
Dynamic Connectivity in Digital Images

David Eppstein∗

Department of Information and Computer Science
University of California, Irvine, CA 92717

http://www.ics.uci.edu/∼eppstein/

Tech. Report 96-13

April 18, 1996

Abstract

We show that any algorithm that maintains the connected compo-
nents of a digital image must take Ω(logn/ log logn) time per change
to the image. The problem can be solved in O(log n) time per change
using dynamic planar graph techniques. We discuss applications to
computer Go and other games.

Keywords: dynamic planar connectivity, percolation, lower bounds, image
processing, go, lines of action.

∗Work supported in part by NSF grant CCR-9258355 and by matching funds from
Xerox Corp.

1



1 Introduction

A basic problem in image processing consists of finding the connected com-
ponents of a bitmap image (where each component consists of pixels of a
common color adjacent vertically, horizontally, or sometimes diagonally; the
same problem applies also to finding regions of an image separated from each
other by an edge detection operator). This is a special case of graph con-
nectivity, and can easily be solved in linear time by depth-first search, but
there has been some research on fast union-find methods that allow the im-
age to be processed in a more systematic order [3]. A large body of research,
percolation theory, concerns itself with similar questions of connectivity in
random grid subgraphs.

We are interested here in a dynamic version of the problem, in which
individual pixels may be changed, and the connected components must be
maintained as this happens. We envision the following applications for this
dynamic connectivity problem:

• Image segmentation. The problem here is to divide a (static) image
into regions, presumably belonging to different objects; for a recent pa-
per on the subject, with further references, see Asano et al. [1]. There
are various methods of performing such division including partitions
by pixel value as well as more sophisticated edge detection schemes.
These methods can involve various parameters that can be tuned by
a local search process to form a better partition. As one changes the
parameters, individual pixels will shift from one side of the partition
to the other, or more or fewer pixels will be recognized by the edge
detector.

• Connectivity in video data. In some image sequences, such as those
of cells undergoing division, we may want to track the connectivity of
individual objects [12]. This can be viewed as a dynamic form of image
segmentation, where now changes in the input come from updates to
the image rather than modification of segmentation parameters.

• Game playing software. The game Lines of Action [4, 11] involves
moving stones on a checkerboard in an attempt to make them con-
nected. Several software implementations of this game are available;
it has been reported that the most difficult part of writing such a
program is evaluating connectivity [4]. Connectivity also plays a large
part in the evaluation of positions in Go (in which good computer play

1



has proven surprisingly hard to attain; see [10] for many papers on the
subject), and in Hex.

As our problem is a special case of dynamic planar graph connectivity
(if one takes care to keep the problem planar when diagonal connections
are allowed) it can be solved by dynamic graph algorithm techniques [5, 6].
In particular, an algorithm of Eppstein et al. [6] solves dynamic planar
connectivity problems (assuming a fixed planar embedding, which is the
case here) in time O(log n) per update.

Fredman and Henzinger [7, 9] have shown a lower bound close to this,
Ω(log n/ log logn). However, the problem we are solving is a special case,
so this lower bound does not automatically apply. Further, the lower bound
proof involves the insertion and deletion of long twisted edges that seem
hard to fit into the digital image framework considered here.

Since this lower bound seems not to apply, perhaps it is possible to im-
prove the upper bounds to sublogarithmic? An analogous one-dimensional
connectivity problem is equivalent to integer searching, and can be solved in
time O(log logn). D. Dyer (personal communication) has proposed a simple
constant time heuristic, based on computing the total curvature of a region’s
boundary; is it possible to extend this to a complete algorithm?

Our main result is to dash these hopes: the Ω(log n/ log logn) lower
bound from the general dynamic planar graph problem applies as well to
our digital image connectivity problem. (This is true whether we want to
test which component a point belongs to, or whether we merely want to know
whether the overall image is connected.) The method involves a reduction
similar to the one by Fredman and Henzinger, from a problem of maintaining
the parity of prefix sums; however we simplify their method greatly in order
to apply it to our problem.

We also describe a simplified method of maintaining the connected com-
ponents in logarithmic time, avoiding the complicated data structures of
Eppstein et al. [6], and instead combining any balanced binary tree struc-
ture with Dyer’s curvature idea. This method has the further advantage
for computer Go applications that it can maintain additional topological
information about the configuration (number of eyes).

2 The Lower Bound

Like Fredman and Henzinger, we base our lower bound on a reduction to
the parity prefix sum problem: given a sequence of bits, answer queries on
the total parity of initial subsequences of the bits, and allow updates that

2



Figure 1. Sides of nested squares form layers of terminals in lower bound construc-
tion.

change one bit at a time. It is known that this problem has Ω(logn/ log log n)
lower bounds per operation in the cell probe and integer RAM models of
computation [2, 8], where n denotes the length of the bit sequence.

The basic idea of the lower bound is to translate an instance of the par-
ity prefix sum problem into a planar graph as follows. We form a structure
consisting of n levels, each consisting of four terminals. The terminals are
connected at the bottom level into two pairs. The terminals at each succes-
sive level are connected to those at the previous level, in a way depending
on the corresponding bit in the parity prefix problem, so that at each level
the four terminals are grouped into two components in a way depending on
the parity of the corresponding initial subsequence of bits. We can then test
this parity at a given level ` by connecting the terminals at level `+1 to each
other and to two of the terminals at level ` in such a way that the overall
graph is connected if and only if the parity of the subsequence is even.

We now describe these components in more detail in the context of the
image component problem we are considering. We first describe the set of
terminals. Each terminal forms the side of a collection of concentric squares,
each square four pixels wider than the previous, with four pixels removed
from each square so that no two terminals adjoin each other. This construc-
tion is shown in Figure 1. Note that, as drawn in the figure, each terminal
adjoins two others in the next larger square, one on the corresponding side
of the larger square, and one on the side 90◦ clockwise.

We define the parity of a subsequence of these terminals to be even if the
upper and lower terminals are connected (indirectly, via a chain of pixels

3



Figure 2. Connections between layers: (a) corresponding to zero bit in parity prefix
problem; (b) corresponding to one bit; (c) test of prefix parity.

involving smaller squares) to their clockwise neighbors on the same square,
and odd if these terminals are connected to their counterclockwise neighbors.
We now describe how to add additional pixels to the image of Figure 1 to
ensure that the parity of each subsequence of terminals corresponds to the
parity prefix problem instance we started with. At the innermost level, this
is easy: we can just add two pixels, connecting the appropriate pairs of
terminals, depending on whether the first bit of the parity prefix problem is
even or odd. At each subsequent level, if the parity prefix problem has an
even bit, we connect each terminal with the corresponding side of the larger
square (Figure 2(a)). if the parity prefix problem has an odd bit, we connect
each terminal with the other adjacent side of the larger square, clockwise
90◦ (Figure 2(b)).

We omit the easy proof of the following lemma.

Lemma 1. The construction above causes the parity of any initial subse-
quence of terminals to equal the parity of the corresponding subsequence of
the prefix problem.

It remains to show how to answer queries in the parity prefix problem. To
query the parity of the first ` bits of the problem, we perform the following
updates to the corresponding image connectivity problem. We remove all
four pixels connecting terminals at level ` to those at level ` + 1. We then
connect the four level `+1 terminals to each other and to two level ` terminals
at the top and right of their square (Figure 2(c)). As a consequence, all
terminals at greater levels will be connected (via a path through the level
`+ 1 terminals) and these will be connected to the lower level terminals as
well only if the two connections to level ` go to both of the two components
formed by the lower level terminals.

Lemma 2. The construction above forms a connected graph if and only if
the parity of the subsequence of terminals up to level ` is even.

4



Theorem 1. It requires Ω(logN/ log logN) time per operation to add and
remove pixels from a subset of an N ×N grid and test whether the resulting
image is connected.

Proof: We have shown that we can use these operations to simulate a
solution to the parity prefix problem with Ω(N) bits, using O(1) changes to
the grid per operation in the prefix problem. The result follows from known
bounds on the parity prefix problem. 2

Finally, we note that the same idea simplifies the lower bound method of
Fredman and Henzinger for general planar graphs. Fredman and Henzinger
give two versions of their proof, one using an integer searching data struc-
ture (along with the connectivity algorithm itself) as part of the simulation
of the parity prefix problem, and the other based on a more complicated
restriction of the prefix problem; we need neither complication. For this
planar graph result, our overall framework again applies, but the terminals
can be assumed to be single vertices and the connections between vertices
can be single edges.

3 The Upper Bound

We now sketch a method for maintaining the number of connected compo-
nents in logarithmic time per update, more simply than the algorithm of
Eppstein et al. [6] which involves expanding the input planar graph to one
of degree at most three, maintaining a partition of the expanded graph’s
edges into two trees, storing each tree as a collection of disjoint paths, and
representing each path with a balanced binary tree. Instead we skip directly
to the balanced binary tree stage. The method we describe has some advan-
tages in maintaining more topological information about the components;
however unlike that of Eppstein et al. it is unable to determine the identity
of the component containing any particular pixel. For many applications
this inability will not be a problem, as we are only interested in the number
of components or in their boundaries.

Suppose we wish to find the connected components of the black pixels,
in a black and white image. We begin by constructing the polygons forming
the boundary between black and white regions of the image. Each pixel is
involved in at most four such boundary polygons. Each connected compo-
nent is bounded on the outside by one polygon, and may have other polygons
bounding holes internal to the component. Thus if we can distinguish the
interior boundaries from the exterior ones, we can count components simply

5



by counting exterior boundaries. (Note also that in the application to Go
evaluation, interior boundaries correspond to “eyes” and are very important
for understanding the long-term stability of a component.)

To distinguish these two types of boundary polygons, we turn to an
idea of D. Dyer. Recall that the total curvature of a polygon (the sum of
the angles between vectors parallel to successive edges), as one traverses
the polygon counterclockwise, is 360◦. Dyer (personal communication) pro-
posed simply to maintain the total curvature of all boundary regions, and
test whether this number equals 360◦. However this technique fails in the
presence of interior boundaries. If we orient each boundary polygon so that,
at positions where black pixels are below white pixels, the boundary goes
leftwards, then this orientation will be clockwise for interior boundaries and
counterclockwise for exterior boundaries. Thus the total curvature will be
360◦ or −360 respectively if the boundary is exterior or interior.

Thus we need only keep track of the total curvature of each boundary
polygon to distinguish which polygons are exterior and find the total number
of components of the input. One way of doing this is to represent boundary
polygons using any of various balanced binary tree structures that allow
lists to be split and joined in logarithmic time per update. If we store at
each node of the tree the total curvature in the subtree under the node, we
can read off the curvature of a boundary polygon by looking at the number
stored at the root of the corresponding binary tree. A further simplification
is possible: since we are only interested in distinguishing 360 from −360,
and since each angle in the polygon is either 0 or 90◦, we can represent the
curvature θ as the values of θ/90◦ (modulo 3); then 360◦ corresponds to a
value of 1 (mod 3) and −360◦ corresponds to a value of −1 (mod 3). In this
way we need store only two additional bits per binary tree node.

Theorem 2. The method described above maintains the orientation of
each boundary polygon of the input, and the number of components of the
input, in time O(log n) per update.

4 Conclusions

We have described upper and lower bounds for dynamic connectivity in
bitmap images. The same problem remains open here as for planar graphs:
to close the O(log logn) gap between the upper and lower bounds. Perhaps
this will prove easier for bitmap images than for the general planar graph
problem.

6



References

[1] T. Asano, D. Z. Chen, N. Katoh, and T. Tokuyama. Polynomial-time
solutions to image segmentation. 7th ACM-SIAM Symp. Discrete Al-
gorithms (1996) 104–113.

[2] A. M. Ben-Amram. On the Power of Random Access Machines. Ph.D.
thesis, Tel Aviv U., School of Mathematical Sciences, 1994.

[3] M. B. Dillencourt, H. Samet, and M. Tamminen. A general approach
to connected-component labeling for arbitrary image representations.
J. Assoc. Comput. Mach. 39 (1992) 253–280.

[4] D. Dyer. Lines of Action. Online document, available at http://www.
andromeda.com/people/ddyer/loa/loa.html

[5] D. Eppstein, Z. Galil, G. F. Italiano, and T. Spencer. Separator-based
sparsification for dynamic planar graph algorithms. 25th ACM Symp.
Theory of Computing (1993) 208–217.

[6] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook,
and M. Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms 13 (1992) 33–54.

[7] M. L. Fredman and M. R. Henzinger. Lower bounds for fully dynamic
connectivity problems in graphs. Algorithmica, to appear.

[8] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic
data structures. Proc. 19th ACM Symp. Theory of Computing (1989)
345–354.

[9] M. R. Henzinger. Improved data structures for fully dynamic biconnec-
tivity. Proc. 26th ACM Symp. Theory of Computing (1994) 686–695.

[10] D. N. L. Levy, ed. Computer Games II. Springer, 1988.

[11] S. Sackson. A Gamut of Games. Dover, 1992.

[12] R. Samadani. Changes in connectivity in active contour models. IEEE
Worksh. Visual Motion (1989) 337–343.

7


