Make certain transformations easy:

Translate by t: q 7→ q + t
Scale by s: q 7→ qs
Rotate by θ: q 7→ q(cos θ + i sin θ)

Not as easy to generalize to higher dimensions

Formulas for coordinate conversion

Cartesian to polar

r =
√

x2 + y2 = hypot(x , y)

θ = atan2(y , x)

Cartesian to complex

q = x + i · y = x + 1j * y

Polar to Cartesian

x = r · cos θ
y = r · sin θ

Complex to Cartesian

x = ℜ(q) = q.real

y = ℑ(q) = q.imag

Projective geometry

Equivalence between 2d points and 3d lines

Map plane into 3d by (x , y) 7→ (x , y , 1), view from (0, 0, 0)

Would get same view for all scaled embeddings (ax , ay , a)
All points (ax , ay , a) on a line through (0, 0, 0) look the same!

File:Traité des pratiques geometrales et perspectives - enseignées dans l’Academie royale de la peinture et sculpture (1665) (14762910201).jpg

Projective geometry

New meaning for the words “point” and “line”:

▶ “Point”: 3d line through (0, 0, 0)

Represent by 3d coordinates of any nonzero point on the line

Many different triples all represent the same “point”:
(x , y , z) = (0.5x , 0.5y , 0.5z) = (3x , 3y , 3z) = · · ·

▶ “Line”: 3d plane through (0, 0, 0)

Contains all points and lines of the Euclidean plane

(x , y) 7→ (x , y , 1) (x , y , z) 7→ (x/z , y/z)

But it also contains extra “points” (x , y , z) with z = 0,
called “points at infinity” (although x , y , z are all finite numbers)

Lines in projective geometry

Line: set of points (x , y , z) obeying an equation ax + by + cz = 0

Coordinates of the line: the numbers a, b, c

Many different triples all represent the same line:
(a, b, c) = (0.5a, 0.5b, 0.5c) = (3a, 3b, 3c) = · · ·

Converting between coordinates

Euclidean to projective

Point (x , y) 7→ (x , y , 1)

Line (m, b) 7→ (m,−1, b)
y = mx+b 7→ mx−y+bz = 0

Vertical line c 7→ (1, 0,−c)
x = c 7→ x + 0y − cz = 0

Projective to Euclidean

Point (x , y , z) 7→ (x/z , y/z)

Line (a, b, c) 7→ (−a/b,−c/b)
ax + by + cz = 0
7→ y = −ax/b − c/b

Vertical line (a, 0, c) 7→ −c/a
ax + cz = 0 7→ x = −c/a

But points at infinity (x , y , 0) and line at infinity (0, 0, 1)
do not correspond to anything in Euclidean geometry!

What are these extra points?

We can think of:

▶ The plane as a surface that we’re
viewing from slightly above it

▶ The line at infinity is the horizon

▶ The points at infinity are the
vanishing points where parallel
lines meet

CC-BY-SA image “Railroad in Northumberland County,
Pennsylvania, southeast of Turbotville” by Jakec from
https://commons.wikimedia.org/wiki/File:

Railroad_in_Northumberland_County,_Pennsylvania.JPG

https://commons.wikimedia.org/wiki/File:Railroad_in_Northumberland_County,_Pennsylvania.JPG
https://commons.wikimedia.org/wiki/File:Railroad_in_Northumberland_County,_Pennsylvania.JPG

Point-on-line primitive and projective duality

To test if point (x , y , z) is on line (a, b, c):
compute dot product (x , y , z) · (a, b, c), check if zero

Unaffected by multiplying the coordinates of either by a scalar

Unaffected by which triple is a “point” and which we call a “line”

So if we reinterpret all lines in projective geometry as being points, and all points as
being lines, it doesn’t affect any properties defined using point–line intersection tests!

The space of points and lines formed by renaming the lines and points of projective
geometry in this way is the projective dual

Algorithmic applications of projective duality

Whenever we have a valid mathematical statement about points, lines, and point-line
incidence in projective geometry, we can change all points to lines and all lines to
points in the statement and get another valid statement.

Example 1: every two points have a line that touches both of them
Dual 1: every two lines have a point that touches both of them

Not true of Euclidean parallel lines!

Example 2: f is a subroutine that takes as input two points and outputs the line that
touches them
Dual 2: f is a subroutine that takes as input two lines and outputs the point that
touches them

The same subroutine does two different things!

To find line through two points / point on two lines

Math version:

Line through (x1, y1, z1) and
(x2, y2, z2) is the set of points
(x , y , z) for which

det

x1 y1 z1
x2 y2 z2
x y z

 = 0

Because this equation is linear
in x , y , z and is true of the two
given points

Computer science version:

def thru2(p,q)

x1,y1,z1 = p

x2,y2,z2 = q

x = y1*z2-y2*z1

y = z1*x2-z2*x1

z = x1*y2-x2*y1

return (x,y,z)

Is the crossing test really that simple?

Does line segment ab cross line segment cd?

a

b
c

d

Yes, if: abc turns the opposite way from abd , and
cda turns the opposite way from cdb

But what if some of these turns are straight?

Simplifying assumption: no three input points are in a line

General position

“General position” = no unexpected numerical coincidences

E.g. when using turn direction primitive, never comes out zero (no three points are on
a line)

This assumption simplifies algorithm design (and lecturing!)
but is a poor match for real-world inputs

Instead, we can:

▶ Do more analysis to carefully handle special cases

▶ Perturb inputs by small distances to make them general position

▶ Use numerical libraries that automatically simulate the results of infinitesimally
small perturbations

The problem with distances

Recall the distance formula:

distance =
√
(x1 − x2)2 + (y1 − y2)2

Even when all coordinates are integers, square root is usually not!

Perimeter of a polygon = sum of square roots

How many bits of precision do we need to compare two perimeters and tell which one
is shorter? Unknown!

Partial solution: when comparing distances, but not adding them, we can compare
squared distance before taking its square root

