Lower bounds on data structures

We have seen:

- Optimality of binary heap for comparison-model priority queues
 Based on the ability to sort using heaps
 Can be sidestepped by using integer arithmetic and array indexing instead of only comparisons (e.g. flat trees)

- Impossibility of nontrivial set disjointness
 Based on unproven assumption (SETH)

This time: Lower bounds for range search
Proven rigorously in a very general computational model
Are augmented search trees optimal?

We have seen that a very general class of dynamic range searching problems can be solved in time $O(\log n)$

Natural question: Is that the right time bound or can we do better?

Answer: we can prove $\Omega(\log n)$, for:

- Simple and natural range searching problem: *range sum*
 Data = ordered keys and numeric values
 Query = sum of values for key-value pairs with key in range

- A very general model of computing: *cell probe model*
 Only measure communication between CPU and memory
Prefix sum problem

Simplified version of the range sum problem
(for lower bounds, simpler problem \implies stronger bound)

Maintain array $A[0] \ldots A[n - 1]$ of numbers

Update(i, x): set $A[i]$ to new value x

(Can be handled by a static balanced binary search tree augmented for range sums. If these operations are hard, so are the more general operations of insertion + deletion + range sum)
Cell probe model of computing

Central processor has $O(1)$ registers, each holding one word (binary value of length $w \geq \log_2 n$); memory has up to 2^w words.

We count only steps that move a word between CPU and memory \Rightarrow lower bound doesn’t depend on what other steps are allowed.

Measure communication between CPU and memory.
Fitting prefix sums to cell probe model

We are going to prove a lower bound for prefix sums of \(n \) \(w \)-bit binary numbers (representation size of the input values should be the same as the word size of the computer)

We will use \(n = \) a power of two (unrelated to word size)

To avoid questions of integer overflow, we will assume all arithmetic is modulo \(2^w \) (just do binary addition and ignore overflows)

Goal: Find a sequence of prefix sum operations that forces any correct data structure to do a lot of CPU–memory communication
A special permutation of n

Assume $n = 2^k$

Define “bit reversal permutation” $r(i)$:

- Write i as a k-bit binary number
- Reverse the bits
- Interpret the result as a binary number

E.g. for $k = 8$, $222_{10} = 11011110_2$ becomes $01111011_2 = 123_{10}$
Computing sequence of bit-reversals

To compute a sequence of length 2^k, consisting of all k-bit numbers in bit-reversed order, compute the same sequence recursively for $k - 1$ and use it twice:

```python
def bitrev(k):
    if k == 0:
        return [0]
    L = bitrev(k-1)
    return [2*x for x in L] + [2*x+1 for x in L]
```

$[0] \rightarrow [0, 1] \rightarrow [0, 2, 1, 3] \rightarrow [0, 4, 2, 6, 1, 5, 3, 7] \rightarrow ...$

Each value in the second half of the sequence is one plus the corresponding value in the first half.
A difficult sequence of prefix-sum operations

Initialize all data values $A[i]$ to zero, then:

For each index i in $\text{bitrev}[k]$:

- Set $A[i]$ to be a random w-bit number
- Query the prefix sum $A[0] + \cdots + A[i]

E.g. when $n = 8$, $k = 3$, we perform the operations
 Update(0, random), Query(0), Update(4, random), Query(4),
 Update(2, random), Query(2), Update(6, random), Query(6),
 Update(1, random), Query(1), Update(5, random), Query(5),
 Update(3, random), Query(3), Update(7, random), Query(7)
A binary tree on the sequence of operations

This is not a data structure! It’s just a mathematical tree that we will use in the lower bound proof.
Information transfer

For any data structure for prefix sums, and any node x of this tree, define the information transfer of x to be the number of times an operation in the right descendants of x reads a memory cell that was last written during the operations in the left descendants of x.

Each memory read contributes to information transfer at ≤ 1 node \implies total number of read steps \geq total information transfer.
Information transfer \geq descendants/2

Information transfer = number of times an operation in node’s right descendants reads a memory cell last written on the left

Let $d = \#\text{descendants}/2 = \#\text{left updates} = \#\text{right queries}$

There are 2^{wd} different possible values for the updates on the left, each of which would produce different query results on the right (Independently from information derived from non-transfer reads)

\Rightarrow for correct queries, information transfer $\geq d$
Finishing the lower bound

Information transfer at root node of tree: \(\geq n/2 \)

Information transfer at \(i \)th level of tree:
2\(^i\) nodes with transfer \(\geq n/2^{i+1} \), total \(\geq n/2 \)

Total over whole tree: \(\geq (n/2) \times \# \text{ levels} = (n/2) \log_2 n \)

There are 2\(n\) prefix sum operations (updates and queries together)
⇒ average number of memory reads per operation \(\geq \frac{1}{4} \log_2 n \)

Every prefix sum data structure that fits into the cell probe model of computation requires \(\Omega(\log n) \) time per operation
⇒ same is true for dynamic range sum data structures