CS 164 \& CS 266:
 Computational Geometry
 Lecture 5
 Triangulation

David Eppstein
University of California, Irvine

Fall Quarter, 2023

Existence of triangulations

What is a triangulation?

Subdivide polygon (possibly with polygonal holes) into edge-to-edge triangles Not allowed to add new vertices

3d polyhedra do not always have triangulations

This shape is called the Schönhardt polyhedron [Schönhardt 1928]

For every four vertices, the tetrahedron they form extends outside the polyhedron

So it cannot be subdivided into face-to-face tetrahedra

2d polygons always have triangulations

True more generally for non-crossing arrangements of segments Proof idea: If not already triangulated, can add one more segment

Let v be leftmost vertex of a non-triangle face, neighbors $u-v-w$
If we can add edge $u w$, do it
Else something must be inside triangle $u v w$ blocking visibility; add edge $v x$ where x is inside triangle and farthest from line uw

Trees and ears

For a simple polygon (meaning no holes), the triangles of any triangulation are adjacent in a tree pattern, because any cycle would surround an interior vertex or a hole

Every tree has a leaf \Rightarrow every triangulation of a simple polygon has an ear, a triangle that uses two polygon edges

The art gallery problem

The art gallery problem

Given an art museum with a complicated floor plan
Position enough guards (or cameras) to see everything

[Daderot 2019]

Hard-to-guard galleries

Some simple polygon floor plans with n sides require $\left\lfloor\frac{n}{3}\right\rfloor$ guards

27 sides, 9 guards

Coloring triangulations

Vertices of any triangulation of a simple polygon can be colored by three colors so that every triangle has one vertex of each color

Proof: Remove an ear, color the rest recursively / by induction, put the ear back and color tip differently than its two neighbors
Takes linear time once you have the triangulation

The art gallery theorem

Every simple polygon can be guarded by $\leq\left\lfloor\frac{n}{3}\right\rfloor$ guards [Chvátal 1975; Fisk 1978]

Proof: Guard vertices of the least-frequent color Every triangle is guarded by one of its three vertices

10 red, 9 green, 10 blue \Rightarrow guard with 9 green vertices

Triangulation algorithms

How to triangulate a polygon?

Simple polygons can be triangulated in linear time [Chazelle 1991] but the algorithm is completed and impractical

The book gives:

An $O(n \log n)$ plane sweep algorithm for partitioning into monotone polygons (polygons for which every vertical line crosses the boundary ≤ 2 times)

A linear-time algorithm for triangulating monotone polygons, still complicated

This idea of finding special classes of polygons with linear-time algorithms was made obsolete by Chazelle's result

Still open: Find a practical linear-time triangulation algorithm

Simpler $O(n \log n)$ triangulation

A more direct $O(n \log n)$ plane sweep is possible
It works for any non-crossing set of segments

Basic idea: For each vertex in left-to-right order, connect it to everything farther to the left that it can still see after earlier steps

State in the middle of a sweep

Input segments that have not yet been swept over

Right endpoints of
segments whose left endpoints have already been swept

Easy cases

When we sweep over a vertex, add edges to everything it can see

Messier cases

Swept vertex is a right endpoint of some segments, but not a left endpoint of any

Swept vertex is a left endpoint of some segments, but not a right endpoint of any
look for its pocket
connect to nearest
point to sweep line
split pocket in two
handle as if new
edge was in input

How to represent this state

- Binary search tree of pockets, ordered by the vertical ordering in which they cross the sweep line
- Doubly-linked list of the already-swept vertices in each pocket
- Pointer into this list for each pocket, to the vertex closest to the sweep line

Pseudocode

- Initialize binary search tree of pockets
- Sort the input segment endpoints by x
- For each endpoint, in sorted order, and for each wedge formed by two segments touching it, do one of the following cases:
- Wedge angle $<\pi$ to the right (easy)
- Wedge angle $<\pi$ to the left (easy)
- Left endpoint of one segment, right endpoint of other (easy)
- Wedge angle $>\pi$, right endpoint of both segments (messy)
- Wedge angle $>\pi$, left endpoint of both segments (messy)

References and image credits

Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is $\exists \mathbb{R}$-complete. Journal of the ACM, 69(1):A4:1-A4:70, 2022. doi: $10.1145 / 3486220$.
Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete \& Computational Geometry, 6(3):485-524, 1991. doi: 10.1007/BF02574703.
Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B, 18:39-41, 1975. doi: 10.1016/0095-8956(75)90061-1.
Daderot. Interior view - University of Arizona Museum of Art. Public domain (CC0) image, October 27 2019. URL https://commons.wikimedia.org/wiki/File:Interior_-_University_of_Arizona_ Museum_of_Art_-_University_of_Arizona_-_Tucson,_AZ_-_DSC08066.jpg.
Steve Fisk. A short proof of Chvátal's watchman theorem. Journal of Combinatorial Theory, Series B, 24(3):374, 1978. doi: 10.1016/0095-8956(78)90059-X.
E. Schönhardt. Über die Zerlegung von Dreieckspolyedern in Tetraeder. Mathematische Annalen, 98:309-312, 1928. doi: 10.1007/BF01451597.

