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Abstract. We give linear-time quasiconvex programming algorithms for
finding a Mobius transformation of a set of spheres in a unit ball or
on the surface of a unit sphere that maximizes the minimum size of a
transformed sphere. We can also use similar methods to maximize the
minimum distance among a set of pairs of input points. We apply these
results to vertex separation and symmetry display in spherical graph
drawing, viewpoint selection in hyperbolic browsing, element size control
in conformal structured mesh generation, and brain flat mapping.

1 Introduction

Mobius transformations of d-dimensional space form one of the fundamental
geometric groups. Generated by inversions of spheres, they preserve spherical
shape as well as the angles between pairs of curves or surfaces. We consider here
problems of finding an optimal Mébius transformation:

— Given a set of (d — 1)-dimensional spheres in a d-dimensional unit ball, find
a Mobius transformation that maps the ball to itself and maximizes the
minimum radius among the transformed spheres.

— Given a set of (d — 1)-dimensional spheres on a sphere S?, find a M&bius
transformation of S¢ that maximizes the minimum radius among the trans-
formed spheres.

— Given a graph connecting a set of vertices on S? or in the unit ball in E?,
find a M6bius transformation that maximizes the minimum edge length.

We develop efficient algorithms for these problems, by formulating them as
quasiconvex programs in hyperbolic space. The same formulation also shows
that simple hill-climbing methods are guaranteed to find the global optimum;
this approach is likely to work well in practice as an alternative to our more
complicated quasiconvex programs. We apply these results to the following areas:

— Spherical graph drawing [15]. Any embedded planar graph can be repre-
sented as a collection of tangent circles on a sphere S?; this representation



is unique for maximal planar graphs, up to Moébius transformation. Our al-
gorithms can find a canonical spherical realization of any planar graph that
optimizes the minimum circle radius or the minimum separation between two
vertices, and that realizes any symmetries implicit in the given embedding.

— Hyperbolic browsing [16]. The Poincaré model of the hyperbolic plane has
become popular as a way of displaying web sites and other graph models too
complex to view in their entirety. This model permits parts of the site struc-
ture to be viewed in detail, while reducing the size of peripheral parts. Our
algorithms can find a “central” initial viewpoint for a hyperbolic browser,
that allows all parts of the sites to be viewed at an optimal level of detail.

— Mesh generation [3,24]. A principled method of structured mesh generation
involves conformal mapping of the problem domain to a simple standardized
shape such as a disk, construction of a uniform mesh in the disk, and then
inverting the conformal mapping to produce mesh elements in the original
domain. M6bius transformations can be viewed as a special class of conformal
maps that take the disk to itself. Our algorithms can find a conformal mesh
that meets given requirements of element size in different portions of the
input domain, while using a minimal number of elements in the overall mesh.

— Brain flat mapping [13]. Hurdal et al. proposed a system for visualizing con-
voluted brain surfaces, by approximate conformal mapping of those surfaces
to a Euclidean disk, sphere, or hyperbolic plane. Our algorithms can find a
conformal mapping that minimizes the resulting areal distortion.

We assume throughout that the dimension d of the spaces we deal with is a
constant; most commonly in our applications, d = 2 or d = 3. We omit many
details in this extended abstract; see the full paper [2] for details.

2 Preliminaries

2.1 Mobius Transformation and Hyperbolic Geometry

An inversion of the set R? U {oco}, generated by a sphere C with radius r, maps
to itself every ray that originates at the sphere’s center. Each point is mapped to
another point along the same ray, so that the product of the distances from the
center to the point and to its image equals 72. The center of C' is mapped to oo
and vice versa. An inversion maps each point of C to itself, transforms spheres to
other spheres, and preserves angles between pairs of curves or surfaces. Repeating
an inversion produces the identity mapping on R?U{oo}. The set of products of
inversions forms a group, the group of Mébius transformations on the Euclidean
space E?. If we restrict our attention to the subgroup that maps a given sphere
S41 to itself, we find the group of Mébius transformations on S~ 1.

Although our problem statements involve Euclidean and spherical geometry,
our solutions involve techniques from hyperbolic geometry [14], and in particular
the classical methods of embedding hyperbolic space into Euclidean space: the
Poincaré model and the Klein model.



Fig. 1. Poincaré (left) and Klein (right) models of the hyperbolic plane. Analogous
models exist for any higher dimensional hyperbolic space.

In both the Poincaré and Klein models, the d-dimensional hyperbolic space
H is viewed as an open unit ball in a Euclidean space E?, while the unit sphere
bounding the ball forms a set of points “at infinity”. In the Poincaré model (Fig-
ure 1, left), the lines of the hyperbolic space are modeled by circular arcs of the
Euclidean space, perpendicular to the unit sphere. Hyperplanes are modeled by
spheres perpendicular to the unit sphere, and hyperbolic spheres are modeled
by spheres fully contained within the unit ball. Two more classes of surfaces
are also modeled as Euclidean spheres: hyperspheres (surfaces at constant dis-
tance from a hyperplane) are modeled by spheres crossing the unit sphere non-
perpendicularly, and horospheres are modeled by spheres tangent to the unit
sphere. The Poincaré model thus preserves spherical shape as well as the angles
between pairs of curves or surfaces. Any horosphere or hypersphere divides H?
into a convex and a nonconvex region; we define a horoball or hyperball to be the
convex region bounded by a horosphere or hypersphere respectively.

In the Klein model (Figure 1, right), the lines of the hyperbolic space map to
line segments of the Euclidean space, formed by intersecting Euclidean lines with
the unit ball. Hyperplanes thus map to hyperplanes, and convex bodies map to
convex bodies. Although the Klein model does not preserve spherical shape, it
does preserve flatness and convexity. In the Klein model, spheres are modeled
as ellipsoids contained in the unit ball, horospheres are modeled as ellipsoids
tangent at one point to the unit ball, and hyperspheres are modeled as halves of
ellipsoids tangent in a (d — 1)-sphere to the unit ball.

The Poincaré and Klein models are not intrinsic to hyperbolic space, rather
there can be many such models for the same space. The choice of model is
determined by the hyperbolic point mapped to the model’s center point, and
by an orientation of the space around this center. We call this central point the
viewpoint since it determines the Euclidean view of the hyperbolic space.

The connection between hyperbolic space and Mobius transformations is this:
the isometries of the hyperbolic space are in one-to-one correspondence with the
subset of Mobius transformations of the unit ball that map the unit ball to itself,
where the correspondence is given by the Poincaré model [14, Theorem 6.3]. Any
hyperbolic isometry (or unit-ball preserving Mobius transformation) can be fac-
tored into a hyperbolic translation mapping some point of the hyperbolic space



to the viewpoint, followed by a rotation around the viewpoint [14, Lemma 6.4].
Since rotation does not change the Euclidean shape of the objects on the model,
our problems of selecting an optimal Mobius transformation of a Euclidean or
spherical space can be rephrased as finding an optimal hyperbolic viewpoint.

2.2 Quasiconvex Programming

The viewpoint we seek in our optimal Md&bius transformation problems will be
expressed as the pointwise maximum of a finite set of quasiconvex functions;
that is, functions for which the level sets are all convex. To find this point,
we use a generalized linear programming framework of Amenta et al. [1] called
qUasiConVex Programming.

Define a nested convez family to be a map «(t) from nonnegative real numbers
to compact convex sets in E? such that if t < #’ then k(t) C k(t'), and such that
for all t, k(t) = (<, K(t'). Any nested convex family s determines a function
fo(z) =inf {t | z € K(t) } on RY, with level sets that are the boundaries of x(t).
If f. does not take a constant value on any open set, and if x(¢') is contained
in the interior of k(t) for any ¢ < t, we say that s is continuously shrinking.
Conversely, the level sets of any quasiconvex function form the boundaries of the
convex sets in a nested convex family, and if the function is continuous and not
constant on any open set then the family will be continuously shrinking.

If S ={K1,Ka,...Kn} is a set of nested convex families, and A C 5, let

F(A) = inf{ (ta)[ze N Hi(t)}

Kk;€EA

where the infimum is taken in the lexicographic ordering, first by ¢ and then by
the coordinates of xz. Amenta et al. [1] defined a quasiconver program to be a
finite set S of nested convex families, with the objective function f described
above, and showed that generalized linear programming techniques could be used
to solve such programs in linear time for any constant dimension. Due to the
convexity-preserving properties of the Klein model, we can replace E¢ by H? in
the definition of a nested convex family without changing the above result.

3 Algorithms

We now describe how to apply the quasiconvex programming framework de-
scribed above in order to solve our optimal Mobius transformation problems. In
each case, we form a set of nested convex families x;, where each family corre-
sponds to a function f; describing the size of one of the objects in the problem
(e.g., the transformed radius of a sphere) as a function of the viewpoint loca-
tion. The solution to the resulting quasiconvex program then gives the viewpoint
maximizing the minimum of these function values. The only remaining question
in applying this technique is to show that, for each of the problems we study,
the functions of interest do indeed have convex level sets.



3.1 Maximizing the Minimum Sphere

We begin with the simplest of the problems described in the introduction: finding
a Mobius transformation that takes the unit ball to itself and maximizes the
minimum radius among a set of transformed spheres. Equivalently, we are given
a set of spheres in a hyperbolic space, and wish to choose a viewpoint for a
Poincaré model of the space that maximizes the minimum Euclidean radius of
the spheres in the model. By symmetry, the radius of a sphere in the Poincaré
model depends only on its hyperbolic radius, and on the hyperbolic distance from
its center to the viewpoint. Thus, in this case, the level sets of the transformed
radius are just concentric hyperbolic spheres.

Theorem 1. Suppose we are given as input a set of n spheres, all contained in
the unit ball in E¢. Then we can find the Mébius transformation of the unit ball
that mazimizes the minimum radius of the transformed spheres, in O(n) time,
by quasiconvex programming.

If we view the unit sphere itself as being one of the input spheres, then
Theorem 1 can be viewed as minimizing the ratio between the radii of the largest
and smallest transformed spheres.

Open Problem 1. Is there an efficient algorithm for finding a Mdébius trans-
formation of E¢ minimizing the ratio between the radii of the largest and smallest
transformed spheres, when the input does not necessarily include one sphere that
contains all the others?

We can also prove a similar result for radius optimization on the sphere:

Theorem 2. Suppose we are given as input a set of n spheres in S*. Then we
can find the Mébius transformation of S¢ that mazimizes the minimum radius
of the transformed spheres, in O(n) time, by quasiconvex programming.

3.2 Vertex Separation

We next consider problems of using M&bius transformations to separate a col-
lection of points.

Theorem 3. Suppose we are given as input a graph with n vertices and m edges,
with each vertex assigned to a point on the sphere S¢ or the unit disk in RY, and
with edges represented as great circle arcs or straight line segments respectively.
Then we can find the Mdébius transformation that maximizes the minimum length
of the transformed graph edges, in O(m) time, by quasiconvezx programming.

Similarly, we can find the Mobius transformation maximizing the minimum
distance among a set of n transformed points by applying Theorem 3 to the
complete graph K. However, the input size in this case is n, while the algorithm
of Theorem 3 takes time proportional to the number of edges in K,,, O(n?). With
care we can reduce the time to near-linear:
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Fig. 2. A planar graph (left) and its coin graph representation (right).

Theorem 4. Suppose we are given n points in S? or the unit disk in R?. Then
we can find the Mdbius transformation that maximizes the minimum distance
among the transformed points in O(nlogn) time.

Proof. The Delaunay triangulation of the points can be computed in O(nlogn)
time, is Mobius-invariant (due to its definition in terms of empty circles), forms
a planar graph with O(n) edges, and is guaranteed to contain the shortest trans-
formed distance among the points. Therefore, applying Theorem 3 to the De-
launay triangulation gives the desired result. a

In higher dimensions, the Delaunay triangulation may be complete, and so
gives us no advantage. However we can again reduce the time from quadratic
by using a random sampling scheme similar to one from our work on inverse
parametric optimization problems [9].

Theorem 5. Suppose we are given n points in S®. Then we can find the Mébius
transformation that mazximizes the minimum distance among the transformed
points in randomized expected time O(nlogn).

Open Problem 2. Is there an efficient deterministic algorithm for mazimizing
the minimum distance among n points in S, d > 32

4 Applications

4.1 Spherical Graph Drawing

As is by now well known, any planar graph can be represented by a set of disjoint
circles in S?, such that two vertices are adjacent exactly when the corresponding
two circles are tangent [6,15,21]. We call such a representation a coin graph;
Figure 2 shows an example. Although it seems difficult to represent the positions
of the coins exactly, fast algorithms for computing numerical approximations to
their positions are known [7,18,22]. By polar projection, we can transform any
coin graph representation on the sphere to one in the plane or vice versa. See Ken
Stephenson’s web site http://www.math.utk.edu/~kens/ for more information,
including software for constructing coin graph representations and a bibliography
of circle packing papers.



It is natural to ask for the planar or spherical coin graph representation
in which all circles are most nearly the same size. It is NP-hard to determine
whether a planar coin graph representation exists in which all circles are equal,
or in which the ratio between the maximum and minimum radius satisfies a given
bound [5]. However, if the graph is maximal planar, its coin graph representation
is unique up to Mobius transformation, and we can apply Theorem 2 to find
the optimal spherical coin graph representation. There is also a natural way of
obtaining a canonical coin graph representation from a non-maximal embedded
planar graph: add a new vertex in each face, connected to all the vertices of
the face. Find the coin graph representation of the augmented graph, and delete
the circles representing the added vertices. Again, Theorem 2 can then find the
optimal Md&bius transformation of the resulting coin graph.

Due to the fact that a quasiconvex program only has a single global optimum,
the transformed coin graph will display any symmetries present in the initial
graph embedding. That is, any homeomorphism of the sphere that transforms
the initial embedded graph into itself becomes simply a rotation or reflection of
the sphere in the optimal embedding. If the graph has a unique embedding then
any isomorphism of the graph becomes a rotation or reflection. For instance,
the coin graph representation in Figure 2 (right) has the full symmetry of the
underlying graph, while the planar drawing on the left of the figure does not
show the symmetries that switch the vertices in the inner and outer squares.

Alternatively, by representing each vertex by the center of its circle, a coin
graph representation can be used to find a straight-line drawing of a planar
graph, or a drawing on the sphere in which the edges appear as non-crossing
great-circle arcs. The algorithms in Section 3.2 can then be used to find a repre-
sentation maximizing the minimum vertex separation, among all Mobius trans-
formations of the initial vertex positions.

4.2 Hyperbolic Browser

There has been quite a bit of recent work in the information visualization com-
munity on hyperbolic browsers, techniques for using hyperbolic space to aid in
the visualization of large graphs or graph-like structures such as the World-
Wide Web [20]. In these techniques, a graph is arranged within a hyperbolic
plane [16] or three-dimensional hyperbolic space [19], and viewed using the Klein
or Poincaré models, or rendered as it would be seen by a viewer within the hy-
perbolic space. The main advantage of hyperbolic browsers is that they provide
a “fish-eye” view [10] that allows both the details of the current focus of interest
and the overall structure of the graph to be viewed simultaneously. In addition,
the homogeneous and isotropic geometry of hyperbolic space allows for natural
and smooth navigation from one view to another.

Although there are many interesting problems in graph layout for hyperbolic
spaces, we are interested in a simpler question: where should one place one’s
initial focus, in order to make the overall graph structure as clear as possible?
Previous work has handled this problem by the simplistic approach of laying out
the graph using a rooted subtree such as a breadth-first or depth-first tree, and



placing the focus at the root of the tree. This approach will work well if the tree
is balanced, but otherwise deeper parts of the tree may be given a much more
crowded initial view. Instead, one could use our techniques to find a viewpoint
that shows the whole graph as clearly as possible.

We assume we are given a graph, with vertices placed in a hyperbolic plane.
As in [16], we further assume that each vertex has a circular display region
where information related to that vertex is displayed; different nodes may have
display regions of different sizes. It is straightforward to apply Theorem 1 to
these display regions; the result is a focus placement for the Poincaré model
that maximizes the minimum size of any display region. We can similarly find
the Klein model maximizing the minimum diameter or width of a transformed
circle, since the level sets of these functions are again simply concentric balls. By
applying Theorem 3 we can instead choose the focus for a Poincaré model that
maximizes the minimum distance between vertices, either among pairs from the
given graph or among all possible pairs.

Open Problem 3. Is there an efficient algorithm for choosing a Klein model of
a hyperbolically embedded graph that mazimizes the minimum Fuclidean distance
between adjacent vertices?

We can apply similar methods to find a focus in 3-dimensional hyperbolic
space that maximizes the minimum solid angle subtended by any display region.

Open Problem 4. Does there exist an efficient algorithm to find a viewpoint
in 3-dimensional hyperbolic space mazximizing the minimum angle separating any
pair among n given points?

Even the 2-dimensional Euclidean version of this maxmin angle separation
problem is interesting [17]: the level sets are nonconvex unions of two disks, so
our quasiconvex programming techniques do not seem to apply.

4.3 Conformal Mesh Generation

One of the standard methods of two-dimensional structured mesh generation [3,
24] is based on conformal mapping (that is, an angle-preserving homeomor-
phism). The idea is to find a conformal map from the domain to be meshed
into some simpler shape such as a disk, use some predefined template to form a
mesh on the disk, and invert the map to lift the mesh back to the original domain.
Conformal meshes have significant advantages: the orthogonality of the grid lines
means that one can avoid certain additional terms in the definition of the par-
tial differential equation to be solved [24]. Nevertheless, despite much work on
algorithms for finding conformal maps [8,12,22,23,25] conformal methods are
often avoided in favor of quasi-conformal mesh generation techniques that allow
some distortion of angles, but provide greater control of node placement [3,24].

Mobius transformations are conformal, and any two conformal maps from a
simply connected domain to a disk can be related to each other via a Mobius



transformation. However, different conformal maps will lead to different struc-
tured meshes: the points of the domain mapped on or near the center of the disk
will generally be included in mesh elements with the finest level of detail, and
points near the boundary will be in coarser mesh elements. Therefore, as we now
describe, we can use our optimal Md&bius transformation algorithms to find the
conformal mesh that best fits the desired level of detail at different parts of the
domain, reducing the number of mesh elements created and providing some of
the node placement control needed to use conformal meshing effectively.

We formalize the problem by assuming an input domain in which certain
interior points p; are marked with a desired element size s;. If we find a conformal
map f from the domain to a disk, the gradient of f maps the marked element
sizes to desired sizes s, in the transformed disk: s; = || f/(p;)||. We can then
choose a structured mesh with element size min; s; in the disk, and transform
it back to a mesh of the original domain. The goal is to choose our conformal
map in a way that maximizes min; s}, so that we can use a structured mesh with
as few elements as possible. Another way of interpreting this is that s} can be
seen as the radius of a small disk at f(p;). What we want is the viewpoint that
maximizes the minimum of these radii.

By applying a single conformal map, found using one of the aforementioned
techniques, we can assume without loss of generality that the input domain is
itself a disk. Since the conformal maps from disks to disks are just the Mobius
transformations, our task is then to find the Md&bius transformation maximizing
min; s;. Since s; depends only on the hyperbolic distance of the viewpoint from
p;, the level sets for this problem are themselves disks, so we can solve this
problem by the same quasiconvex programming techniques as before. Indeed,
we can view this problem as a limiting case of Theorem 1 for infinitesimally
small (but unequal) sphere radii.

Open Problem 5. Because of our use of a conformal map to a low aspect
ratio shape (the unit disk), rotation around the viewpoint does not significantly
affect element size. Howell [12] describes methods for computing conformal maps
to high-aspect-ratio shapes such as rectangles. Can one efficiently compute the
optimal choice of conformal map to a high-aspect-ratio rectangle to mazximize
the minimum desired element size? What if the rectangle aspect ratio can also
be chosen by the optimization algorithm?

4.4 Brain Flat Mapping

In order to visualize and understand the complicated strucure of the brain,
neuroanatomists have sought methods for stretching its convoluted surface folds
onto a flat plane. Hurdal et al. [13] proposed a principled way of performing this
stretching via conformal maps: since the surfaces of major brain components
such as the cerebellum are topologically disks, one can conformally map these
surfaces onto a Euclidean unit disk, sphere, or hyperbolic plane. Hurdal et al.
approximate this conformal map by using a fine triangular mesh to represent
the brain surface, and forming a coin graph representation of this mesh.



Necessarily, any flat mapping of a curved surface such as the brain’s involves
some distortions of area, but the distortions produced by conformal mapping can
be severe; thus, it would be of interest to choose the mapping in such a way that
the distortion is minimized. As we already noted in section 4.3, the remaining
degrees of freedom in choosing a conformal mapping can be described by a single
Mobius transformation. Thus, we need to formulate a measure of distortion, and
find the transformation optimizing that measure.

Since we want to measure area, and the mapping constructed by the method
of Hurdal et al. is performed on triangles of a mesh, the most natural quality
measure for this purpose seems to be in terms of those triangles: we want to
minimize the maximum ratio a/a’ where a is the area of a triangle in the initial
three-dimensional map, and a’ is the area of its image in the flat map. Unfor-
tunately, we have not yet been able to extend our techniques to this quality
measure. A positive answer to the following question would allow us to apply
our quasiconvex programming algorithms:

Open Problem 6. Let T be a triangle in the unit disk or sphere, and let C' be
the set of viewpoints for Mébius transformations that transform T into a triangle
of area at least A. Is C necessarily convexr?

Instead of attempting to optimize the area of the triangles, it seems simpler
(although perhaps less accurate) to optimize the area of the disks in the coin
graph. Under the assumption that the initial triangular mesh has elements of
roughly uniform size, it would be desirable that the coin graph representation
similarly uses disks of as uniform size as possible. This can be achieved by our
linear-time algorithms by applying Theorem 1 in the unit disk, or Theorem 2
in the sphere. In case the triangular mesh is nonuniform, it may be appropriate
to apply a weighted version of these theorems, where the weight of each disk is
computed from the lengths of edges incident to the corresponding mesh vertex.

5 Conclusions

We have identified several applications in information visualization and struc-
tured mesh generation for which it is of interest to find a Mobius transformation
that optimizes an objective function, typically defined as the minimum size of a
collection of geometric objects. Further, we have shown that these problems can
be solved either by local optimization techniques, or by linear-time quasiconvex
programming algorithms. For the problems where the input to the quasiconvex
program is itself superlinear in size (maximizing the minimum distance between
transformed points) we have described Delaunay triangulation and random sam-
pling techniques for solving the problems in near-linear time.

We have listed open problems arising in our investigations throughout the
paper. There is also an important problem in the practical application of our
algorithms: although there should be little difficulty implementing local opti-
mization techniques for our problems, the linear-time quasiconvex programming



algorithms are based on two primitives that (while constant time by general prin-
ciples) have not been specified in sufficient detail for an implementation, one to
test a new constraint against a given basis and the other to find the changed
basis of a set formed by adding a new constraint to a basis. If the basis repre-
sentation includes the value of the objective function, testing a new constraint
is simply a matter of evaluating the corresponding object size and comparing it
to the previous value. However, the less frequent basis change operations require
a more detailed examination of the detailed structure of each problem, which
we have not carried out. For an example of the difficulty of this step see [11].
In practice it may be appropriate to combine the two approaches, using local
optimization techniques to find a numerical approximation to the basis change
operations needed for the quasiconvex programming algorithms. Especially in
the coin graph application, the input to the quasiconvex program is already it-
self a numerical approximation, so this further level of approximation should
not cause additional problems, but one would need to verify that a quasiconvex
programming algorithm can behave robustly with approximate primitives.

More generally, there are very few computational geometry algorithms in-
volving hyperbolic geometry (a notable exception being [4]) although many
Euclidean constructions such as the Delaunay triangulation or hyperplane ar-
rangements can be translated to the hyperbolic case without difficulty using
the Poincaré or Klein models. We expect many other interesting problems and
algorithms to be discovered in this area.
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