CS 164 \& CS 266:
 Computational Geometry

Lecture 7

Mesh generation, quadtrees, and continuous Dijkstra

David Eppstein
University of California, Irvine

Fall Quarter, 2023This work is licensed under a Creative Commons Attribution 4.0 International License

Main idea

What is a mesh?

Input: a 2d or 3d region in which we want to simulate airflow, heat, strain, or other physical properties

Mesh: subdivision into simple shapes such as triangles: "elements"

Finite element analysis

Once we have a mesh, solve a big system of linear equations:
Variables: air velocity and density within each triangle Boundary conditions: constant velocity and density far from wing
Equations: Relate flows and densities between neighboring triangles (e.g. total air in must equal total air out)

Solution: Steady state flow

How does the mesh affect this analysis?

$$
\begin{gathered}
\text { Number of triangles } \Rightarrow \text { size of system of equations } \\
\text { Fewer triangles: faster }
\end{gathered}
$$

Size of elements compared to size of features of input shape and solution flow \Rightarrow accuracy of simulation Smaller triangles: more accurate

Shape of elements \Rightarrow "stiffness" of system of equations
\Rightarrow speed and accuracy of iterative numerical methods
Less-sharp triangles: easier to solve
Precise relation of shape to stiffness not well understood

What shapes should we aim for?

Possibility 1: Avoid sharp (near-zero) angles
Possibility 2: Sharp ok, but avoid wide (near- π) angles

Possibility 3: Whether a shape is good or bad depends on the solution values near it, and not on the shape itself

Lower bounds on numbers of triangles

Simple shapes may require many triangles

If we forbid sharp angles ($<\varepsilon$ for some $\varepsilon>0$) then $1 \times x$ rectangle requires $\Omega(x)$ triangles even though $n=4=O(1)$

Corollary: Number of triangles cannot be a function only of n and we cannot get a time bound depending only on n

Local feature size

Radius of smallest circle, centered at a given point, that intersects two non-touching polygon edges

Area vs local feature size

Claim: In a triangle mesh with no sharp angles (all angles $>\varepsilon$), each point in a triangle of area A has local feature size \geq constant • \sqrt{A}

Ideas of proof:

- No sharp angles \Rightarrow all sides of triangle have length proportional to \sqrt{A}
- If any point in the triangle is near two disjoint features \Rightarrow closest boundary point of the triangle is near the same two features
- The next triangle across that edge must stay inside the polygon, forcing it to have a sharp angle

Lower bound on number of triangles

For a domain (polygon) D, In a triangle mesh of D with no sharp angles, let N be the number of triangles in the mesh, and let $a(p)$ be the area of the triangle containing any point p.

Then the integral of the constant function 1 /area over a single triangle is one, and combining with the inequality of area versus local feature size gives:

$$
N=\int_{D} \frac{1}{a(p)} d x d y \geq \text { constant } \cdot \int_{D} \frac{1}{\operatorname{lfs}(p)^{2}} d x d y
$$

Idea: If we can make every triangle have area \geq (local feature size) ${ }^{2}$, the reverse of the inequality, both integrals will be within a constant factor of each author \Rightarrow number of triangles will be near-optimal

Quadtree-based meshing

Quadtree

(More precisely, "point quadtree"; there are other kinds)
Recursively divide squares into four smaller squares

Simplifying assumptions:

- Point coordinates are integers in range $0 \ldots 2^{b}-1$ for some b
- Squares have side lengths 2^{k} for $0 \leq k \leq b$
- Coordinates of square sides are integer $+\frac{1}{2}$ so points avoid square sides

Representation and construction

Each square stores:

- Its square
- Whether it is empty, has one point, or has multiple points
- If one point, what is that point?
- If multiple points, four child squares

Start with a big power-of-two-size square containing all of the points, and a list of all its points

Test whether list is empty, one point, or more than one

If more than one, partition points into four quadrants and recursively construct four child squares

Balanced quadtree

Construct a quadtree normally (recursively split overfull squares)
Then, while any square has neighboring squares $<\frac{1}{2}$ its size, split it

Balanced quadtree

A split square of side s has distance $\leq 2 s$ to a smaller square of the original quadtree Each square of unbalanced quadtree $\Rightarrow O(1)$ squares of balanced quadtree Each square has side length proportional to local feature size

Triangulating a balanced quadtree

Add a vertex at the center of each square Connect it to the vertices on the boundary of the square

All triangles are isosceles right triangles, angles 45° and 90°

Quadtree-based meshing

- Surround whole polygon in a bounding square
- Recursively subdivide squares crossed by non-touching edges
- More subdivision + messy case analysis for squares crossed by boundary
- Balance
- Triangulate empty squares

Quadtree mesh analysis

> Mary Poppins: "practically perfect in every way"

All angles bounded away from 0 and 180° (except for sharp angles of input polygon)

All triangles have diameter proportional to local feature size \Rightarrow \# triangles is within a constant factor of optimal (by the argument involving the integral of $1 / \mathrm{Ifs}^{2}$)

Similar argument with the integral of $1 /$ Ifs shows total edge length is within a constant factor of optimal

Construction takes time linear in mesh size
[Bern et al. 1990]

Non-obtuse triangulation of polygons

Right angles are special

We already saw that if we want all angles $\geq \varepsilon$, \# triangles depends on geometry not just on n

But if we try to get all angles $\leq 90^{\circ}-\varepsilon$, we also get all angles $\geq 2 \varepsilon$
\Rightarrow if we want $O(n)$ triangles, 90° is the best we can hope for

For any polygon, it is possible to find a mesh with $O(n)$ triangles, all angles $\leq 90^{\circ}$! Main idea: Pack circles into the polygon and use them to guide the mesh

Packing circles into a polygon

Protect vertices

Split regions with >4 sides

After doing this, we are left with $O(n)$ circles and $O(n)$ four-sided regions (Side of a region can be either part of a polygon edge, or an arc of a circle.)

Non-obtuse triangulation

Add radii from centers to points of tangency
Messy case analysis: All ≤ 4-sided regions can be triangulated (in such a way that the triangles from adjacent regions meet edge-to-edge)

Result: non-obtuse triangulation, $O(n)$ triangles [Bern et al. 1995]

Compressed quadtrees and non-obtuse triangulation of point sets

Triangulating a point quadtree

Already gives us a non-obtuse triangulation
(Not shown: case analysis for triangulating one point somewhere in the middle of a quadtree square.)

Problem: Quadtree can be much bigger than linear

Construction can perform many levels of recursion without splitting anything (like on lower left of example)

So \# triangles is not linear!

Solution: Compressed quadtree

When constructing a quadtree node, shrink its square to smallest power-of-two square containing its points

Every non-leaf square has more than one non-empty child

Total \# squares is $O(n)$

Fast construction of compressed quadtree

Sort by "Z-curve": recursively traverse quadtree northwest-northeast-southwest-southeast

Same as shuffling the bits of the x and y coordinates into a single $2 b$-bit binary number
 and sorting by that number

All compressed quadtree squares are minimum power-of-two squares around two consecutive points

Total time $O(n \log n)$

Meshing with compressed quadtrees

When a quadtree square has only one (much smaller) child), carefully connect its outer boundary to the child

Can guarantee: $O(n)$ triangles, all triangle angles $\leq 90^{\circ}$

Shortest paths revisited

$O(n \log n)$ time shortest path algorithm

"Continuous Dijkstra": simulate a wave expanding from start point

Wavefront $=$ sequence of circular arcs
Use compressed quadtree squares as a mesh (don't triangulate it!)

Use an approximate version of the wavefront, accurate to mesh cell size, and fix up the approximation later Key property: $O(1)$ mesh cells within distance $2 \times$ length of any mesh edge Events: wavefront interacts w/ mesh
 $O(n \log n)$ [Hershberger and Suri 1999]

References

M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality triangulations. Int. J. Comput. Geom. Appl., 9(6):517-532, 1999. doi: 10.1142/S0218195999000303.

Marshall Bern, Scott Mitchell, and Jim Ruppert. Linear-size nonobtuse triangulation of polygons. Discrete \& Computational Geometry, 14(4):411-428, 1995. doi: 10.1007/BF02570715.

Marshall W. Bern, David Eppstein, and John R. Gilbert. Provably good mesh generation. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 231-241. IEEE Computer Society, 1990. doi: 10.1109/FSCS.1990.89542.

John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing, 28(6):2215-2256, 1999. doi: 10.1137/S0097539795289604.

Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 83-92, 1993.

