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Abstract

Any bipartite Eulerian graph, any Eulerian graph with evenly many ver-
tices, and any bipartite graph with evenly many vertices and edges, has an
even number of spanning trees. More generally, a graph has evenly many
spanning trees if and only if it has an Eulerian edge cut.
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1 Introduction

Smith’s Theoremstates that every trivalent graph has an even number of Hamiltonian
cycles; this is proven by a correspondence between each of these paths with the
endpoints of another system of paths, so that each Hamiltonian path has a partner
that can be found by following a path from this system. This correspondence leads
to interesting questions in computational complexity [6, 7]. Similar problems on the
numbers of partitions of a graph into a spanning tree and a matching or Hamiltonian
cycle were considered by Chrobak and Poljak [4].

In this paper we investigate a similar problem, the parity of the number of
spanning trees of a graph. This number can be calculated as a certain matrix
determinant via the well-knownmatrix-tree theorem(e.g. see [3]), and algebraic
characterizations of the parity of this number were known [1], but it is not obvious
from these results how the number of trees relates to structural properties of the
graph. We show that a graph has an even number of spanning trees, if and only
if it has anEulerian edge cut, that is, a subgraphG ∩ ((V(G) − S) × S), where
S is some vertex subset ofG, with the property that all degrees in the subgraph
are even. This equivalence between a problem formulation naturally belonging
to ⊕P and a formulation naturally belonging toN P is intriguing, as it would be
surprising indeed if these two complexity classes were equal. However because of
the matrix-tree theorem, the problem represented by the two formulations turns out
to be solvable in polynomial time.

We extend one direction of our characterization, to deal with other types of
divisibility, and in the other direction we identify several classes of graphs that
satisfy our conditions. In particular, every bipartite Eulerian graph has evenly
many spanning trees.

The proofs of these results are based on a fascinating new construction by
Bacher, de la Harpe, and Nagnibeda [1] of a finite Abelian group, the elements of
which are certain equivalence classes of fractional flows, having the same number
of elements as the number of spanning trees in the graph. This technique seems
to be considerably less constructive than that of Smith’s theorem, and in particular
does not seem to lead to a natural matching of pairs of spanning trees. However we
can use this construction to find an Eulerian edge cut when one exists, in polynomial
time. (The existence of an Eulerian edge cut can be tested by the matrix-tree theorem
but it is not clear how to use that information to find one.)
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2 Elementary Methods

We begin by some explorations of the number of spanning trees that do not require
much in the way of algebra. We letmandn denote the number of edges and vertices
respectively of a given graphG.

Theorem 1. Let G be Eulerian, with n even. Then G has evenly many spanning
trees.

Proof: We define a graphG′, the vertices of which are the spanning trees ofG,
with two vertices connected by an edge if the corresponding trees differ by aswap
(the deletion of a single edge and its replacement by another edge). Deleting an edge
from a tree partitions the tree into two components, and the possible replacements
are those spanning the gap between the two components. Any tour inG must cross
this gap an even number of times. In particular this is true of any particular Euler
tour, which of course includes the deleted edge itself; the remaining crossings of
this tour are all the possible replacements for the edge. So any edge in any tree is
involved in an odd number of swaps. Sincen is even, any tree has an odd number of
edges and thus the corresponding vertex inG′ has odd total degree. But the number
of odd-degree vertices in any graph is even, soG′ has evenly many vertices andG
has evenly many spanning trees.2

This can be dualized in a certain sense to give a similar result:

Theorem 2. Let G be bipartite, with m + n even. Then G has evenly many
spanning trees.

Proof: We define the same auxiliary graphG′. For any treeT in G, any edge not
in T induces a unique cycle with the edges ofT which (by bipartiteness) has even
length. The swaps involving a given edge are exactly those in which an edge in this
cycle is deleted, so any edge not inT is involved in an odd number of swaps. By
the assumption thatm+ n is even, there is an odd number of edges not in any tree,
so the total degree of each vertex inG′ is odd. The proof follows as before.2

3 The Jacobian of a Graph

According to Dieudonn´e, “it has been said that when you do not quite understand
the properties of new mathematical objects, you should try to put a group structure
on them. This seems like a whim, but in fact it has more than once succeeded.” [5]
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The objects I am interested in are spanning trees; however it is far from obvious
that there is any natural way of giving them a group structure. We now describe the
method of Bacher et al. [1], which at least finds a group having the same order as
the number of spanning trees in the graph. With this construction, we may not be
able to study individual spanning trees, but we can get a handle on the total number
of them.

Given an undirected graphG, we form a directed graph by orienting its edges
arbitrarily. ApreflowonG is then an assignment of real-valued flow values to each
oriented edge; aflow is a preflow with the property that the total incoming flow
equals the total outgoing flow at each vertex. Bacher, de la Harpe, and Nagnibeda [1]
interpret the set of all preflows as a vector space, with a dot product of two preflows
formed by multiplying the two flow values on each edge and summing the results.
The set of all flows is then a linear subspace of this vector space, and the set of all
integer-valuedflows forms alattice (discrete full-dimensional subgroup)3(G) in
this subspace. Thedual lattice3#(G) consists of the fractional flows having the
property that their dot products with all integer flows are integers. For instance, in a
cycleCk, any integer flow sends some integeri units of flow around the cycle, and
the dot product of this flow with a fractional flow sendingj/k flow units around the
cycle would be the integeri j . So these fractional flows are members of3#(G). It is
clear that none of these spaces depends on the orientation ofG (actually, following
Serre, Bacher et al. use the directed graph with both orientations of each edge, and
require that the flows in each direction are negations of each other).

Bacher, de la Harpe, and Nagnibeda then form a finite Abelian group, the
Jacobianof G, by taking the quotient of these two lattices. Miraculously, the order
of this group (the number of its elements) is the same as the number of spanning
trees ofG. (Both quantities can be computed as a certain determinant of a matrix
derived fromG; the tree side of this equality is the matrix-tree theorem.)

Theorem 3 (Bacher, de la Harpe, and Nagnibeda).For any graph G, 3(G) is a
normal subgroup of 3#(G), and the quotient J (G) = 3#(G)/3(G) is a finite
Abelian group with order κ(G) equal to the number of spanning trees of G.

We will use this result to test the divisibility properties ofκ(G) by finding
elements of the appropriate orders inJ (G). From now on, we will not refer to
spanning trees at all, except via the quantityκ(G).
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4 Divisibility from Cuts

We now prove that information from the cuts of a graph can be used to find divisors
of κ(G). The method is to construct a preflow from the cut that, if it were a flow,
would correspond to an element of the appropriate order inJ (G). By adjusting the
preflow by integer amounts on the edges of a spanning tree ofG, we get a flow with
the same behavior and hence a divisor ofκ(G). Note that Bacher et al. define a
similar process for transforming preflows into flows, that is more canonical in that
it does not require us to specify a spanning tree (it is just the orthogonal projection
in the corresponding vector spaces). However their process does not preserve the
fractional values of the preflow and is unsuitable for our purposes.

Theorem 4. Let C be an edge cut subgraph of a graph G. Then the gcd of vertex
degrees in C divides κ(G).

Proof: Let U andV be the vertex sets on each side of the cut, and letg denote the
gcd of vertex degrees inC. Form a preflow by assigning each edge inC a flow value
of 1/g in the direction fromU to V . This is not a flow, but theexcess(difference
between incoming and outgoing flow) at each vertex is an integer. By adjusting
the preflow by integer amounts on the edges of a spanning tree ofG, one can form
a flow F in which each edge inC is given a value 1/g plus an integer, and each
remaining edge is given an integer value.

We now show thatF is in 3#(G). In other words, the dot product ofF with
any integer flow is an integer. Since any integer flow can be reduced to a sum of
cycles, we need only prove that the dot product ofF with any cycle is zero. But
any cycle must cross fromU to V exactly the same number of times as it crosses
from V to U , so the 1/g fractions of flow inF cancel in the dot product.

ThusF corresponds to an element inJ (G), which clearly has orderg sinceg
timesF is an integer flow (in3(G)) while any smaller multuple ofF has non-integer
flow values on the edges ofC. 2

We can also deduce divisibility from cycles in Eulerian graphs, as a partial dual
to the above theorem. (More precisely, it is dual to the case of Theorem 4 in which
C = G and soG is bipartite.)

Theorem 5. Let G be Eulerian. Then the gcd of cycle lengths in G divides κ(G).

Proof: Let g denote the gcd of cycle lengths inG. We send 1/g units of flow
around an Eulerian cycle ofG. This flow has integer dot product with any cycle, and
hence with any integer flow inG, so it is an element of3#(G) It clearly corresponds
to an element of orderg in J (G). 2
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The following is a special case of both of these theorems.

Corollary 1. Any bipartite Eulerian graph has an even number of spanning trees.

In this connection, it is curious to note that bipartiteness and Eulerianness are
planar duals of each other, so the property of being bipartite Eulerian is self-dual.
Also, a graph is bipartite if and only if every edge is in an odd number of bonds,
and Eulerian if and only if every edge is in an odd number of cycles [8].

5 Cuts from Parity

Theorem 4 tells us that a cut with certain properties gives rise to a divisor ofκ(G).
The reverse is not true in general; for instance the triangle (for whichκ(G) = 3)
has no cut with vertex degree gcd more than one. However we can find a converse
for the case when this gcd is two. In this case, we are looking forEulerian cuts,
that is, cuts that form subgraphs in which all vertex degrees are even. (We do not
constrain the cut edges to form a connected subgraph, so the cut may not actually
have an Euler tour.)

Theorem 6. Graph G has an Eulerian edge cut if and only if κ(G) is even.

Proof: In one direction, Theorem 4 tells us that anyG with an Eulerian cut has
κ(G) even. In the other direction, ifκ(G) = |J (G)| is even,J(G) must have an
elemente of order two. Then clearly,e corresponds to a family of fractional flows
in which all flow values are integers or half-integers, and some nonempty set of
flow values are half-integers. LetS be the edges with half-integer flow values in
some flowe′ corresponding toe. ThenSmust have even vertex degrees in order to
satisfly the flow constraints. We now show thatS is an edge cut inG.

Choose some vertexv ∈ G, and form two vertex sets: setA consists of those
vertices that can be connected tov by a path using an odd number of edges inS,
and setB consists of those vertices that can be connected tov by a path using an
even number of edges inS. We can assume without loss of generality thatG is
connected, soA andB together coverG. Further, no vertex can be in both sets, for
by combining the corresponding two paths we could get a cycle (not necessarily
simple) inG involving an odd number of edges ofS. Sending one unit of flow around
this cycle would give a flow having a half-integer dot product withe′, contradicting
the assumption thate′ is in3#(G). ThusA andB are disjoint. Each edge inS is
itself a path (with an odd number of edges inS) and so connects one vertex inA
with one inB). Further, each other edge inG is a path with evenly many edges inS
and so does not cross fromA to B. ThusSmust be the cut consisting of the edges
connectingA andB. 2
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From this we can deduce the presence of Eulerian cuts in graphs for which we
know the number of spanning trees to be even, even though there may be no obvious
construction of an explicit Eulerian cut.

Corollary 2. Any Eulerian graph with n even, and any bipartite graph with m+ n
even, has an Eulerian cut.

6 Finding Eulerian cuts

Because of Theorem 6, we can test whether a graph has an Eulerian edge cut in
polynomial time, by using the matrix-tree theorem to count the spanning trees in
the graph. However it is not clear how to use this information to find such a cut.
Instead we can find an Eulerian cut more directly, by interpreting the constraints
defining the (fractional part of) the corresponding fractional flow as being a system
of linear equations over the finite fieldGF(2).

Theorem 7. We can find an Eulerian edge cut in any graph that has one, in poly-
nomial time.

Proof: We define a system of variables and equations inGF(2), one variable per
edge ofG. We create two classes of equations, one enforcing the condition that
the total parity of edge variables at each vertex ofG is even. The other class of
equations enforces, for each cycle in a cycle basis ofG, the condition that the parity
of edge variables for each edge of the cycle is even. There arem+ 1 equations
in m unknowns, but we can ignore one of the vertex parity equations since it is a
consequence of then− 1 others. The result is just a system ofm linear equations
in m unknowns, which we can solve (if a solution exists) in polynomial time.

Then ifG has an Eulerian edge cut, this system of equations has a solution found
by setting the variables corresponding to cut edges to one and the other variables
to zero. Conversely, if the equations have a solution, one can find a preflow with
flow values 1/2 on edges corresponding to the one values of the solution and integer
values elsewhere; the vertex parity constraints cause the excess at each vertex to be
an integer, so the technique used in Theorem 4 of adjusting by integer flow amounts
on spanning tree edges can be used to find a flowf with half-integer flow amounts
in the same places. Then since each integer flow inG is a sum of cycles in the
cycle basis, the cycle basis constraints causef to be in3#(G), and the proof of
Theorem 6 shows that the half-integer-flow edges inf form an Eulerian edge cut.
2
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