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Introduction. Confluent drawing permits certain non-planar graphs to be drawn
without crossings [5–8,12,14,16]. In these drawings curved tracks meet at vertices
and junctions ; vertices are adjacent when connected by a smooth curve connects
in the union of tracks. Applications include syntax diagrams [1] and the Hasse
diagrams of posets [10]. Strict confluent drawing forbids multiple connections
between vertices, or smooth curves from a vertex to itself [9, 11]. Outercon-
fluent drawings place tracks in a disk with the vertices on its boundary. Strict
outerconfluent graphs are somewhat mysterious: they can be recognized efficiently
given the vertex ordering around the disk but without it this remains open [9].

Strict outerconfluent graphs can be dense, with unbounded treewidth. They in-
clude distance-hereditary graphs [7] and tree-like strict outerconfluent graphs [11],
both of bounded clique-width. In this work, we show that strict outerconfluent
graphs have unbounded clique-width but bounded twin-width.

Fig. 1. Construction for strict outerconfluent graphs of unbounded clique-width

Unbounded clique-width. We prove that the recursively-constructed graphs
of Fig. 1 have unbounded clique-width. It is convenient to use rank-width, derived
from ternary trees with the graph vertices as leaves. Each tree edge defines a
partition of the vertices into two subsets; the rank-width is the maximum rank of
the biadjacency matrix of such a partition, for a ternary tree that minimizes this
maximum. Rank-width r and clique-width c are related by r ≤ c ≤ 2r+1 − 1 [15].

Proof sketch: Some edge of any ternary tree partitions the vertices roughly
evenly; we show that this partition has high rank, through the following steps.
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– The partition splits the vertices into contiguous intervals; selected interval
endpoints induce a matching of rank proportional to the number of intervals.

– If there are only O(1) intervals, then some two intervals on opposite sides of
the partition are both much longer than the gap between them.

– For these two intervals, ω(1) nested semicircles in the drawing each connect
a vertex in one interval to a vertex in the other.

– From these nested semicircles we construct a square submatrix of the biadja-
cency matrix, of size equal to the number of semicircles, of full rank.

Bounded twin-width. In contrast, we prove that strict outerconfluent graphs
have bounded twin-width. Graphs of bounded twin-width include planar graphs
and k-planar graphs, important in graph drawing [2,13]. Twin-width is defined
by merging clusters of vertices in pairs, starting with one-vertex clusters, until
only one cluster is left. At each step, two clusters are connected by a red edge
if some but not all adjacencies exist between their vertices. The twin-width is
the minimum d so that this merging process can limit the degree of the graph of
red edges to at most d [4]. Twin-width can also be characterized imprecisely by
counting ordered graphs, graphs assigned a linear order on vertices. A family of
ordered graphs is hereditary if induced subgraphs with induced orders remain in
the family. It is small if it has singly-exponentially many n-vertex ordered graphs.
Every hereditary family of graphs of bounded twin-width can ordered as a small
family of ordered graphs, and every small family of ordered graphs has bounded
twin-width [3]. We prove that (with their natural vertex orderings around the disk
on which they are drawn) strict outerconfluent graphs form a small hereditary
family of ordered graphs, and therefore have bounded twin-width.

Proof sketch: This family is hereditary: removing any vertices and unused
tracks produces another strict outerconfluent graph. From any n-vertex strict
outerconfluent drawing of a graph G, form a plane graph D, by reinterpreting the
junctions of the drawing as vertices of D and adding one more vertex o, outside
the disk of the drawing, connected to the vertices of G by edges external to the
disk. An equivalent ordered drawing to the one we started with can be recovered
from the plane embedding of D by specifying which vertex is o, which neighbor
of o is the start of the linear vertex ordering, and (for each non-neighbor of o)
how to partition the incoming edges into tracks meeting smoothly to form a
junction. Thus, the number of ordered strict outerconfluent graphs is at most
the number of possible combinations of a diagram and this specification of extra
information. There are O(n) junctions in the drawing [9], from which it follows
that D has O(n) vertices. The number of maximal planar graphs with n vertices
is singly exponential [17], from which it follows from the uniqueness of their
plane embeddings (up to choice of outer face) and by counting subgraphs that
the number of plane graphs is also singly exponential. The numbers of ways to
specify o and the start of the linear ordering are O(n), and the number of ways to
turn vertices of D into smooth junctions is singly exponential in n. Multiplying
these choices gives a singly-exponential bound on strict outerconfluent drawings,
showing that the family of strict outerconfluent graphs is small.

For details, see the full version of this paper, arXiv:2308.03967.
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