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Mizera’s previous work [13] introduced tangent depth, a pow-
erful method for defining robust statistics. In this framework,
one measures the quality of a putative fit ϑ to a sample point
zi by a criterial function Fi(ϑ). We say that ϑ is a nonfit if
there is another fit ϕ with Fi(ϕ) < Fi(ϑ) for all i. The depth
of ϑ is then defined as the smallest value d such that d of the
sample points can be removed causing ϑ to be a nonfit for the
remaining data. This method actually leads to two notions of
depth: global depth is as defined above, while tangent depth is
the limiting case of global depth as ϕ is restricted to lie within a
small neighborhood of ϑ. However, when the criterial functions
are strictly quasiconvex (in an appropriate parametrization of
ϑ) the two notions of depth coincide. For location fitting prob-
lems, using as the criterial function the distance from zi (or any
monotonic function of the distance) recovers the classical no-
tion of Tukey depth. For linear regression, using as the criterial
function the residual distance recovers the notion of regression
depth introduced by Rousseeuw and Hubert [14].

This interesting new paper by Mizera and Müller applies
the tangent depth technique to problems of fitting a set of sam-
ple points with a value that encodes both location and scale.
To do this, the authors define fits and associated criterial func-
tions that arise naturally from statistics. The fits are chosen
to be scaled translates of a symmetric probability distribution
(e.g. Student, Gaussian, logistic, slash, or Laplace distribu-
tions) and the criterial functions are the likelihoods according
to these distributions. That is, this method posits a signal in
the form of samples from an unknown distribution of known
type, hidden by noise in the form of a relatively small number
of arbitrary outliers, and uses depth-based methods to sift the
signal from the noise. The results are especially elegant for the
Gaussian and Student distributions: the depth of a fit in R

d

can be viewed as equivalent to Tukey depth in hyperbolic space
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H
d+1. By standard techniques for modeling hyperbolic space

in Euclidean spaces, all the previous machinery of Tukey depth
can be brought to bear on this new depth problem.

In this discussion we examine Mizera and Müller’s results
from the viewpoint of discrete and computational geometry:
how can their definitions be reformulated in a combinatorial
way that would be more familiar to computational geometers,
and what is known and unknown about the algorithmic com-
plexity of location-scale depth problems? Along the way we
visit some related topics from the computational geometry lit-
erature: parabolic lifting, optimal Möbius transformation, and
finite element mesh partitioning.

Throughout, we define depth in terms of cardinalities of
sets of sample points, whereas Mizera and Müller define depth
in terms of the relative proportions of such sets when viewed as
subsets of the whole sample set; however this difference is of no
consequence. More significantly, Mizera and Müller treat only
the case of univariate (one-dimensional) sample data, while we
take their equivalence to hyperbolic Tukey depth as a given and
consider its implications in higher dimensions.

1 Combinatorial Interpretation

Part of the reason for the continued interest from the compu-
tational geometry community in Tukey and regression depths,
and more generally in depth-based statistical inference, is that
these depths are easily understood without much statistical
background knowledge. The objects being sought are them-
selves simple (points and lines or hyperplanes respectively) and
their depths can be defined very simply in terms of counting
incidences between simple geometric objects such as points and
halfplanes. The Tukey depth of a point µ among a set of sample
points in R

d, for instance, is the minimum number of sample
points contained in any closed halfspace the boundary of which
contains µ. The regression depth of a line l among sample points
in the plane is the minimum number of sample points contained
in any double wedge bounded by l and any vertical line; such
double wedges are familiar in computational geometry as the
projective duals of rays.

Can we come up with a similar definition of location-scale
depth, where the object we seek is a simple geometric figure
carrying location and scale information (such as a circle) and
the depth is defined as the minimum number of sample points
in a shape drawn from some simple family? For tangent depth,
in general, the answer is yes: the depth of ϑ is the minimum
number of sample points in a subset Sϕ = {z | Fz(ϕ) < Fz(ϑ)},
for ϕ arbitrarily close to ϑ. The question is how to describe in
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Figure 1: Any hyperbolic plane B through µ, σ meets the plane
P with µ, σ as apex in diametrically opposed infinite points.

a more explicit way these subsets Sϕ.
A fit for Student or Gaussian depth can be described as a

pair (µ, σ) where µ belongs to the sample space and σ can be
interpreted as the standard deviation of the Gaussian. As Miz-
era and Müller show, these pairs (µ, σ) can also interpreted as
coordinates for a Poincaré halfspace model of the hyperbolic
plane, and in this model the Student depth becomes the hy-
perbolic Tukey depth of the sample points (xi, 0). Interpreted
hyperbolically, the sample points represent infinite points on
the boundary of the halfspace model. One can therefore define
location-scale depth in terms of numbers of incidences between
samples and hyperbolic halfspaces, but we would like a more
intrinsic description involving geometric figures in the original
sample space. Such a description is provided for multivariate
data by the following characterization:

Theorem 1 Let µ ∈ R
2 and σ ∈ R be the center and radius

of a circle C = {ξ : |ξ − µ|2 = σ2}, and let there be given a
set of samples in R

2. Then the hyperbolic Tukey depth of (µ, σ)
for the given sample set equals the minimum number of samples
in a closed disk or disk complement in R

2 bounded by a circle
passing through two diametrically opposed points of C.

Proof If we view R
2 as the boundary of a halfspace model of

a hyperbolic space H
3, C is the set of infinite limit points of a

hyperbolic plane P , which is modeled by a hemisphere with C
as its boundary and with the point µ, σ as its apex (Figure 1).
The hyperbolic Tukey depth of µ, σ is the minimum number
of sample points in a subset of H

3 bounded by a hemisphere B
containing µ, σ. The intersection of this subset with R

2 is a disk
or complement of a disk bounded by a circle O. Since P and
B intersect in a hyperbolic line l, modeled as a semicircle that
contains the apex µ, σ, C and O intersect in the endpoints of l.
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Projecting l vertically onto R
d produces a line segment, which

contains the point µ at the center of C, so the two intersection
points are diametrically opposed.

Conversely, if O is the boundary of any disk or disk comple-
ment that contains few sample points, where O passes through
diametrically opposed points of C, then the hemisphere bounded
by O provides a hyperbolic plane P containing µ, σ, and the disk
or disk complement bounded by O is the set of limit points of a
hyperbolic halfspace bounded by P . Thus any circle of the form
provided by the lemma leads to a halfspace lower bounding the
Tukey depth of µ, σ, and vice versa, so the result follows. �

More generally, for sample points in R
d, d > 2, the same

technique shows that the hyperbolic Tukey depth of (µ, σ) is
the minimum number of points in a ball or ball complement
the boundary of which passes through an equatorial (d − 1)-
sphere of the sphere {ξ : |ξ − µ|2 = σ2}.

2 Parabolic Klein Model

Mizera and Müller use hyperbolic geometry to convert a prob-
lem involving round objects (circles or radially symmetric distri-
butions) to one involving more mathematically tractable flat ob-
jects (hyperbolic planes). However, it is possible to achieve the
same linearization effect while remaining in a Euclidean instead
of hyperbolic geometry. This can be done e.g. by stereographic
projection to a sphere [3] but the technique more commonly
used in the computational geometry literature is the parabolic
lifting map [6] that maps points µ in R

d to p(µ) = (µ, |µ|2) on
a paraboloid in R

d+1. If C is a sphere in R
d, then p(C) is the

intersection of the paraboloid with a hyperplane in R
d+1, and

conversely every hyperplane that has a nonempty intersection
with the paraboloid intersects it in the lifted image of a sphere.

Mizera and Müller allude to this possibility briefly but dis-
miss it, writing

It is tempting to think that what we deal with here
is just the bivariate location depth with respect to
the datapoints lifted on a parabola—but one has to
keep in mind that τi depend on µ and σ, so when
the parameters change, the position of lifted points
changes too.

However, the set of points in R
d+1 above the paraboloid

can be viewed as a parabolic version of the Klein model of
hyperbolic geometry, in which hyperbolic planes are modeled
by Euclidean planes that intersect with the paraboloid. So,
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Figure 2: Depth-defining regions for lifted regression depth are
symmetric differences of a halfplane and a disk bounded by the
given circle.

combinatorially, there is little difference between the Poincaré
halfspace model of hyperbolic geometry used by Mizera and
Müller, and the Euclidean geometry of the points on the lifted
paraboloid.

In more detail, the correspondence between the hyperbolic
and parabolic interpretations of location-scale depth is as fol-
lows. For any point c = (µ, h) above the paraboloid (that is,
satisfying the inequality h > |µ|2) let σ =

√

h − |µ|2, and let
C be the sphere in R

d with center µ and radius σ. Then, C
is the unique sphere centered at µ such that the hyperplane in
R

d+1 containing p(C) also contains the point c. Conversely, any
sphere C in R

d corresponds in this way to a point c at the in-
tersection of the hyperplane through p(C) and the vertical line
through the center of C. The Tukey depth of c among the set
of lifted sample points in R

d+1 is defined to be the minimum
number of samples in any closed halfspace bounded by c. The
boundary of such a closed halfspace intersects the paraboloid
in the lifted image of a sphere, which can be shown to inter-
sect C equatorially. That is, the equivalent of Theorem 1 holds
for parabolic lifting, so we get the same depth for C when we
view R

d as the boundary of a hyperbolic Poincaré model and
measure the hyperbolic Tukey depth of (µ, σ) as we get when
we lift R

d to the paraboloid and measure the Euclidean Tukey
depth of c.

This gives us a way of interpreting location-scale depth as
Tukey depth without resorting to hyperbolic geometry. The
penalty for using this interpretation, however, is that the co-
ordinate h of the Euclidean points (µ, h) cannot be directly
interpreted as a scale. Instead, we must recover the scale using
the simple formula σ =

√

h − |µ|2.
If we use parabolic lifting to compute a depth value of a

circle C in R
2 (or sphere in higher dimensions), it is natural to

consider an alternative definition of the depth of C, in which
we consider the regression depth of the plane (or hyperplane)
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through p(C) among the lifted samples rather than the Tukey
depth of the point c associated with C. If depth were defined in
this way, it would equal the minimum number of samples in any
set formed as the closure of a symmetric difference of a halfspace
with the disk bounded by C (Figure 2). Thus, this definition of
depth is quite difference from location-scale depth, which as we
have seen can be defined as the minimum number of samples
in a ball or ball complement intersecting C equatorially. It is
unclear to us what statistical significance this lifted regression
depth might have for multivariate data, but in the univariate
case it appears to give as the deepest fit merely the pair of 1

3
-

and 2

3
-quantiles.

3 Optimal Möbius Transformation

The problem of Tukey depth for points on the boundary of
a model of hyperbolic space, used by Mizera and Müller to
visualize location-scale depth, has also arisen in non-statistical
contexts.

The halfspace hyperbolic model used by Mizera and Müller
can be converted by stereographic projection into a spherical
Klein or Poincaré model of hyperbolic space, but this projection
can be performed in different ways, leaving different hyperbolic
points at the center of the spherical model. These different
spherical models are related to each other by Möbius transfor-
mations of the sphere, and the problem of finding a Tukey me-
dian can be viewed as one of optimal Möbius transformation [2]
in which one seeks a Möbius transformation of a spherical point
set that minimizes some function of the transformed input. If
we find the hyperbolic Tukey median of a spherical point set
S, and transform the points to place that median at the cen-
ter of the sphere, the resulting transformation minimizes the
hemisphere discrepancy

max
H

∣

∣

∣

∣

|H ∩ S|

|S|
−

1

2

∣

∣

∣

∣

,

where the maximum is taken over all hemispheres H of the
sphere. This interpretation makes clear the Möbius equivari-
ance observed by Mizera and Müller.

The idea of using Tukey depth for a stereographic projec-
tion of the input was used by Teng et al. [7, 10, 11] as part of
a scheme for partitioning finite element meshes and other geo-
metric graphs. The authors of these papers use stereographic
projection to map mesh vertices from R

d to the surface of a
sphere in R

d+1, compute an approximate Tukey median of the
resulting spherical point set [5], transform the sphere so the
computed median is at its center, and partition the sphere by
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a plane through the center. This partition plane is chosen ei-
ther randomly [10] or by a deterministic technique that mimics
the properties of randomly chosen planes [7]. The stereographic
projection can then be reversed to map the partition plane back
to a circle or sphere in the original d-dimensional space, which
partitions the space into two pieces. Alternatively, this proce-
dure can be viewed as treating R

d as the boundary of a halfs-
pace model of H

d+1, finding a high Tukey depth point in H
d+1,

choosing a random hyperbolic plane through that point, and
partitioning R

d on the limit points of that plane.
The low hemisphere discrepancy of the transformed spheri-

cal point set found by this method (or equivalently, the high
Tukey depth of the chosen point in H

d+1) implies that any
plane through the center point leads to a well-balanced par-
tition in which both the inside and the outside of the partition
sphere contain a constant fraction of the original mesh’s ver-
tices. Teng et al. showed that their choice of a random plane
causes only O(n1−1/d) of the mesh elements (in expectation) to
be cut by the partition sphere, so these ideas result in an ef-
ficient algorithm for partitioning meshes into large pieces with
few elements on the boundaries of the pieces.

4 Algorithmic Implications

For practitioners interested in using algorithms for location-
scale depth, it is fortunate, and for theoreticians interested in
developing algorithms for location-scale depth, it is unfortu-
nate, that this new depth notion can be transformed so easily
into standard concepts of Tukey depth. As the authors note, the
existence of Klein models for hyperbolic geometry allows one to
use any algorithm developed for Tukey depth to compute effi-
ciently the corresponding properties of location-scale depth. In
this way we can immediately find algorithms for computation
of location-scale depth [4], finding Student medians [4] or ap-
proximate medians [5], visualizing depth contours [8, 12], and
maintaining guaranteed-accuracy approximations of depth for
streaming data [1]. In each case the computational complexity
of the location-scale depth problem in dimension d is equal to
that for the corresponding Tukey depth problem in dimension
d + 1. Known bounds on the breakdown point of the Tukey
median can also be transferred to location-scale depth. Mizera
and Müller suggest that the time complexity of location-scale
depth problems may in some cases be better than that for the
higher dimensional Tukey depth, citing computation of depth
contours as one example, but the Tukey depth contour algo-
rithms they cite in this comparison are not the best known.
However, for the problem of computing a single depth contour,
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Figure 3: Tukey depth contours for regular n-gon, n odd, con-
sist of (n−1)/2 nested regular n-gons with a total of n(n−1)/2
edges; stereographic projection produces a univariate sample set
with combinatorially equivalent location-scale depth contours.

the O(n log n) bound they give may indeed be an improvement
on the best known time bound for computing a single bivariate
Tukey depth contour, O(n log4 n) [9].

Rather than incurring a further transformation to a Eu-
clidean problem, Mizera and Müller suggest implementing their
algorithms by staying within the Poincaré halfplane model of
hyperbolic geometry:

While the transformation principle provides a theo-
retical argument, it is better in practical computa-
tions to perform all necessary operations directly in
the original Poincaré plane, to avoid rounding errors
arising in transforming to and from the Klein disk.

However, we feel that from the point of view of code simplic-
ity and reuse, it may be better to perform computations using
the parabolic lifting transformation. That is, a location-scale
computation could be performed by replacing each sample zi

with the point (zi, |zi|
2) in one higher dimension, using a Eu-

clidean Tukey depth algorithm for the lifted points, and then
transforming the results back to the hyperbolic model with the
simple formula for the scale coordinate σ =

√

h − |µ|2|. It is not
clear to us, and would take a more careful numerical analysis to
determine, whether these two transformational steps result in
larger rounding errors than would be incurred by the increased
complexity of the formulas needed for working directly within
the Poincaré model.

Mizera and Müller ask whether the O(n2) complexity of
the algorithm for computing all depth contours [12] can be im-
proved in the case of univariate location-scale depth, as the
algorithm was developed to find contours for a more general
problem, bivariate Tukey depth. The answer, at least in the
worst case, is no. If an odd number of sample points are spaced
regularly on a circle in the plane, then every pair of samples
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contributes a line segment to one of the depth contours (Fig-
ure 3). Stereographically projecting this regularly spaced point
set onto a line produces a univariate sample with combinatori-
ally equivalent location-scale depth contours, so quadratic time
complexity is unavoidable.

It is also not possible to improve the O(nd+1 +n log n) com-
plexity of computing d-variate location-scale depth, relative to
that for (d + 1)-variate Tukey depth. To see this, suppose that
we have a set of (d + 1)-dimensional samples zi, and wish to
compute the Tukey depth of a point ξ. Replacing each sample
zi by the point ξ + (zi − ξ)/|zi − ξ| leaves the Tukey depth of ξ
unchanged, but modifies the sample set so that each sample
lies on a unit sphere centered at ξ. Stereographic projection
then produces a d-variate sample set, and a fit (µ, σ), that has
the same location-scale depth as the Tukey depth of ξ in the
original sample set. So, computation of d-variate location-scale
depth can be no faster than (d + 1)-variate Tukey depth.

The logistic and slash depths (if those turn out not to be
rescaled versions of Student depth) and the Laplace version of
location-scale depth, all discussed briefly by Mizera and Müller,
may be more promising directions for algorithmic research, as
little seems to be known already about these quantities. The
suggestion of using other depth measures such as simplicial
depth in the hyperbolic setting may also lead to new algorith-
mic problems, but seems less well motivated statistically than
the likelihood-based tangent depth approach.
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