```From:           fc3a501@AMRISC04.math.uni-hamburg.de (Hauke Reddmann)
Newsgroups:     sci.math
Subject:        3 CLASSICAL GEEK PROBLEMS SOLVED!!!
Date:           26 Apr 1996 12:00:12 GMT
Organization:   University of Hamburg -- Germany
```

```THEY SAID IT WAS IMPOSSIBLE.
I DID IT.
WOW!

Mathematicians go PARROTING AND PARROTTING that you
can't solve the THREE CLASSICAL GEEK PROBLEMS with
compass and straightedge.Well, LOOK AT THIS!

1. Doubling the angle

Let the angle be represented by two straight lines
through O. Draw any circle K with midpoint O which meets
the lines in A and B. Draw a circle with midpoint A
through B which meets K in C. OBC is the double of OAB.

2. Trisecting the circle

People were so STUPID! They tried and tried to trisect
with PARALLEL lines into segments, which INDEED is
impossible. But I used SECTORS!!
Let the circle K have midpoint O. Pick a point on the
periphery as midpoint and draw a circle through O
which meets K in A and B. The sector AOB has 1/3 area
of circle K.

3. Squaring the cube

Here, the DIMENSIONAL problem wasn't recognized. As
squaring the cube (volume) with side length x requires
a new side length x**2, x can't be a length with a unit,
because then x**2 would be an AREA!
So at least one unit length u:=1 must be given.
Draw two perpendicular lines. At the intersection,
mark x to the left and right and u to the top.
Construct the circle through that three points
in the usual way. It cuts off x**2/u at the bottom.
As u was DEFINED 1, this is the sought side lenght.

Now give me the NOBEL PRIZE!
--
Hauke Reddmann <:-EX8
fc3a501@math.uni-hamburg.de              PRIVATE EMAIL
fc3a501@rzaixsrv1.rrz.uni-hamburg.de     BACKUP
reddmann@chemie.uni-hamburg.de           SCIENCE ONLY
```