Cubic Planar Graphs That Cannot Be Drawn On Few Lines

David Eppstein
University of California, Irvine

Symposium on Computational Geometry, June 2019
Planar graph drawing on one line

Always possible using ≤ 2 semicircles per edge
Planar graph drawing on two lines

Can draw graphs of arbitrarily high treewidth
(here, a 6×6 grid)

Can also draw all trees and all outerplanar graphs
Known graphs requiring non-constant lines, I

Recursively subdivide triangles into 3 triangles

Line through subdivision point misses a smaller triangle

\Rightarrow needs $\Omega(\log n)$ lines even though treewidth ≤ 3 [Eppstein 2018]
From many-point lines to long dual paths

In a planar graph whose faces are all triangles

Line through k points \Rightarrow path of $\geq k - 1$ edge-to-edge triangles

(Doesn't work for non-triangles — they can cross line > 1 time)
Known graphs requiring non-constant lines, II

Find non-Hamiltonian 3-regular planar graph [Tutte 1946]

Recursively replace vertices by copies of same graph ⇒ longest path $O(n^{0.99})$ [Grünbaum and Walther 1973]

Dualize ⇒ triangulated graph requiring $\Omega(n^{0.01})$ lines [Ravsky and Verbitsky 2011; Chaplick et al. 2016, 2017]
An incorrect conjecture

Conjecture [Firman et al. 2018]:
3-regular planar graphs can be drawn on 2 lines

Counterexample (D.E.):

(later verified computationally by Firman et al.)
Why is this a counterexample?

One of the three red pentagons avoids both the crossing point of the two lines and the outer face of the whole drawing.

But it cannot be drawn only with only two non-crossing line segments!
New results, I

This graph requires $\Omega(n^{1/3})$ lines

(Rearrange hexagons ⇒ bounded pathwidth)
Why?

For fewer lines, at least one hexagonal nest avoids all line crossings and the outer face.

But each level of nesting uses up one of the segments formed by the lines that cross its outer hexagon.

So it cannot be drawn on few lines without containing a crossing.
This apex graph (tree + one vertex) requires $\Omega(\log n)$ lines (by similar reasoning)
Drawing apex-trees on $O(\log n)$ lines

x-coordinate = preorder

y-coordinate = level in heavy path decomposition
Conclusions and new developments

From this paper:

▶ Planar graphs with \(n \) vertices may require \(\Omega(n^{1/3}) \) lines (even when 3-regular and bounded pathwidth)
▶ Series-parallel graphs and apex trees may require \(\Omega(\log n) \) lines

The apex-tree bound is tight, but what about series-parallel?

More recently [Biedl et al. 2019]:

▶ NP-hard to find 2-line drawings
▶ 4-connected planar graphs can be drawn on \(O(n^{1/2}) \) lines

Can we close the gap between \(\Omega(n^{1/3}) \) and \(O(n^{1/2}) \)?
References and image credits, I

References and image credits, II

