CS 261: Graduate Data Structures

Week 7: Range search and augmented binary search trees

David EppsteinUniversity of California, Irvine

Spring Quarter, 2021

In sorted arrays

Rank(x) = the position of x in the array (or the position it would go if added to the array)

Can be found by binary search

Unrank(i) = the element at position i in the array

Trivial to compute as Array[i]

For example, Unrank(n/2) is the median

They are inverse operations:

- ► Rank(Unrank(i)) = i, if i is in the range of array indexes
- Unrank(Rank(x)) = x, if x is one of the values stored in the array

In dynamic binary search trees

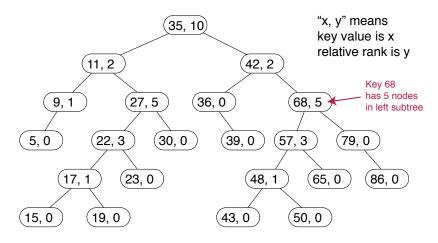
Rank and Unrank are well defined as the position of a given value in the sorted order, and the value at a given position

But it's not obvious how to compute them quickly! It doesn't work to translate array search directly to trees

- ► In array binary search for Rank(x), we know the rank of each array cell
- In binary search trees, we cannot store a rank in each tree node, because each update would cause all later ranks to change, too many for fast updating
- ► There is no way to translate the trivial array Unrank algorithm into a tree algorithm

Augmented binary search trees

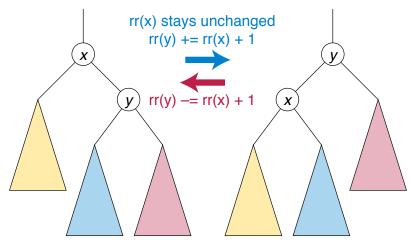
Store *relative rank* in each node: its position among it and its descendants = number of left descendants



Maintaining relative rank

On insertion or deletion: add or subtract one to all right ancestors

On rotation:



Ranking using relative ranks

Call the following recursive search with node = tree root:

```
def rank(x,node):
    if node == None:
        return 0
    else if x <= node.key:
        return rank(x,node.left)
    else:
        return rank(x,node.right) + node.relrank + 1</pre>
```

(In splay trees, add splay from last internal node on search path)

Unranking using relative ranks

Call the following recursive search with node = tree root:

def unrank(i,node):
 if i == node.relrank:
 return node.value
 else if i < node.relrank:
 return unrank(i,node.left)</pre>

return unrank(i - node.relrank - 1, node.right)

(In splay trees, add splay from last internal node on search path)

else:

Ranking and unranking summary

By adding extra information (relative rank) to each node of a binary search tree, we can still update the tree in $O(\log n)$ time, and answer rank and unrank queries in the same time

Works with any rotation-based balanced binary search tree

Related recent research: Ranking and unranking dynamic sorted sets of n integers in the range $[0, n^c]$ can be done slightly faster: $O(\log n/\log\log n)$ per update or query

Pătrașcu and Thorup, "Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search", FOCS 2014, https://arxiv.org/abs/1408.3045

Range searching

Range searching

Find aggregate information about data elements within a query range [low,high] of values

(or within higher-dimensional regions)

- Range counting: Number of elements in range
 Compute ranks of left and right range endpoints and subtract
- Range reporting: List all elements in range
- Range minimum: Find minimum priority value in range (not minimum value – trivial as successor of left endpoint)
- ▶ Other more complex queries e.g. do a recursive range search on another attribute for elements within range

Range reporting

```
Call with node = tree root:

def report(low,high,node):
    if low < node.value:
        report(low,high,node.left)
    if low <= node.value <= high:
        output node.value
    if node.value < high:
        report(low,high,node.right)</pre>
```

Analysis of range reporting

Whenever we recurse into both children, we also output the node value

Every recursive call is one of:

- A node whose value is output
- A node on the search path for the low range endpoint (at which we search only the right child)
- A node on the search path for the high range endpoint (at which we search only the left child)

Time = $O(\text{number of nodes searched}) = O(\text{output size} + \log n)$

An algorithm whose time depends on output size and not just on input size is called "output sensitive".

Decomposable range search problems

Suppose:

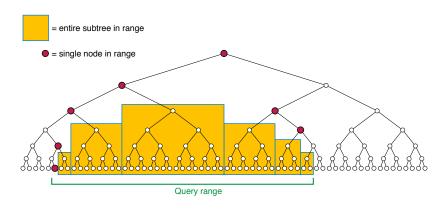
- ▶ We have a collection of key, value pairs with sorted keys
- ► An associative binary operation ⊕ operates on the values
- We want to find the result of applying ⊕ to the values whose keys are within a query range [low,high]

If we can decompose a range into disjoint sets, $S \cup T$, we can use \oplus to combine results for each set: total = result(S) \oplus result(T)

Examples:

- ▶ Range counting, value = 1, \oplus = addition
- ▶ Range reporting, value(x) = {x}, \oplus = set union
- ▶ Range minimum, value = priority, \oplus = minimization

Partition of range into subtrees



Idea: search paths for range endpoints have length $O(\log n)$

We can decompose the range into $O(\log n)$ nodes on these two paths and $O(\log n)$ entire subtrees between them

Store \oplus for each subtree, combine stored results for query total

Decomposable query algorithm

As we recurse, replace range endpoints by flag values $-\infty$ and $+\infty$ in subtrees for which endpoints are no longer relevant

Whole tree is in range when both endpoints are infinite

To query range [low,high] at a given node:

- ▶ If low = $-\infty$ and high = $+\infty$, return stored value for subtree
- If key > high, return query(low, high, left child)
- If key < low, return query(low, high, right child)</p>
- ▶ Return query(low, $+\infty$, left child) \oplus node's value \oplus query($-\infty$, high, right child)

Time: $O(\log n)$ for operations with \oplus time O(1)

Maintaining the stored subtree values

Whenever a node's stored subtree value might have changed

- We added or removed a descendant
- It was involved in a rotation

Recompute its subtree value as

left subtree value \oplus right subtree value \oplus node's value

Time per insertion or deletion $O(\log n)$ (under same assumptions on \oplus time as for query)

Works for any balanced binary search tree

Range query summary

Using augmented search trees, we can:

Answer range counting or range minimization in time $O(\log n)$

Answer range reporting in time $O(\log n + \text{output})$

Handle insertions or deletions in time $O(\log n)$

Generalize to other decomposable range searching problems

Lower bound

Is it optimal?

We have seen that a very general class of dynamic range searching problems can be solved in time $O(\log n)$

Natural question: Is that the right time bound or can we do better?

Answer: we can prove $\Omega(\log n)$, for:

- Simple and natural range searching problem: range sum
 Data = ordered keys and numeric values
 Query = sum of values for key-value pairs with key in range
- A very general model of computing: cell probe model
 Only measure communication between CPU and memory

Prefix sum problem

Simplified model of the range sum problem (for lower bounds, simpler problem \Rightarrow stronger bound)

Maintain array $A[0] \dots A[n-1]$ of numbers

Update(i, x): set A[i] to new value x

Query(i): calculate $A[0] + A[1] + \cdots + A[i]$

(If we can handle these queries, we can also handle arbitrary range sum queries by subtracting prefix sums for start and end of range)

Prefix sum data structure

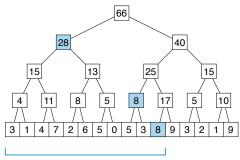
Store the values A[i] in an array

Build binary tree with cells of *A* as leaves

Each node stores sum of descendants

Each update changes sums on leaf-root path

Query value = sum of $O(\log n)$ tree nodes

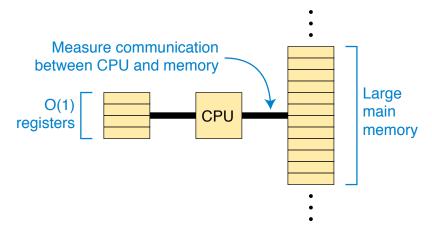


Query(10) =
$$3 + 1 + 4 + ... + 8 = 28 + 8 + 8 = 44$$

(*T* can be stored in a second array, depicted by left–right position of nodes, with tree structure derived from array index as in binary heap)

Cell probe model of computing

Central processor has O(1) registers, each holding one word (binary value of length $w \ge \log_2 n$); memory has up to 2^w words We count only steps that move a word between CPU and memory \Rightarrow lower bound doesn't depend on what other steps are allowed



Fitting prefix sums to cell probe model

We are going to prove a lower bound for prefix sums of *n w*-bit binary numbers (representation size of the input values should be the same as the word size of the computer)

We will use n = a power of two (unrelated to word size)

To avoid questions of integer overflow, we will assume all arithmetic is modulo 2^w (just do binary addition and ignore overflows)

Goal: Find a sequence of prefix sum operations that forces any correct data structure to do a lot of CPU-memory communication

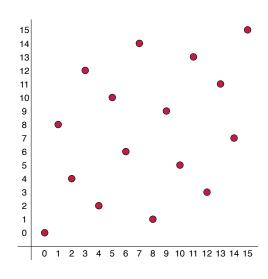
A special permutation of *n*

Assume $n = 2^k$

Define "bit reversal permutation" r(i):

- Write i as a k-bit binary number
- Reverse the bits
- Interpret the result as a binary number

E.g. for k = 8, $222_{10} = 110111110_2$ becomes $01111011_2 = 123_{10}$



Computing sequence of bit-reversals

```
def bitrev(k):
    if k == 0:
        return [0]
    L = bitrev(k-1)
    return [2*x for x in L] + [2*x+1 for x in L]
```

Each value in the second half of the sequence is one plus the corresponding value in the first half

A difficult sequence of prefix-sum operations

Initialize all data values A[i] to zero, then:

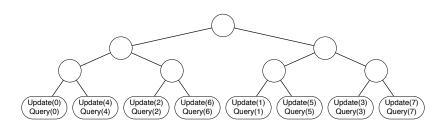
For each index *i* in bitrev[k]:

- ▶ Set A[i] to be a random w-bit number
- Query the prefix sum $A[0] + \cdots + A[i]$

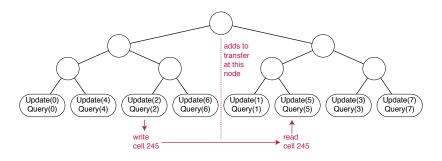
```
E.g. when n=8, k=3, we perform the operations Update(0,random), Query(0), Update(4,random), Query(4), Update(2, random), Query(2), Update(6,random), Query(6), Update(1,random), Query(1), Update(5,random), Query(5), Update(3,random), Query(3), Update(7,random), Query(7)
```

A binary tree on the sequence of operations

This is not a data structure! It's just a mathematical tree that we will use in the lower bound proof.



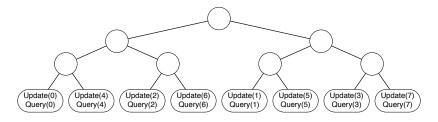
Information transfer



For any data structure for prefix sums, and any node x of this tree, define the *information transfer* of x to be the number of times an operation in the right descendants of x reads a memory cell that was last written during the operations in the left descendants of x

Each memory read contributes to information transfer at ≤ 1 node \Rightarrow total number of read steps \geq total information transfer

Information transfer ≥ **descendants/2**



Information transfer = number of times an operation in node's right descendants reads a memory cell last written on the left

Let d = # descendants/2 = # left updates = # right queries

There are 2^{wd} different possible values for the updates on the left, each of which would produce different query results on the right (Independently from information derived from non-transfer reads)

 \Rightarrow for correct queries, information transfer $\geq d$

Finishing the lower bound

Information transfer at root node of tree: $\geq n/2$

Information transfer at *i*th level of tree: 2^i nodes with transfer $\geq n/2^{i+1}$, total $\geq n/2$

Total over whole tree: $\geq (n/2) \times \# \text{ levels} = (n/2) \log_2 n$

There are 2n prefix sum operations (updates and queries together) \Rightarrow average number of memory reads per operation $\geq \frac{1}{4} \log_2 n$

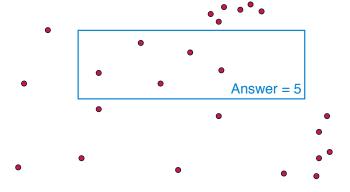
Every prefix sum data structure that fits into the cell probe model of computation requires $\Omega(\log n)$ time per operation

⇒ same is true for dynamic range sum data structures

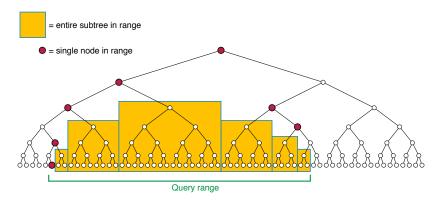
Multi-level range search

Example: Rectangular range counting

Data: 2d points represented as (x, y) coordinate pairs Query: How many points are inside a given rectangle?



Binary search tree on *x*-coordinates



Query range: left and right x-coordinates of rectangle

Decomposes the points whose x-coordinate is in range into

- \triangleright $O(\log n)$ individual points
- \triangleright $O(\log n)$ larger sets of points

Multi-level structure

On each node of the x-coordinate tree, store

- the set of all (x, y) points descending from that node
- organized as a one-dimensional range counting structure on y-coordinates (for instance a sorted array)

To count points in a query rectangle:

- ▶ Perform query on *x*-range of rectangle
- ▶ For each individual point (x, y) found by query:

Test whether y is in range

- For each subtree identified by query:
 - Use 1d structure at subtree root to count descendants whose *y* coordinate is in range
- Add the results and return the total

Multi-level analysis

If x-tree is balanced \Rightarrow each point contributes to y-structures in $O(\log n)$ ancestors \Rightarrow total space is $O(n \log n)$

Each rectangle query makes $O(\log n)$ calls to one-dimensional *y*-structures \Rightarrow query time is $O(\log^2 n)$

Doesn't work with rotation-based dynamic balanced trees but can be made dynamic using weight-balanced trees (when we rebuild a subtree we also rebuild the recursive structures stored in its nodes)

Fractional cascading

Related binary searches

In the multi-level structure for rectangular range counting, each query does $O(\log n)$ binary searches:

- ▶ In one-dimensional structures stored at certain tree nodes
- ▶ All searching for the same y-coordinates (top and bottom coordinates of query rectangle)
- In a related sequence of nodes (children of the nodes on a tree path)

Goal of fractional cascading: Speed up multiple related binary searches without paying too big a penalty in space

A simpler multi-binary-search problem

Data: k sorted lists of numbers $S_0, S_1, \ldots S_{k-1}$

Total length: $n = |S_0| + |S_1| + \cdots + |S_{k-1}|$

No repeated values, even in different lists

Query: find the successors of a given number q in each list $(s_i = \text{successor of } q \text{ in list } S_i)$

Example

Data:

- $S_0 = [0, 10, 20, 30, 40, 50, 60, 70]$
- $S_1 = [1, 2, 13, 25, 27, 51, 57]$
- $S_2 = [21, 22, 31, 32, 33, 41, 99]$
- $S_3 = [67, 68, 69]$

Total length n = 8 + 7 + 7 + 3 = 25

Query for q = 24 would find $s_0 = 30$ $s_1 = 25$ $s_2 = 31$ $s_3 = 67$

Naïve solutions

Do the binary searches separately

Space = O(n) for storing each S_i as a sorted list Query time = $O(k \log n)$ for k binary searches

Merge into one list

For each value x, store k-tuple of successors for queries that return x as their smallest value

 $0:(0,1,21,67), 1:(10,1,21,67), 2:(10,2,21,67), 10:(10,13,21,67), 13:(20,13,21,67), 20:(20,25,21,67), 21:(30,25,21,67), \dots$

Binary search in merged sorted array + look up k-tuple Space O(kn), query time $O(k + \log n)$

Fractional cascading

Working backwards through the sequence of lists S_i , construct T_i : merged structure for $(S_i + \text{half the elements of } T_{i+1})$

Choosing the half of the elements that are in odd-numbered positions e.g. if T=1,2,3,5,7,11,20 then $\frac{1}{2}T=2,5,11$

So T_i consists of:

- ► A sorted array of the merged items from $S_i + \frac{1}{2}T_{i+1}$
- ▶ A dictionary mapping each merged item x to a pair (a, b) where one of a or b is x, and the other one is the successor of x in the other merged list
- \blacktriangleright When there is no successor in the other list, use $+\infty$

Example

- ► $S_3 = 67, 68, 69$ $T_3 = S_3$ (nothing to merge) Half elements: 68
- $S_2 = 21, 22, 31, 32, 33, 41, 99$
- ▶ $T_2 = 21:(21,68), 22:(22,68), 31:(31,68), 32:(32,68), 33:(33,68), 41:(41,68), 68:(99,68), 99:(99,+∞)$
- ▶ Half the elements of *T*₂: 22, 32, 41, 99
- \triangleright $S_1 = 1, 2, 13, 25, 27, 51, 57$
- ▶ $T_1 = 1:(1,22), 2:(2,22), 13:(13,22), 22:(25,22), 25:(25,32), 27:(27,32), 32:(51,32), 41:(51,41), 51:(51,99), 57:(57,99), 99:(+∞,99)$
- ▶ Half the elements of T_1 : 2, 22, 27, 41, 57
- $S_0 = 0$, 10, 20, 30, 40, 50, 60, 70
- ► $T_0 = 0:(0,2), 2:(10,2), 10:(10,22), 20:(20,22), 22:(30,22), 27:(30,27), 30:(30,41), 40:(40,41), 41:(50,41), 50:(50,57), 57:(60,57), 60:(60,+∞), 70:(70,+∞)$

Searching fractionally cascaded lists

To find the successors of q:

- ▶ Binary search for successor t_0 in merged list T_0
- ► Set *i* = 0
- ► Then, repeat:
 - ▶ Use dictionary for T_i to find the pair (a, b) where $a = s_i = \text{successor}$ in S_i and b is successor in $\frac{1}{2}T_{i+1}$
 - ► Output *s_i*
 - Let c be the (skipped) element of T_{i+1} just before b
 - ▶ If q < c then $t_{i+1} = c$ else $t_{i+1} = b$
 - ▶ Set i = i + 1

Example (continued)

To search for the successor of q = 24:

- ▶ Binary search in T_0 finds successor t_0 : 27:(30,27)
- Output $s_0 = 30$, successor in S_0
- Successor in T_1 might be either 27 or previous item, 25
- ▶ Because q < 25, successor in T_1 is 25:(25,32)
- Output $s_1 = 25$, successor in S_1
- Successor in T_2 might be either 32 or previous item, 31
- ▶ Because q < 31, successor in T_2 is 31:(31,68)
- Output $s_2 = 31$, successor in S_2
- ▶ Successor in T₃ might be either 68 or previous item, 67
- ▶ Because q < 67, successor in T_3 is 67
- Output $s_3 = 67$, successor in S_3

Fractional cascading analysis

Query time

One binary search + O(1) for each list after the first Total $O(k + \log n)$

Space and set-up time

Each element of S_i contributes 1 to the length of T_i , $\frac{1}{2}$ to the length of T_{i-1} , $\frac{1}{4}$ to the length of T_{i-2} , ...

So the total space and total set-up time is O(n)

Best combination of time and space from naïve solutions Also works for multi-level search trees, for example rectangular range counting with $O(n \log n)$ space and $O(\log n)$ query time

Summary

Summary

- Ranking and unranking operations; efficient dynamic implementation by augmenting search tree with relative ranks
- Types of range searching problems including range counting, range reporting, range minimum, and range sum; decomposable problems using associative binary operation
- Dynamic range searching by augmenting search tree with value of its subtree and decomposing range into a logarithmic number of subtrees and individual nodes
- Cell probe model of computing and lower bound on dynamic prefix sums
- Multi-level range search and multi-level augmented binary search trees
- Fractional cascading