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Convex polyhedra



Convex polyhedron

The convex hull of a finite set of
points pi in 3d is:

▶ all convex combinations of points,
where a convex combination is a
weighted average

(∑
wipi

)
/
(∑

wi

)
for non-negative weights wi

▶ the union of tetrahedra defined by
subsets of four points pi

▶ the intersection of all half-spaces that
contain the points pi

[Pbierre 2015]



Faces and their dimensions

The faces of a 3d polyhedron are its vertices, edges, and facets

Vertices are 0-dimensional, edges are 1d, facets are 2d

(Sometimes the facets are called faces, but we need a word for all of these things.)

It is convenient to think of the empty set (dimension = −1) and the whole polyhedron
(dimension = 3) as also being faces

Face = any intersection of the polyhedron with a closed halfspace whose boundary is
disjoint from the interior of the polyhedron

(This generalizes to d-dimensional convex hulls: “polytopes”)



The face lattice

Faces of all dimensions and their inclusion relations
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Convex hull problem: Convert set of points to this structure



Euler’s formula

For 3d convex polyhedra: V − E + F = 2

Or, in terms of face lattice with empty set and whole polyhedron

d∑
dim=−1

(−1)dim × (# faces of dim) = 0

This formula works for convex hulls in any dimension!

For instance, in 2d, it says: # vertices = # edges



One of many proofs

▶ Rotate polyhedron so each face has
exactly one vertex with minimum
z-coordinate, and exactly one with
maximum z-coordinate

▶ Place positive charge at each vertex,
negative on each edge, positive in each
facet, so total charge is V − E + F

▶ Rotate charges around z-axis into
nearby facets

▶ Each facet gets −1 total from a path
of edges and vertices along one side,
cancelling its own +1 charge

▶ The only charges left are +1 at the
north and south poles
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3d hulls have linear complexity

V − E + F = 2

2E ≥ 3F ⇐⇒ 2
3E ≥ F ⇐⇒ E ≥ 3

2F

(There are 2 faces per edge and at least three edges per face, so the number of
face-edge incidences is exactly 2E and at least 3F .)

Combine:

V − E + 2
3E ≥ 2 ⇐⇒ E ≤ 3V − 6 = O(V )

V − 3
2F + F ≥ 2 ⇐⇒ F ≤ 2V − 4 = O(V )



Complexity blows up in higher dimensions

The worst case for convex hulls in d dimensions is given by n points with coordinates
(x , x2, x3, . . . , xd) (for n different values of x)

# faces = Θ
(
n⌊d/2⌋

)
So n2 for dimensions 4, 5; n3 for dimensions 6, 7, etc.

An unsolved problem: Suppose you have a 4d convex hull of n points, and it also has
O(n) three-dimensional faces. How many 1d edges and 2d polygons can it have?

Unknown whether linear or nonlinear

[Eppstein et al. 2003]



3d convex hull algorithms in general



Graham scan isn’t efficient

Graham scan: add points in sorted order by one coordinate (say z)

Bad example: Start with a cone of n/2 vertices and then keep making the peak higher

Like lifting a circus tent on its center pole

Each added peak makes n/2 new faces ⇒ total time Θ(n2)



Some ideas that do work

Like mergesort

Split arbitrarily into sets of n/2 points

Recurse

Merge the two hulls

[Chazelle 1992]

Like quicksort

Split at median x-coordinate

Recurse

“Gift-wrap” the two disjoint hulls

[Preparata and Hong 1977]

Both of these methods can be made to run in O(n log n) time

... but the details are complicated ...



The algorithm from the book



Randomized incremental algorithms

A general method for designing algorithms,
useful for many different computational geometry problems

(not just convex hulls)

Incremental: Add input objects one at a time,
maintaining solution of what has been added

(we saw this already for line arrangements)

Randomized incremental: Add in random order

(can help avoid worst-case complexity of adding an item)



Random permutations

Given n items, there are n! possible permutations; we want to make them all equally
likely (like shuffling cards)

To permute n items listed in an array, A[0], . . . ,A[n − 1]:

for i = 1, 2, . . . , n − 1:

Choose a random number j from 0, . . . , i

Swap A[i ],A[j ] (does nothing if i = j)

Time is obviously O(n)

By induction, after i swaps, the permutation of the first i + 1 items is uniformly
random (all permutations equally likely)



Main idea and data structures

Main idea: randomized incremental (add points in random order)

Maintain DCEL of hull vertices, edges, and facets

Also maintain “conflict graph”:

▶ Vertices: points that have not been added, and facets of current hull

▶ Edges: pairs of a point and a facet that it can see

▶ Represent as list of visible facets for each point, and list of conflict points for each
facet



How to initialize the data structures

Initial hull

Choose two arbitrary points

Find point not on their line

Find point not on their plane

Result is a tetrahedron

not on line

not in plane

Conflict graph

Check whether each point can see each tetrahedron face
(3d version of left-right orientation test)

Points that cannot see anything are inside the tetrahedron and can be removed



Main algorithm

For each remaining point p, in a random order:

▶ The conflict graph lists all of the facets that it can see

▶ Cut out those facets from the hull, leaving a hole, and remove all vertices and
edges that become disconnected from the rest of the hull

▶ For each boundary edge e of the hole, make a new triangle Te connecting e to p

▶ If Te is in the same plane as the other facet on edge e, merge them
(the merged face keeps the same conflict list as it had before)

▶ If a triangle Te is not merged, it needs a new conflict list.
Take the union of the conflict lists of the two old facets on edge e, and check
whether each point can see the new triangle Te .



A tiny amount of probability theory

When different random choices produce different values of x , the expected value of x
is their weighted average, weighted by probabilities:

E [x ] =
∑

choice y

Pr(y) · (value of x when choice is y)

If x is 0 or 1, then its expected value equals the probability that x = 1

Linearity of expectation: E [
∑

· · · ] =
∑

E [· · · ]
(Because E is a sum and this is just changing the order of two sums)

So: The expected number of things that happen equals the sum of their probabilities

(for whatever things you’re trying to count)



Partial analysis

After adding point i , what is expected # edges we just added?

▶ Current set of i points has ≤ 3i − 6 edges

▶ Edge e was just added if we just added one of its 2 endpoints

▶ Because of the random permutation, each of the i points is equally likely to be
the one we just added

▶ So probability we just added edge e is 2/i

Expected number of new edges ≤ (3i − 6) · 2
i
= 6− 12

i
< 6

(linearity of expectation)



Partial analysis

Expected # new edges in each step is < 6

⇒ expected # edges for whole algorithm is < 6n

(linearity of expectation again)

So total expected change to DCEL, over whole algorithm, is O(n)

Harder part: expected time for updating conflict lists is O(n log n)
(See book, Section 11.3)
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