
             

On the Number of Minimal 1-Steiner Trees

Boris Aronov∗ Marshall Bern† David Eppstein‡

Abstract

We count the number of nonisomorphic geometric minimum spanning trees formed by
adding a single point to an n-point set in d-dimensional space, by relating it to a family of
convex decompositions of space. The O(nd log2d2−d n) bound that we obtain significantly
improves previously known bounds and is tight to within a polylogarithmic factor.

The minimum Steiner tree of a point set is the tree of minimum total length, spanning the in-
put points and possibly having some additional vertices. Georgakopoulos and Papadimitriou [1]
define the minimum 1-Steiner tree as the minimum spanning tree whose set of vertices consists
of the input points and exactly one extra point. They describe an algorithm for constructing
this tree in the plane by enumerating all combinatorially distinct minimal 1-Steiner trees, that
is, trees formed by fixing the position of the extra vertex and considering the minimum span-
ning tree of the resulting set of points. They give an O(n2) bound on the number of such trees
and construct a matching lower bound. Independently, Monma and Suri [3] proved the same
bounds in the plane and gave bounds of O(n2d) and Ω(nd) in any dimension d. We significantly
improve Monma and Suri’s upper bounds. We show that the maximum possible number of
combinatorially distinct minimal 1-Steiner trees on n points in d-space is O(nd log2d2−d n) for
all dimensions d. Our bounds require—as do the bounds in previous papers—either an assump-
tion of general position or a tie-breaking rule, so that the minimum spanning tree is unique;
otherwise even in the plane there can be exponentially many distinct topologies.

We begin by stating a theorem of Kalai [2]:

Theorem 1. In a family of n convex sets in d-space with the property that no c + 1 of the
sets share a point, the number of k-tuples of sets that do have a point in common is bounded
by
∑d
i=0

(c−d
k−i
)(n+d−c

i

)
, whenever 0 ≤ k ≤ c.

Here
(c−d
k−i
)

= 0 if c− d < k − i. So in particular, putting k = c we have:

Corollary 1. Given a family of convex decompositions of d-space with a total of n cells, the
number of cells in the decomposition formed by overlaying them is less than

(n
d

)
.

A slightly weaker bound can be proved by an elementary argument that we now sketch.
Assume that the convex decompositions are in general position with respect to each other;
∗Computer Science Dept., Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201.
†Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304.
‡Dept. of Information and Computer Science, University of California, Irvine, CA 92717; research performed

in part while visiting Xerox PARC.

1



     

otherwise, a small perturbation only increases the number of cells. Assume also that no edges
are perpendicular to a vertical axis. First we count the number of cells in the overlay that
are bounded below. The lowest point of a cell is the lowest point in the intersection of some
collection of i cells, i ≤ d, each from a different convex decomposition. Adding an “infinitely
low” hyperplane, that is, lying below all finite cells, allows us to count all other cells in the
same way. Altogether, we can conclude that there are at most

∑d
i=0

(n+1
i

)
cells in the overlay.

Let S(P ) be the number of distinct labeled minimum spanning tree topologies that can arise
from the addition of one point to a set P of n points in d-space. Let Sd(n) = max|P |=n S(P ).
We now use the corollary above to bound Sd(n).

Let T be the minimum spanning tree of point set P , |P | = n. When new point x is added
to P , the new minimum spanning tree T ′ = T ′(x) has certain additional edges adjacent to
x. The tree might also lack certain edges from T ; missing edges can be identified by adding
new edges to T one by one, and removing the longest edge on each cycle thus created. The
removed edges are completely determined by the set of the added edges. Below we construct
a decomposition of space so that in each cell C of the decomposition the added edges come
from a known set X(C) of size O(1). Once such a set is fixed, we build the 1-Steiner tree
for a “generic” point x ∈ C from T by repeatedly adding an edge e ∈ X(C) to the current
tree and deleting the longest edge in the cycle thus formed. Since there are O(1) edges in the
candidate list, it is easily verified that only O(1) comparisons whose outcome depends on the
exact position of x in C are needed and O(1) distinct outcomes are possible. In particular, cell
C in our decomposition gives rise to only O(1) combinatorial types for T ′.

Our overall strategy is as follows: (1) Construct a decomposition of space, and associate
with each cell in the decomposition a small set of input points. The associated set of points is
such that, for any point x in the cell, the set contains that point’s neighbors N(x) in tree T ′. (2)
Refine this partition so that for points x within a cell a constant-size superset of N(x) is fixed.
(3) Use the above observation to deduce that each cell in the refined partition corresponds to
O(1) possible combinatorial types of T ′.

Our construction depends on the next lemma, which gives a necessary condition for a point
to belong to neighbor set N(x). Define a frame to be a triangulation of the unit (d− 1)-sphere.
In the plane, a frame is a partition of the unit circle into circular arcs, and in three dimensions,
it is a partition of a sphere into triangles with arcs of great circles for sides. Given a point x and
a frame Fd, we divide space into cones with common apex x and simplicial cross sections. The
cones correspond to the simplices (“triangles”) of the frame: point y is in the cone corresponding
to simplex s exactly when the unit vector parallel to xy is contained in s. Each cone is formed
by intersecting d halfspaces that meet at x.

Lemma 1 (Yao [5]). For any dimension d there exists a frame Fd, with κd simplices, having
the following property. Let (x, y) be an edge in the minimum spanning tree of a point set. Point
y is contained in some Fd-cone with apex x; let K be that cone. Then y must be the closest
input point to x in K.

We now describe a method for constructing the initial subdivision of space, in which each
cell corresponds to a small number of minimum spanning tree topologies. We start by building
a family of convex decompositions and then apply Corollary 1. If x is newly added to the
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Figure 1. (a) Cone-Voronoi diagram for the simplex (arc) [0, π/4]; (b) Boxes for the same simplex.

point set, there can be O(1) new edges in T ′ incident to x, namely, the edges (x, y) where y
is the closest point to x in each of the O(1) cones determined by frame Fd. We construct κd
“cone-Voronoi diagrams”. Point x is in cell Cy of diagram i if y is the nearest input point to x
among the points in the cone with apex x determined by the ith simplex. One such diagram
is depicted in Figure 1(a). Superimposing the κd diagrams gives an arrangement in which, for
each cell, the κd possible edges specified by Yao’s lemma are all determined.

In the plane, this construction can be used to prove that O(n2) topologies are possible. In
higher dimensions, each cone-Voronoi diagram has O(n2) facets, giving an O(n2d) bound [3].
We cannot improve this directly because the cells in each diagram are not convex. Instead, we
construct a more complicated structure to which Corollary 1 can be applied directly.

Fix a single simplex of frame Fd. A cone corresponding to the simplex is defined by d
hyperplanes. We pass d hyperplanes through each of the n input points, one parallel to each of
the defining hyperplanes of the simplex. This divides space into (n + 1)d regions, in the form
of parallelotopes (or boxes). Figure 1(b) depicts this subdivision in the plane. For any point x
added as the new point in a 1-Steiner tree, the set of input points in the cone with apex x is
determined only by the box containing x, and not by the exact location of x.

Number each parallel set of hyperplanes from 1 to n, in order of the hyperplanes’ intersec-
tions with a line passing through them, with numbers increasing in the direction in which a
cone corresponding to the simplex is unbounded (left-to-right, bottom-to-top in Figure 1(b)).
Associate numbers 0 and n + 1 with “hyperplanes at infinity” on either side of the n hyper-
planes. Each box is now determined by 2d indices, in d pairs corresponding to the d hyperplane
directions. If each pair consists of two adjacent hyperplanes, then the box is a smallest—or
“atomic”—box; nonadjacent pairs give larger boxes that are unions of atomic boxes. We say a
box is regular if each pair is of the form (i2j , (i+ 1)2j) for some i and j. Regular boxes can be
grouped by “size”, e.g., 1×1, 2×1, 1×2, etc. If we assume, without loss of generality, that n+1
is a power of 2, each generic point is contained in the same number of boxes, and is contained
in cd(n) = O(logd n) regular boxes, one of each size. For each possible additional point x, we
can find a nonoverlapping set of O(logd n) regular boxes, each of which is contained in the cone
with apex x and and which together contain all the input points in the cone. (This construc-
tion generalizes the familiar one that realizes a ray as a union of O(log n) basic segments in a
segment tree [4].)

We say box b dominates box b′ if each lower index for b is at least as large as the corresponding
higher index for b′. For example, a box defined by pairs (4, 6) and (8, 16) dominates a box with
pairs (0, 4) and (4, 5). Let the domination cone of box b be the union of all boxes dominated
by b.
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We construct the Euclidean Voronoi diagram for the points in each regular box and trun-
cate the diagram to lie within the box’s domination cone. We turn the truncated Voronoi
diagram into a convex decomposition of space by cutting the complement of the domination
cone into O(d) convex pieces (for example, by extending one by one the hyperplanes bounding
the domination cone). Each input point is included in (on the boundary or in the interior of)
2dcd(n) = O(logd n) regular boxes, so there are O(n logd n) cells in all diagrams.

We repeat this construction for each one of the κd = O(1) simplices of Fd and thus obtain
a family of convex decompositions of space with a total of O(n logd n) cells. We now classify
each (generic) point of space according to the set of cells containing it (that is, its cell in the
overlay). The number of such classes by Corollary 1 is

(O(n logd n))d = O(nd logd
2
n).

For each cell C of the overlay, we can now fix a set of O(logd n) “candidate” input points
with the following property: for any point x ∈ C and any simplex of Fd, one of the candidates is
the closest input point to x in the cone with apex x corresponding to that simplex. To form the
set of candidates for cell C, we consider each simplex of Fd in turn, and find the nonoverlapping
set of O(logd n) regular boxes that exactly cover the input points in a cone with apex in C.
(Since C is contained in one atomic box, the choice of apex does not matter.) We then add to
the candidate set exactly those input points (at most one per box) whose Voronoi cells contain
C. Thus we have constructed the initial decomposition of space, referred to in step (1) above.

Actually, for any given simplex of Fd, not all of the O(logd n) candidates are necessary.
If one regular box lies in the domination cone of another regular box, then the candidate in
the second box is further from x than the candidate in the first box. (A sphere centered
at x through the furthest corner of the first box does not intersect the second box.) This
observation reduces the size of the set of candidates for a given simplex to O(logd−1 n), because
each nonempty “maximally dominated” box must have some lower index that is at least as small
as the corresponding index for any other nonempty “maximally dominated” box. Constructing
the Euclidean Voronoi diagram of the O(logd−1 n) candidate points partitions cell C according
to the identity of the closest point. Overlaying the κd diagrams corresponding to different
simplices produces a partition of C in each cell of which the closest point in any cone is fixed;
this is the refinement of step (2).

The number of resulting sub-cells is (O(logd−1 n))d = O(logd
2−d) by another application of

Corollary 1, giving a total of O(nd log2d2−d n) cells overall. For each of the resulting cells C ′,
the neighbors of x in T ′ come from a fixed set of cardinality κd = O(1). By previous discussion,
C ′ must give rise to O(1) distinct combinatorial types of the minimal 1-Steiner tree. Thus we
have shown:

Theorem 2. Sd(n) is O(nd log2d2−d n).

We mention again that this bound, apart from the polylogarithmic factor, is tight. Clearly,
there is some room for improvement. In fact, it is conceivable that Sd(n) is Θ(nd).

In conclusion, we thank Janos Pach for providing a crucial pointer.
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