
CS 164 & CS 266:
Computational Geometry

Lecture 7

Mesh generation, quadtrees, and continuous Dijkstra

David Eppstein
University of California, Irvine

Fall Quarter, 2023

This work is licensed under a Creative Commons Attribution 4.0 International License

Main idea

What is a mesh?

Input: a 2d or 3d region in which we want to simulate airflow, heat, strain, or other
physical properties

Mesh: subdivision into simple shapes such as triangles: “elements”

Finite element analysis

Once we have a mesh, solve a big system of linear equations:

Variables: air velocity and density within each triangle

Boundary conditions: constant velocity and density far from wing

Equations: Relate flows and densities between neighboring triangles (e.g. total air in
must equal total air out)

Solution: Steady state flow

How does the mesh affect this analysis?

Number of triangles ⇒ size of system of equations

Fewer triangles: faster

Size of elements compared to size of features of input shape and solution flow ⇒
accuracy of simulation

Smaller triangles: more accurate

Shape of elements ⇒ “stiffness” of system of equations
⇒ speed and accuracy of iterative numerical methods

Less-sharp triangles: easier to solve

Precise relation of shape to stiffness not well understood

What shapes should we aim for?

Possibility 1: Avoid sharp (near-zero) angles

Possibility 2: Sharp ok, but avoid wide (near-π) angles

Possibility 3: Whether a shape is good or bad depends on the solution values near it,
and not on the shape itself

Lower bounds on numbers of triangles

Simple shapes may require many triangles

If we forbid sharp angles (< ε for some ε > 0)
then 1× x rectangle requires Ω(x) triangles

even though n = 4 = O(1)

Corollary: Number of triangles cannot be a function only of n

and we cannot get a time bound depending only on n

[Bern et al. 1990]

Local feature size

Radius of smallest circle, centered at a given point, that intersects two non-touching
polygon edges

Area vs local feature size

Claim: In a triangle mesh with no sharp angles (all angles > ε), each point in a
triangle of area A has local feature size ≥ constant ·

√
A

Ideas of proof:

▶ No sharp angles ⇒ all sides of triangle have length proportional to
√
A

▶ If any point in the triangle is near two disjoint features ⇒
closest boundary point of the triangle is near the same two features

▶ The next triangle across that edge must stay inside the polygon, forcing it to have
a sharp angle

Lower bound on number of triangles

For a domain (polygon) D, In a triangle mesh of D with no sharp angles, let N be the
number of triangles in the mesh, and let a(p) be the area of the triangle containing
any point p.

Then the integral of the constant function 1/area over a single triangle is one, and
combining with the inequality of area versus local feature size gives:

N =

∫
D

1

a(p)
dx dy ≥ constant ·

∫
D

1

lfs(p)2
dx dy .

Idea: If we can make every triangle have area ≥ (local feature size)2, the reverse of the
inequality, both integrals will be within a constant factor of each author ⇒ number of
triangles will be near-optimal

[Ruppert 1993]

Quadtree-based meshing

Quadtree

(More precisely, “point quadtree”; there are other kinds)

Recursively divide squares into four smaller squares

Simplifying assumptions:

▶ Point coordinates are integers in
range 0 . . . 2b − 1 for some b

▶ Squares have side lengths 2k for
0 ≤ k ≤ b

▶ Coordinates of square sides are
integer + 1

2 so points avoid square
sides

Representation and construction

Each square stores:

▶ Its square

▶ Whether it is empty, has
one point, or has multiple
points

▶ If one point, what is that
point?

▶ If multiple points, four
child squares

Start with a big
power-of-two-size square
containing all of the points,
and a list of all its points

Test whether list is empty, one
point, or more than one

If more than one, partition
points into four quadrants and
recursively construct four child
squares

Balanced quadtree

Construct a quadtree normally (recursively split overfull squares)

Then, while any square has neighboring squares < 1
2 its size, split it

Balanced quadtree

A split square of side s has distance ≤ 2s to a smaller square of the original quadtree

Each square of unbalanced quadtree ⇒ O(1) squares of balanced quadtree

Each square has side length proportional to local feature size

Triangulating a balanced quadtree

Add a vertex at the center of each square

Connect it to the vertices on the boundary of the square

All triangles are isosceles right triangles, angles 45◦ and 90◦

Quadtree-based meshing

▶ Surround whole polygon in
a bounding square

▶ Recursively subdivide
squares crossed by
non-touching edges

▶ More subdivision + messy
case analysis for squares
crossed by boundary

▶ Balance

▶ Triangulate empty squares

Quadtree mesh analysis

Mary Poppins:
“practically perfect in every way”

All angles bounded away from 0 and 180◦

(except for sharp angles of input polygon)

All triangles have diameter proportional to local feature
size ⇒ # triangles is within a constant factor of optimal

(by the argument involving the integral of 1/lfs2)

Similar argument with the integral of 1/lfs shows total
edge length is within a constant factor of optimal

Construction takes time linear in mesh size

[Bern et al. 1990]

Non-obtuse triangulation of polygons

Right angles are special

We already saw that if we want all angles ≥ ε,
triangles depends on geometry not just on n

But if we try to get all angles ≤ 90◦ − ε, we also get all angles ≥ 2ε

⇒ if we want O(n) triangles, 90◦ is the best we can hope for

For any polygon, it is possible to find a mesh with O(n) triangles, all angles ≤ 90◦!

Main idea: Pack circles into the polygon and use them to guide the mesh

Packing circles into a polygon

Protect vertices Split regions with > 4 sides

After doing this, we are left with O(n) circles and O(n) four-sided regions

(Side of a region can be either part of a polygon edge, or an arc of a circle.)

Non-obtuse triangulation

Add radii from centers to points of tangency

Messy case analysis: All ≤ 4-sided regions can be triangulated

(in such a way that the triangles from adjacent regions meet edge-to-edge)

Result: non-obtuse triangulation, O(n) triangles [Bern et al. 1995]

Compressed quadtrees
and non-obtuse triangulation of point sets

Triangulating a point quadtree

Already gives us a non-obtuse triangulation

(Not shown: case analysis for triangulating one point
somewhere in the middle of a quadtree square.)

Problem: Quadtree can be much bigger than linear

Construction can perform
many levels of recursion
without splitting anything

(like on lower left of example)

So # triangles is not linear!

Solution: Compressed quadtree

When constructing a quadtree
node, shrink its square to
smallest power-of-two square
containing its points

Every non-leaf square has more
than one non-empty child

Total # squares is O(n)

Fast construction of compressed quadtree

Sort by “Z-curve”: recursively
traverse quadtree northwest-
northeast-southwest-southeast

Same as shuffling the bits of
the x and y coordinates into a
single 2b-bit binary number
and sorting by that number

All compressed quadtree
squares are minimum
power-of-two squares around
two consecutive points

Total time O(n log n)

[Bern et al. 1999]

Meshing with compressed quadtrees

When a quadtree square has only one (much smaller) child),
carefully connect its outer boundary to the child

Can guarantee: O(n) triangles, all triangle angles ≤ 90◦

[Bern et al. 1990]

Shortest paths revisited

O(n log n) time shortest path algorithm

“Continuous Dijkstra”: simulate a
wave expanding from start point

Wavefront = sequence of circular arcs

Use compressed quadtree squares as a
mesh (don’t triangulate it!)

Use an approximate version of the
wavefront, accurate to mesh cell size,
and fix up the approximation later

Key property: O(1) mesh cells within
distance 2× length of any mesh edge

Events: wavefront interacts w/ mesh

O(n log n) [Hershberger and Suri 1999]

s

References

M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality
triangulations. Int. J. Comput. Geom. Appl., 9(6):517–532, 1999. doi:
10.1142/S0218195999000303.

Marshall Bern, Scott Mitchell, and Jim Ruppert. Linear-size nonobtuse triangulation of
polygons. Discrete & Computational Geometry, 14(4):411–428, 1995. doi:
10.1007/BF02570715.

Marshall W. Bern, David Eppstein, and John R. Gilbert. Provably good mesh generation. In
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,
October 22-24, 1990, Volume I, pages 231–241. IEEE Computer Society, 1990. doi:
10.1109/FSCS.1990.89542.

John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM Journal on Computing, 28(6):2215–2256, 1999. doi:
10.1137/S0097539795289604.

Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Vijaya
Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIAM Symposium on
Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 83–92, 1993.

	References

