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ABSTRACT

We describe a synopsis structure, the Difference Digest, that allows
two nodes to compute the elements belonging to the set difference
in a single round with communication overhead proportional to the
size of the difference times the logarithm of the keyspace. While
set reconciliation can be done efficiently using logs, logs require
overhead for every update and scale poorly when multiple users
are to be reconciled. By contrast, our abstraction assumes no prior
context and is useful in networking and distributed systems appli-
cations such as trading blocks in a peer-to-peer network, and syn-
chronizing link-state databases after a partition.

Our basic set-reconciliation method has a similarity with the
peeling algorithm used in Tornado codes [6], which is not surpris-
ing, as there is an intimate connection between set difference and
coding. Beyond set reconciliation, an essential component in our
Difference Digest is a new estimator for the size of the set differ-
ence that outperforms min-wise sketches [3] for small set differ-
ences.

Our experiments show that the Difference Digest is more effi-
cient than prior approaches such as Approximate Reconciliation
Trees [5] and Characteristic Polynomial Interpolation [17]. We
use Difference Digests to implement a generic KeyDiff service in
Linux that runs over TCP and returns the sets of keys that differ
between machines.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; E.4 [Coding and Information Theory]:

General Terms

Algorithms, Design, Experimentation

1. INTRODUCTION
Two common tasks in networking and distributed systems are

reconciliation and deduplication. In reconciliation, two hosts each
have a set of keys and each seeks to obtain the union of the two sets.
The sets could be file blocks in a Peer-to-Peer (P2P) system or link
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state packet identifiers in a routing protocol. In deduplication, on
the other hand, two hosts each have a set of keys, and the task is
to identify the keys in the intersection so that duplicate data can be
deleted and replaced by pointers [16]. Deduplication is a thriving
industry: for example, Data Domain [1, 21] pioneered the use of
deduplication to improve the efficiency of backups.

Both reconciliation and deduplication can be abstracted as the
problem of efficiently computing the set difference between two
sets stored at two nodes across a communication link. The set dif-
ference is the set of keys that are in one set but not the other. In
reconciliation, the difference is used to compute the set union; in
deduplication, it is used to compute the intersection. Efficiency is
measured primarily by the bandwidth used (important when the two
nodes are connected by a wide-area or mobile link), the latency in
round-trip delays, and the computation used at the two hosts. We
are particularly interested in optimizing the case when the set dif-
ference is small (e.g., the two nodes have almost the same set of
routing updates to reconcile, or the two nodes have a large amount
of duplicate data blocks) and when there is no prior communication
or context between the two nodes.

For example, suppose two users, each with a large collection of
songs on their phones, meet and wish to synchronize their libraries.
They could do so by exchanging lists of all of their songs; however,
the amount of data transferred would be proportional to the total
number of songs they have rather than the size of the difference. An
often-used alternative is to maintain a time-stamped log of updates
together with a record of the time that the users last communicated.
When they communicate again, A can send B all of the updates
since their last communication, and vice versa. Fundamentally, the
use of logs requires prior context, which we seek to avoid.

Logs have more specific disadvantages as well. First, the log-
ging system must be integrated with any system that can change
user data, potentially requiring system design changes. Second, if
reconciliation events are rare, the added overhead to update a log
each time user data changes may not be justified. This is partic-
ularly problematic for "hot" data items that are written often and
may be in the log multiple times. While this redundancy can be
avoided using a hash table, this requires further overhead. Third, a
log has to be maintained for every other user this user may wish to
synchronize with. Further, two users A and B may have received
the same update from a third user C, leading to redundant commu-
nication. Multi-party synchronization is common in P2P systems
and in cases where users have multiple data repositories, such as
their phone, their desktop, and in the cloud. Finally, logs require
stable storage and synchronized time which are often unavailable
on networking devices such as routers.

To solve the set-difference problem efficiently without the use
of logs or other prior context, we devise a data structure called a



Difference Digest, which computes the set difference with com-
munication proportional to the size of the difference between the
sets being compared. We implement and evaluate a simple key-
synchronization service based on Difference Digests and suggest
how it can improve the performance in several contexts. Settings in
which Difference Digests may be applied include:

• Peer-to-peer: Peer A and B may receive blocks of a file from
other peers and may wish to receive only missing blocks
from each other.

• Partition healing: When a link-state network partitions, routers
in each partition may each obtain some new link-state pack-
ets. When the partition heals by a link joining router A and
B, both A and B only want to exchange new or changed
link-state packets.

• Deduplication: If backups are done in the cloud, when a new
file is written, the system should only transmit the chunks of
the file that are not already in the cloud.

• Synchronizing parallel activations: A search engine may use
two independent crawlers with different techniques to har-
vest URLs but they may have very few URLs that are dif-
ferent. In general, this situation arises when multiple actors
in a distributed system are performing similar functions for
efficiency or redundancy.

• Opportunistic ad hoc networks: These are often character-
ized by low bandwidth and intermittent connectivity to other
peers. Examples include rescue situations and military vehi-
cles that wish to synchronize data when they are in range.

The main contributions of the paper are as follows:

• IBF Subtraction: The first component of the Difference Di-
gest is an Invertible Bloom Filter or IBF [9, 13]. IBF’s were
previously used [9] for straggler detection at a single node, to
identify items that were inserted and not removed in a stream.
We adapt Invertible Bloom Filters for set reconciliation by
defining a new subtraction operator on whole IBF’s, as op-
posed to individual item removal.

• Strata Estimator: Invertible Bloom Filters need to be sized
appropriately to be efficiently used for set differences. Thus
a second crucial component of the Difference Digest is a new
Strata Estimator method for estimating the size of the differ-

ence. We show that this estimator is much more accurate for
small set differences (as is common in the final stages of a file
dissemination in a P2P network) than Min-Wise Sketches [3,
4] or random projections [14]. Besides being an integral part
of the Difference Digest, our Strata Estimator can be used
independently to find, for example, which of many peers is
most likely to have a missing block.

• KeyDiff Prototype: We describe a Linux prototype of a generic
KeyDiff service based on Difference Digests that applica-
tions can use to synchronize objects of any kind.

• Performance Characterization: The overall system perfor-
mance of Difference Digests is sensitive to many parame-
ters, such as the size of the difference, the bandwidth avail-
able compared to the computation, and the ability to do pre-
computation. We characterize the parameter regimes in which
Difference Digests outperform earlier approaches, such as
MinWise hashes, Characteristic Polynomial Interpolation [17],
and Approximate Reconciliation Trees [5].

Going forward, we discuss related work in Section 2. We present
our algorithms and analysis for the Invertible Bloom Filter and
Strata Estimator in Sections 3 & 4. We describe our KeyDiff proto-
type in Section 5, evaluate our structures in Section 6 and conclude
in Section 7.

2. MODEL AND RELATED WORK
We start with a simple model of set reconciliation. For two sets

SA, SB each containing elements from a universe, U = [0, u),
we want to compute the set difference, DA−B and DB−A, where
DA−B = SA − SB such that for all s ∈ DA−B , s ∈ SA and
s /∈ SB . Likewise, DB−A = SB−SA. We say that D = DA−B∪
DB−A and d = |D|. Note that since DA−B ∩ DB−A = ∅, d =
|DA−B | + |DB−A|. We assume that SA and SB are stored at
two distinct hosts and attempt to compute the set difference with
minimal communication, computation, storage, and latency.

Several prior algorithms for computing set differences have been
proposed. The simplest consists of hosts exchanging lists, each
containing the identifiers for all elements in their sets, then scan-
ning the lists to remove common elements. This requires O(|SA|+
|SB |) communication and O(|SA| × |SB |) time. The run time can
be improved to O(|SA| + |SB |) by inserting one list into a hash
table, then querying the table with the elements of the second list.

The communication overhead can be reduced by a constant fac-
tor by exchanging Bloom filters [2] containing the elements of each
list. Once in possession of the remote Bloom Filter, each host can
query the filter to identify which elements are common. Funda-
mentally, a Bloom Filter still requires communication proportional
to the size of the sets (and not the difference) and incurs the risk of
false positives. The time cost for this procedure is O(|SA|+ |SB |).
The Bloom filter approach was extended using Approximate Rec-
onciliation Trees [5], which requires O(d log(|SB |)) recovery time,
and O(|SB |) space. However, given SA and an Approximate Rec-
onciliation Tree for SB , a host can only compute DA−B , i.e., the
elements unique to SA.

An exact approach to the set-difference problem was proposed
by Minksy et al. [17]. In this approach, each set is encoded us-
ing a linear transformation similar to Reed-Solomon coding. This
approach has the advantage of O(d) communication overhead, but
requires O(d3) time to decode the difference using Gaussian elim-
ination; asymptotically faster decoding algorithms are known, but
their practicality remains unclear. Additionally, whereas our Strata
Estimator gives an accurate one-shot estimate of the size of the dif-
ference prior to encoding the difference itself, Minsky et al. use an
iterative doubling protocol for estimating the size of the difference,
with a non-constant number of rounds of communication. Both the
decoding time and the number of communication rounds (latency)
of their system are unfavorable compared to ours.

Estimating Set-Difference Size. A critical sub-problem is an
initial estimation of the size of the set difference. This can be esti-
mated with constant overhead by comparing a random sample [14]
from each set, but accuracy quickly deteriorates when the d is small
relative to the size of the sets.

Min-wise sketches [3, 4] can be used to estimate the set similar-
ity (r = |SA∩SB |

|SA∪SB |
). Min-wise sketches work by selecting k random

hash functions π1, . . . , πk which permute elements within U. Let
min(πi(S)) be the smallest value produced by πi when run on the
elements of S. Then, a Min-wise sketch consists of the k values
min(π1(S)), . . . , min(πk(S)). For two Min-wise sketches, MA

and MB , containing the elements of SA and SB , respectively, the
set similarity is estimated by the of number of hash function return-
ing the same minimum value. If SA and SB have a set-similarity r,
then we expect that the number of matching cells in MA and MB



will be m = rk. Inversely, given that m cells of MA and MB do
match, we can estimate that r = m

k
. Given the set-similarity, we

can estimate the difference as d = 1−r
1+r

(|SA| + |SB |).
As with random sampling, the accuracy of the Min-wise esti-

mator diminishes for smaller values of k and for relatively small
set differences. Similarly, Cormode et al. [8] provide a method for
dynamic sampling from a data stream to estimate set sizes using a
hierarchy of samples, which include summations and counts. Like-
wise, Cormode and Muthukrishnan [7] and Schweller et al. [20]
describe sketch-based methods for finding large differences in traf-
fic flows. (See also [19].)

An alternative approach to estimating set-difference size is pro-
vided by [11], whose algorithm can more generally estimate the
difference between two functions with communication complex-
ity very similar to our Strata Estimator. As with our results, their
method has a small multiplicative error even when the difference is
small. However, it uses algebraic computations over finite fields,
whereas ours involves only simple, and more practical, hashing-
based data structures.

While efficiency of set difference estimation for small differ-
ences may seem like a minor theoretical detail, it can be important
in many contexts. Consider, for instance, the endgame of a P2P file
transfer. Imagine that a BitTorrent node has 100 peers, and is miss-
ing only the last block of a file. Min-wise or random samples from
the 100 peers will not identify the right peer if all peers also have
nearly finished downloading (small set difference). On the other
hand, sending a Bloom Filter takes bandwidth proportional to the
number of blocks in file, which can be large. We describe our new
estimator in Section 3.2.

3. ALGORITHMS
In this section, we describe the two components of the Differ-

ence Digest: an Invertible Bloom Filter (IBF) and a Strata Estima-
tor. Our first innovation is taking the existing IBF [9, 13] and in-
troducing a subtraction operator in Section 3.1 to compute DA−B

and DB−A using a single round of communication of size O(d).
Encoding a set S into an IBF requires O(|S|) time, but decoding
to recover DA−B and DB−A requires only O(d) time. Our sec-
ond key innovation is a way of composing several sampled IBF’s
of fixed size into a new Strata Estimator which can effectively esti-
mate the size of the set difference using O(log(|U|)) space.

3.1 Invertible Bloom Filter
We now describe the Invertible Bloom Filter (IBF), which can si-

multaneously calculate DA−B and DB−A using O(d) space. This
data structure encodes sets in a fashion that is similar in spirit to
Tornado codes’ construction [6], in that it randomly combines ele-
ments using the XOR function. We will show later that this simi-
larity is not surprising as there is a reduction between set difference
and coding across certain channels. For now, note that whereas Tor-
nado codes are for a fixed set, IBF’s are dynamic and, as we show,
even allow for fast set subtraction operations. Likewise, Tornado
codes rely on Reed-Solomon codes to handle possible encoding
errors, whereas IBF’s succeed with high probability without rely-
ing on an inefficient fallback computation. Finally, our encoding is
much simpler than Tornado codes because we use a simple uniform
random graph for encoding while Tornado codes use more complex
random graphs with non-uniform degree distributions.

We start with some intuition. An IBF is named because it is sim-
ilar to a standard Bloom Filter—except that it can, with the right
settings, be inverted to yield some of the elements that were in-
serted. Recall that in a counting Bloom Filter [10], when a key
K is inserted, K is hashed into several locations of an array and

a count, count, is incremented in each hashed location. Deletion
of K is similar except that count is decremented. A check for
whether K exists in the filter returns true if all locations that K
hashes to have non-zero count values.

An IBF has another crucial field in each cell (array location) be-
sides the count. This is the idSum: the XOR of all key IDs that
hash into that cell. Now imagine that two peers, Peer 1 and Peer 2,
doing set reconciliation on a large file of a million blocks indepen-
dently compute IBF’s, B1 and B2, each with 100 cells, by inserting
an ID for each block they possess. Note that a standard Bloom fil-
ter would have a size of several million bits to effectively answer
whether a particular key is contained in the structure. Observe also
that if each ID is hashed to 3 cells, an average of 30,000 keys hash
onto each cell. Thus, each count will be large and the idSum in
each cell will be the XOR of a large number of IDs. What can we
do with such a small number of cells and such a large number of
collisions?

Assume that Peer 1 sends B1 to Peer 2, an operation only requir-
ing bandwidth to send around 200 fields (100 cells × 2 fields/cell).
Peer 2 then proceeds to “subtract” its IBF B2 from B1. It does this
cell by cell, by subtracting the count and XORing the idSum in
the corresponding cells of the two IBF’s.

Intuitively, if the two peers’ blocks sets are almost the same (say,
25 different blocks out of a million blocks), all the common IDs
that hash onto the same cell will be cancelled from idSum, leaving
only the sum of the unique IDs (those that belong to one peer and
not the other) in the idSum of each cell. This follows assuming that
Peer 1 and Peer 2 use the same hash function so that any common
element, c, is hashed to the same cells in both B1 and B2. When
we XOR the idSum in these cells, c will disappear because it is
XORed twice.

In essense, randomly hashing keys to, say three, cells, is identical
to randomly throwing three balls into the same 100 bins for each of
the 25 block ID’s. Further, we will prove that if there are sufficient
cells, there is a high probability that at least one cell is “pure” in
that it contains only a single element by itself.

A “pure” cell signals its purity by having its count field equal
to 1, and, in that case, the idSum field yields the ID of one ele-
ment in the set difference. We delete this element from all cells it
has hashed to in the difference IBF by the appropriate subtractions;
this, in turn, may free up more pure elements that it can in turn be
decoded, to ultimately yield all the elements in the set difference.

The reader will quickly see subtleties. First, a numerical count
value of 1 is necessary but not sufficient for purity. For example, if
we have a cell in one IBF with two keys X and Y and the corre-
sponding cell in the second IBF has key Z, then when we subtract
we will get a count of 1, but idSum will have the XOR of X, Y
and Z. More devious errors can occur if four IDs W, X, Y, Z sat-
isfy W +X = Y +Z. To reduce the likelihood of decoding errors
to an arbitrarily small value, IBF’s use a third field in each cell as
a checksum: the XOR of the hashes of all IDs that hash into a cell,
but using a different hash function Hc than that used to determine
the cell indices. If an element is indeed pure, then the hash sum
should be Hc(idSum ).

A second subtlety occurs if Peer 2 has an element that Peer 1
does not. Could the subtraction B1 − B2 produce negative values
for idSum and count? Indeed, it can and the algorithm deals with
this: for example, in idSum by using XOR instead of addition and
subtraction, and in recognizing purity by count values of 1 or -1.
While IBF’s were introduced earlier [9, 13], whole IBF subtraction
is new to this paper; hence, negative counts did not arise in [9, 13].

Figure 1 summarizes the encoding of a set S and Figure 2 gives
a small example of synchronizing the sets at Peer 1 (who has keys



S = <s1, s2, s3, ... >

...Hk
1 Hk

kHk
2

B:

idSum += s1

hashSum += Hc(s1)

count++
B[j]:

Figure 1: IBF Encode. Hash functions are used to map each

element of the set to k cells of the IBF table.

V, W, X and Y ) and Peer 2 (who has keys W, Y and Z). Each
element is hashed into 3 locations: for example, X is hashed into
buckets 1, 2 and 3. While X is by itself in bucket 3, after sub-
traction Z also enters, causing the count field to (incorrectly) be
zero. Fortunately, after subtraction, bucket 4 becomes pure as V
is by itself. Note that bucket 5 is also pure with Z by itself, and
is signaled by a count of -1. Decoding proceeds by first deleting
either V or Z, and then iterating until no pure cells remain.

Into how many cells should each element be hashed? We refer
to this parameter as the hash_count. If the hash_count is
too small, say 1, then there will be a high probability of finding
pure cells initially, but once a pure element has been recorded and
removed there are no other cells from which to remove it. Thus,
two or more keys that have been hashed into the same cell cannot
be decoded. On the other hand, if hash_count is too big, it
is unlikely that there will be a pure element by itself to begin the
process. We will show that hash_count values of 3 or 4 work
well in practice.

Encode. First, assume that we have an oracle which, given SA

and SB , returns the size of the set difference, d. We will describe
the construction of such an oracle in Section 3.2. We allocate an
IBF, which consists of a table B with n = αd cells, where α ≥ 1.
Each cell of the table contains three fields (idSum, hashSum and
count) all initialized to zero.

Additionally, hosts agree on two hash functions, Hc and Hk, that
map elements in U uniformly into the space [0, h), where h ≤ u.
Additionally, they agree on a value, k, called the hash_count
which is the number of times each element is hashed. The algo-
rithm for encoding a set S into an IBF is given in Algorithm 1 and
illustrated in Figure 1. For each element in S, we generate k dis-
tinct random indices into B. To do this we recursively call Hk()
with an initial input of si and take the modulus by n until k dis-
tinct indices have been generated. More simply, an implementation
could choose to use k independent hash functions. Regardless, for
each index j returned, we XOR si into B[j].idSum, XOR Hc(si)
into B[j].hashSum, and increment B[j].count.

Algorithm 1 IBF Encode

for si ∈ S do

for j in HashToDistinctIndices(si, k, n) do

B[j].idSum = B[j].idSum ⊕si

B[j].hashSum = B[j].hashSum ⊕Hc(si)
B[j].count = B[j].count + 1

Subtract. For each index i in two IBF’s, B1 and B2, we subtract
B2[i] from B1[i]. Subtraction can be done in place by writing the
resulting values back to B1, or non-destructively by writing values
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Figure 2: IBF Subtract. IBF B3 results from subtracting IBF

B2 from IBF B1 cell by cell. To subtract cells, the idSum and

hashSum fields are XOR’ed, and count fields are subtracted.

The elements common to B1 and B2 (shown shaded) are can-

celled during the XOR operation.

to a new IBF of the same size. We present a non-destructive version
in Algorithm 2. Intuitively, this operation eliminates common ele-
ments from the resulting IBF as they cancel from the idSum and
hashSum fields as shown in Figure 2.

Algorithm 2 IBF Subtract (B3 = B1 − B2)

for i in 0, . . . , n − 1 do

B3[i].idSum = B1[i].idSum ⊕B2[i].idSum
B3[i].hashSum = B1[i].hashSum ⊕B2[i].hashSum
B3[i].count = B1[i].count- B2[i].count

Decode. We have seen that to decode an IBF, we must recover
“pure” cells from the IBF’s table. Pure cells are those whose idSum
matches the value of an element s in the set difference. In order to
verify that a cell is pure, it must satisfy two conditions: the count
field must be either 1 or -1, and the hashSum field must equal
Hc(idSum). For example, if a cell is pure, then the sign of the
count field is used to determine which set s is unique to. If the
IBF is the result of subtracting the IBF for SB from the IBF for
SA, then a positive count indicates s ∈ DA−B , while a negative
count indicates s ∈ DB−A.

Decoding begins by scanning the table and creating a list of
all pure cells. For each pure cell in the list, we add the value
s =idSum to the appropriate output set (DA−B or DB−A) and re-
move s from the table. The process of removal is similar to that of
insertion. We compute the list of distinct indices where s is present,
then decrement count and XOR the idSum and hashSum by s
and Hc(s), respectively. If any of these cells becomes pure after s
is removed, we add its index to the list of pure cells.

Decoding continues until no indices remain in the list of pure
cells. At this point, if all cells in the table have been cleared (i.e. all



Algorithm 3 IBF Decode (B → DA−B , DB−A)

for i = 0 to n − 1 do

if B[i] is pure then

Add i to pureList
while pureList 6= ∅ do

i=pureList.dequeue()
if B[i] is not pure then

continue
s=B[i].idSum
c=B[i].count
if c > 0 then

add s to DA−B

else

add s to DB−A

for j in DistinctIndices(s, k, n) do

B[j].idSum = B[j].idSum ⊕s
B[j].hashSum = B[j].hashSum ⊕Hc(s)
B[j].count = B[j].count- c

for i = 0 to n − 1 do

if B[i].idSum 6= 0 OR B[i].hashSum 6= 0 B[i].count 6= 0
then

return FAIL
return SUCCESS

fields have value equal to zero), then the decoding process has suc-
cessfully recovered all elements in the set difference. Otherwise,
some number of elements remain encoded in the table, but insuffi-
cient information is available to recover them. The pseudocode is
given in Algorithm 3 and illustrated in Figure 3.

3.2 Strata Estimator
To use an IBF effectively, we must determine the approximate

size of the set difference, d, since approximately 1.5d cells are re-
quired to successfully decode the IBF. We now show how to es-
timate d using O(log(u)) data words, where u is the size of the
universe of set values. If the set difference is large, estimators such
as random samples [14] and Min-wise Hashing [3, 4] will work
well. However, we desire an estimator that can accurately estimate
very small differences (say 10) even when the set sizes are large
(say million).

Flajolet and Martin (FM) [12] give an elegant way to estimate
set sizes (not differences) using log(u) bits. Each bit i in the esti-
mator is the result of sampling the set with probability 1/2i; bit i
is set to 1, if at least 1 element is sampled when sampling with this
probability. Intuitively, if there are 24 = 16 distinct values in the
set, then when sampling with probability 1/16, it is likely that bit
4 will be set. Thus the estimator returns 2I as the set size, where I
is the highest strata (i.e., bit) such that bit I is set.

While FM data structures are useful in estimating the size of two
sets, they do not help in estimating the size of the difference as
they contain no information that can be used to approximate which
elements are common. However, we can sample the set difference

using the same technique as FM. Given that IBF’s can compute set
differences with small space, we use a hierarchy of IBF’s as strata.
Thus Peer A computes a logarithmic number of IBF’s (strata), each
of some small fixed size, say 80 cells.

Compared to the FM estimator for set sizes, this is very expen-
sive. Using 32 strata of 80 cells is around 32 Kbytes but is the only
estimator we know that is accurate at very small set differences and
yet can handle set difference sizes up to 232. In practice, we build
a lower overhead composite estimator that eliminates higher strata
and replaces them with a MinWise estimator, which is more accu-

rate for large differences. Note that 32 Kbytes is still inexpensive
when compared to the overhead of naively sending a million keys.

Proceeding formally, we stratify U into L = log(u) partitions,
P0, . . . , PL, such that the range of the ith partition covers 1/2i+1

of U. For a set, S, we encode the elements of S that fall into par-
tition Pi into the ith IBF of the Strata Estimator. Partitioning U

can be easily accomplished by assigning each element to the par-
tition corresponding to the number of trailing zeros in its binary
representation.

A host then transmits the Strata Estimator for its set to its remote
peer. For each IBF in the Strata Estimator, beginning at stratum
L and progressing toward stratum 0, the receiving host subtracts
the corresponding remote IBF from the local IBF, then attempts to
decode. For each successful decoding, the host adds the number
of recovered elements to a counter. If the pair of IBF’s at index i
fails to decode, then we estimate that the size of the set difference
is the value of the counter (the total number of elements recovered)
scaled by 2i+1. We give the pseudocode in Algorithms 4 and 5.

We originally designed the strata estimator by starting with stra-
tum 0 and finding the first value of i ≥ 0 which decoded success-
fully, following the Flajolet-Martin strategy and scaling the amount
recovered by 2i. However, the estimator in the pseudocode is much
better because it uses information in all strata that decode success-
fully and not just the lowest such strata.

In the description, we assumed that the elements in SA and SB

were uniformly distributed throughout U. If this condition does not
hold, the partitions formed by counting the number of low-order
zero bits may skew the size of our partitions such that strata i does
not hold roughly |S|/2i+1. This can be easily solved by choosing
some hash function, Hz , and inserting each element, s, into the IBF
corresponding to the number of trailing zeros in Hz(s).

Algorithm 4 Strata Estimator Encode using hash function Hz

for s ∈ S do

i = Number of trailing zeros in Hz(s).
Insert s into the i-th IBF

Algorithm 5 Strata Estimator Decode

count = 0
for i = log(u) down to −1 do

if i < 0 or IBF1[i] − IBF2[i] does not decode then

return 2i+1× count
count += number of elements in IBF1[i] − IBF2[i]

The obvious way to combine the Strata Estimator and IBF is to
have node A request an estimator from node B, use it to estimate
d, then request an IBF of size O(d). This would take two rounds
or at least two round trip delays. A simple trick is to instead have
A initiate the process by sending its own estimator to B. After B
receives the Strata Estimator from A, it estimates d and replies with
an IBF, resulting in one round to compute the set difference.

4. ANALYSIS
In this section we review and prove theoretical results concerning

the efficiency of IBF’s and our stratified sampling scheme.

THEOREM 1. Let S and T be disjoint sets with d total elements,

and let B be an invertible Bloom filter with C = (k + 1)d cells,

where k = hash_count is the number of random hash functions in

B, and with at least Ω(k log d) bits in each hashSum field. Suppose

that (starting from a Bloom filter representing the empty set) each
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Figure 3: IBF Decode. We first scan the IBF for pure cells and add these indices (3&4) to the Pure list (Step 1). In Step 2, we dequeue

the first index from the Pure list, then add the value of the idSum to the appropriate output set (V → DA−B). We then remove V

from the IBF by using the k hash functions to find where it was inserted during encoding and subtracting it from these cells. Finally,

if any of these cells have now become pure, we add them to the Pure list (Step 4). We repeat Steps 2 through 4 until no items remain

in the Pure list.

item in S is inserted into B, and each item in T is deleted from B.

Then with probability at most O(d−k) the IBFDecode operation

will fail to correctly recover S and T .

PROOF. The proof follows immediately from the previous anal-
ysis for invertible Bloom filters (e.g., see [13]).

We also have the following.

COROLLARY 1. Let S and T be two sets having at most d ele-

ments in their symmetric difference, and let BS and BT be invert-

ible Bloom filters, both with the parameters as stated in Theorem 1,

with BS representing the set S and BT representing the set T .

Then with probability at most O(d−k) we will fail to recover S
and T by applying the IBFSubtract operation to BS and BT and

then applying the IBFDecode operation to the resulting invertible

Bloom filter.

PROOF. Define S′ = S − T and T ′ = T − S. Then S′ and T ′

are disjoint sets of total size at most d, as needed by Theorem 1.

The corollary implies that in order to decode an IBF that uses 4
independent hash functions with high probability, then one needs
an overhead of k + 1 = 5. In other words, one has to use 5d cells,
where d is the set difference. Our experiments later, however, show
that an overhead that is somewhat less than 2 suffices. This gap is
narrowed in [13] leveraging results on finding a 2-core (analogous
to a loop) in random hypergraphs.

Let us next consider the accuracy of our stratified size estimator.
Suppose that a set S has cardinality m, and let i be any natural num-
ber. Then the ith stratum of our strata estimator for S has expected
cardinality m/2i. The following lemma shows that our estimators
will be close to their expectations with high probability.

LEMMA 1. For any s > 1, with probability 1 − 2−s, and for

all j < i, the cardinality of the union of the strata numbered j or

greater is within a multiplicative factor of 1 ± O(
p

s2i/m) of its

expectation.

PROOF. Let Yj be the size of the union of strata numbered j
or greater for j = 0, 1, . . . , i, and let µj be its expectation, that
is, µj = E(Yj) = m/2j . By standard Chernoff bounds (e.g.,
see [18]), for δ > 0,

Pr (Yj > (1 + δ)µj) < e−µjδ2/4

and

Pr (Yj < (1 − δ)µj) < e−µjδ2/4.

By taking δ =
p

4(s + 2)(2i/m) ln 2, which is O(
p

s2i/m), we
have that the probability that a particular Yj is not within a multi-
plicative factor of 1 ± δ of its expectation is at most

2e−µjδ2/4 ≤ 2−(s+1)2i−j

.

Thus, by a union bound, the probability that any Yj is not within a
multiplicative factor of 1 ± δ of its expectation is at most

i
X

j=0

2−(s+1)2i−j

,

which is at most 2−s.

Putting these results together, we have the following:

THEOREM 2. Let ǫ and δ be constants in the interval (0, 1),

and let S and T be two sets whose symmetric difference has car-

dinality d. If we encode the two sets with our strata estimator, in

which each IBF in the estimator has C cells using k hash functions,

where C and k are constants depending only on ǫ and δ, then, with

probability at least 1 − ǫ, it is possible to estimate the size of the

set difference within a factor of 1 ± δ of d.

PROOF. By the same reasoning as in Corollary 1, each IBF at
level i in the estimator is a valid IBF for a sample of the symmetric
difference of S and T in which each element is sampled with prob-
ability 1/2i+1. By Theorem 1, having each IBF be of C = (k+1)g



cells, where k = ⌈log 1/ǫ⌉ and g ≥ 2, then we can decode a set of
g elements with probability at least 1 − ǫ/2.

We first consider the case when d ≤ c2
0δ

−2 log(1/ǫ), where c0 is
the constant in the big-oh of Lemma 1. That is, the size of the sym-
metric difference between S and T is at most a constant depending
only on ǫ and δ. In this case, if we take

g = max
˘

2, ⌈c2
0δ

−2 log(1/ǫ)⌉
¯

and k = ⌈log 1/ǫ⌉, then the level-0 IBF, with C = (k + 1)d
cells, will decode its set with probability at least 1 − ǫ/2, and our
estimator will learn the exact set-theoretic difference between S
and T , without error, with high probability.

Otherwise, let i be such that d/2i ≈ c2
0δ

2/ log(1/ǫ) and let
g = max

˘

2, ⌈c2
0δ

−2 log(1/ǫ)⌉
¯

and k = ⌈log 1/ǫ⌉, as above.
So, with probability 1 − ǫ/2, using an IBF of C = (k + 1)d cells,
we correctly decode the elements in the ith stratum, as noted above.
By Lemma 1 (with s = ⌈log 1/ǫ⌉ + 1), with probability 1 − ǫ/2,
the cardinality of the number of items included in the ith and higher
strata are within a multiplicative factor of 1 ± δ of its expectation.
Thus, with high probability, our estimate for d is within a 1 ± δ
factor of d.

Comparison with Coding: Readers familiar with Tornado codes
will see a remarkable similarity between the decoding procedure
used for Tornado codes and IBF’s. This follows because set recon-
ciliation and coding are equivalent. Assume that we have a system-
atic code that takes a set of keys belonging to a set SA and codes
it using check words C1 through Cn. Assume further that the code
can correct for up to d erasures and/or insertions. Note that Tornado
codes are specified to deal only with erasures not insertions.

Then, to compute set difference A could send the check words
C1 through Cn without sending the "data words" in set SA. When
B receives the check words, B can treat its set SB as the data
words. Then, together with the check words, B can compute SA

and hence the set difference. This will work as long as SB has at
most d erasures or insertions with respect to set SA.

Thus any code that can deal with erasures and insertions can be
used for set difference, and vice versa. A formal statement of this
equivalence can be found in [15]. This equivalence explains why
the existing deterministic set difference scheme, CPI, is analogous
to Reed-Solomon coding. It also explains why IBF’s are analogous
to randomized Tornado codes. While more complicated Tornado-
code like constructions could probably be used for set difference,
the gain in space would be a small constant factor from say 2d to
d + ǫ, the increased complexity is not worthwhile because the real
gain in set reconciliation is going down from O(n) to O(d), where
n is the size of the original sets.

5. THE KEYDIFF SYSTEM
We now describe KeyDiff, a service that allows applications to

compute set differences using Difference Digests. As shown in
Figure 4, the KeyDiff service provides three operations, add, remove,
and diff. Applications can add and remove keys from an instance
of KeyDiff, then query the service to discover the set difference be-
tween any two instances of KeyDiff.

Suppose a developer wants to write a file synchronization appli-
cation. In this case, the application running at each host would map
files to unique keys and add these keys to a local instance of Key-
Diff. To synchronize files, the application would first run KeyDiff’s
diff operation to discover the differences between the set stored
locally and the set stored at a remote host. The application can then
perform the reverse mapping to identify and transfer the files that
differ between the hosts.

KeyDiff

ApplicationApplication

Add( key )

Remove( key )

Diff( loc1, loc2 )

KeyDiff

KeyDiff

ApplicationDiffe
rence Digests

Application Data

Figure 4: KeyDiff computes the set difference between any two

instances and returns this information to the application.

The KeyDiff service is implemented using a client-server model
and is accessed through an API written in C. When a client re-
quests the difference between its local set and the set on a remote
host, KeyDiff opens a TCP connection and sends a request contain-
ing an estimator. The remote KeyDiff instance runs the estimation
algorithm to determine the approximate size of the difference, then
replies with an IBF large enough for the client to decode with high-
probability. All requests and responses between KeyDiff instances
travel over a single TCP connection and the diff operation com-
pletes with only a single round of communication.

KeyDiff provides faster diff operations through the use of pre-
computation. Internally, KeyDiff maintains an estimator structure
that is statically sized and updated online as keys are added and re-
moved. However, computing the IBF requires the approximate size
of the difference, a value that is not know until after the estima-
tion phase. In scenarios where computation is a bottleneck, Key-
Diff can be configured to maintain several IBF’s of pre-determined
sizes online. After the estimation phase, KeyDiff returns the best
pre-computed IBF. Thus, the computational cost of building the
IBF can be amortized across all of the calls to add and remove.

This is reasonable because the cost of incrementally updating
the Strata Estimator and a few IBF’s on key update is small (a few
microseconds) and should be much smaller than the time for the
application to create or store the object corresponding to the key.
For example, if the application is a P2P application and is synchro-
nizing file blocks, the cost to store a new block on disk will be at
least a few milliseconds. We will show in the evaluation that if the
IBF’s are precomputed, then the latency of diff operations can be
100’s of microseconds for small set differences.

6. EVALUATION
Our evaluation seeks to provide guidance for configuring and

predicting the performance of Difference Digests and the KeyDiff
system. We address four questions. First, what are the optimal pa-
rameters for an IBF? (Section 6.1). Second, how should one tune
the Strata Estimator to balance accuracy and overhead? (Section 6.2).
Third, how do IBF’s compare with the existing techniques? (Section 6.3).
Finally, for what range of differences are Difference Digests most
effective compared to the brute-force solution of sending all the
keys? (Section 6.4).

Our evaluation uses a U of all 32-bit values. Hence, we allo-
cate 12 bytes for each IBF cell, with 4 bytes given to each idSum,
hashSum and count field. As input, we created pairs of sets
containing keys from U. The keys in the first set, SA, were chosen
randomly without replacement. We then chose a random subset of
SA and copied it to the second set, SB . We exercised two degrees
of freedom in creating our input sets: the number of keys in SA,
and the size of the difference between SA and SB , which we refer
to as the experiment’s delta. For each experiment we created 100
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Figure 5: Rate of successful IBF decoding with 50 cells and 4

hash functions. The ability to decode an IBF scales with the size

of the set difference, not the size of the sets.

file pairs. As our objective is set reconciliation, we consider an ex-
periment successful only if we are able to successfully determine
all of the elements in the set difference.

6.1 Tuning the IBF
We start by verifying that IBF size scales with the size of the set

difference and not the total set size. To do so, we generated sets
with 100, 1K, 10K, 100K and 1M keys, and deltas between 0 and
50. We then compute the set difference using an IBF with 50 cells.

Figure 5 shows the success rate for recovering the entire set dif-
ference. We see that for deltas up to 25, the IBF decodes completely
with extremely high probability, regardless of set size. At deltas of
45 and 50 the collision rate is so high that no IBF’s are able to
completely decode. The results in Figure 5 confirm that decoding
success is independent of the original set sizes.

Determining IBF size and number of hash functions. Both
the number of IBF cells and hash_count (the number of times an
element is hashed) are critical in determining the rate of successful
decoding. To evaluate the effect of hash_count, we attempted to
decode sets with 100 keys and deltas between 0 and 50 using an IBF
with 50 cells and hash_count’s between 2 and 6. Since the size
of the sets does not influence decoding success, these results are
representative for arbitrarily large sets. We ran this configuration
for 1000 pairs of sets and display our results in Figure 6.

For deltas less than 30, hash_count = 4 decodes 100% of the
time, while higher and lower values show degraded success rates.
Intuitively, lower hash counts do not provide equivalent decode
rates since processing each pure cell only removes a key from a
small number of other cells, limiting the number of new pure cells
that may be discovered. Higher values of hash_count avoid this
problem but may also decrease the odds that there will initially be
a pure cell in the IBF. For deltas greater than 30, hash_count
= 3 provides the highest rate of successful decoding. However, at
smaller deltas, 3 hash functions are less reliable than 4, with ap-
proximately 98% success for deltas from 15 to 25 and 92% at 30.

To avoid failed decodings, we must allocate IBF’s with more
than d cells. We determine appropriate memory overheads (ratio of
IBF’s cells to set-difference size) by using sets containing 100K el-
ements and varying the number of cells in each IBF as a proportion
of the delta. We then compute the memory overhead required for
99% of the IBF’s to successfully decode and plot this in Figure 7.

Deltas below 200 all require at least 50% overhead to completely
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Figure 7: We evaluate sets containing 100K elements and plot

the minimum space overhead (IBF cells/delta) required to com-

pletely recover the set difference with 99% certainty.

decode. However, beyond deltas of 1000, the memory overhead
reaches an asymptote. As before, we see a hash_count of 4 de-
codes consistently with less overhead than 5 or 6, but interestingly,
hash_count = 3 has the lowest memory overhead at all deltas
greater than 200.

6.2 Tuning the Strata Estimator
To efficiently size our IBF, the Strata Estimator provides an es-

timate for d. If the Strata Estimator over-estimates, the subsequent
IBF will be unnecessarily large and waste bandwidth. However, if
the Strata Estimator under-estimates, then the subsequent IBF may
not decode and cost an expensive transmission of a larger IBF. To
prevent this, the values returned by the estimator should be scaled
up so that under-estimation rarely occurs.

In Figure 8, we report the scaling overhead required for var-
ious strata sizes such that 99% of the estimates will be greater
than or equal to the true difference. Based on our findings from
Section 6.1, we focus on Strata Estimators whose fixed-size IBF’s
use a hash_count of 4. We see that the scaling overhead drops
sharply as the number of cells per IBF is increased from 10 to 40,
and reaches a point of diminishing returns after 80 cells. With
80 cells per stratum, any estimate returned by a Strata Estimator
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Figure 8: Correction overhead needed by the Strata Estimator

to ensure that 99% of the estimates are greater than or equal to

the true value of d when using strata IBF’s of various sizes.

should be scaled by a factor of 1.39 to ensure that it will be greater
than or equal to d 99% of the time.

Strata Estimator vs. Min-wise. We next compare our Strata
Estimator to the Min-wise Estimator [3, 4] (see Section 2). For our
comparison we used sets with 100K elements and deltas ranging
from 10 to 100K. Given knowledge of the approximate total set
sizes a priori, the number of strata in the Strata estimator can be
adjusted to conserve communication costs by only including parti-
tions that are likely to contain elements from the difference. Thus,
we choose the number of strata to be ⌊log2(dmax)⌋, where dmax

is the largest possible difference. Since our largest delta is 100K,
we configure our estimator with 16 strata, each containing 80 cells
per IBF. At 12 bytes per IBF cell, this configuration requires ap-
proximately 15.3 KB of space. Alternatively, one could allocate a
Min-wise estimator with 3840 4-byte hashes in the same space.

In Figure 9, we compare the scaling overhead required such that
99% of the estimates from Strata and Min-wise estimators of the
same size are greater than or equal to the true delta. We see that
the overhead required by Min-wise diminishes from 1.35 to 1.0
for deltas beyond 2000. Strata requires correction between 1.33 to
1.39 for the same range. However, the accuracy of the Min-wise
estimator deteriorates rapidly for smaller delta values. In fact, for
all deltas below 200, the 1st percentile of Min-wise estimates are
0, resulting in infinite overhead. Min-wise’s inaccuracy for small
deltas is expected as few elements from the difference will be in-
cluded in the estimator as the size of the difference shrinks. This
makes Min-wise very sensitive to any variance in the sampling pro-
cess, leading to large estimation errors. In contrast, we see that the
Strata Estimator provides reasonable estimates for all delta values
and is particularly good at small deltas, where scaling overheads
range between 1.0 and 1.33.

Hybrid Estimator. The Strata Estimator outperforms Min-wise
for small differences, while the opposite occurs for large differ-
ences. This suggests the creation of a hybrid estimator that keeps
the lower strata to accurately estimate small deltas, while augment-
ing more selective strata with a single Min-wise estimator. We par-
tition our set as before, but if a strata does not exist for a partition,
we insert its elements into the Min-wise estimator. Estimates are
performed by summing strata as before, but also by including the
number of differences that Min-wise estimates to be in its partition.

For our previous Strata configuration of 80 cells per IBF, each
strata consumes 960 bytes. Therefore, we can trade a strata for 240
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Figure 9: Comparison of estimators when constrained to 15.3

KB. We show the scaling overhead to ensure that 99% of esti-

mates are greater than or equal to the true delta.

additional Min-wise hashes. From Figure 9 we see that the Strata
Estimator performs better for deltas under 2000. Thus, we would
like to keep at most ⌊log2(2000)⌋ = 10 strata. Since we expect
the most selective strata to contain few elements for a difference
of 2000, we are better served by eliminating them and giving more
space to Min-wise. Hence, we retain 7 strata, and use the remaining
8640 bytes to allocate a Min-wise estimator with 2160 hashes.

Results from our Hybrid Estimator are plotted in Figure 9 with
the results from the Strata and Min-wise estimators. We see that
the Hybrid Estimator closely follows the results of the Strata Esti-
mator for all deltas up to 2000, as desired. For deltas greater than
2000, the influence of errors from both Strata and Min-wise cause
the scaling overhead of the Hybrid estimator to drift up to 1.45
(versus 1.39% for Strata), before it progressively improves in ac-
curacy, with perfect precision at 100K. While the Hybrid Estimator
slightly increase our scaling overhead from 1.39 to 1.45 (4.3%), it
also provides improved accuracy at deltas larger than 10% where
over-estimation errors can cause large increases in total data sent.

Difference Digest Configuration Guideline. By using the Hy-
brid Estimator in the first phase, we achieve an estimate greater than
or equal to the true difference size 99% of the time by scaling the
result by 1.45. In the second phase, we further scale by 1.25 to 2.3
and set hash_count to either 3 or 4 depending on the estimate
from phase one. In practice, a simple rule of thumb is to construct
an IBF in Phase 2 with twice the number of cells as the estimated
difference to account for both under-estimation and IBF decoding
overheads. For estimates greater than 200, 3 hashes should be used
and 4 hashes otherwise.

6.3 Difference Digest vs. Prior Work
We now compare Difference Digests to Approximate Recon-

ciliation Trees (ART) [5], Characteristic Polynomial Interpolation
(CPISync) [17], and simply trading a sorted list of keys (List).
We note that ART’s were originally designed to compute most but

not all the keys in SA − SB . To address this, the system built
in [5] used erasure coding techniques to ensure that hosts received
pertinent data. While this approach is reasonable for some P2P
applications it may not be applicable to or desirable for all applica-
tions described in Section 1. In contrast, CPISync and List are
always able to recover the set difference.

Figure 10 shows the data overhead required by the four algo-
rithms. Given that ART’s were not designed for computing the
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100K elements. We show the space needed by ART and Differ-

ence Digests to recover 95% and 100% of the set difference,

respectively, with 99% reliability.

complete set difference, we arbitrarily choose the standard of 95%
of the difference 99% of the time and plot the amount of data re-
quired to achieve this level of performance with ART. For CPISync,
we show the data overhead needed to recover the set difference. In
practice, the basic algorithm must be run with knowledge of the
difference size, or an interactive approach must be used at greater
computation and latency costs. Hence, we show the best case over-
head for CPISync. Finally, we plot the data used by Difference
Digest for both estimation and reconciliation to compute the com-
plete difference 99% of the time.

The results show that the bandwidth required by List and ART
decreases as the size of the difference increases. This is intuitive
since both List and the ART encode the contents of SB , which
is diminishing in size as the size of the difference grows (|SB | =
|SA| − |D|). However, ART outperforms List since its compact
representation requires fewer bits to capture the nodes in B.

While the size of the Hybrid Estimator stays constant, the IBF
grows at an average rate of 24 Bytes (three 4-byte values and a
factor of 2 inflation for accurate decoding) per key in the differ-
ence. We see that while Difference Digests and CPISync have the
same asymptotic communication complexity, CPISync requires
less memory in practice at approximately 10 bytes per element in
the difference.

Algorithm Selection Guidelines. The results show that for small
differences, Difference Digests and CPISync require an order of
magnitude less bandwidth that ART and are better up to a differ-
ence of 4,000 (4%) and 10,000 (10%), respectively. However, the
fact that ART uses less space for large deltas is misleading since we
have allowed ART to decode only 95% of the difference. CPISync
provides the lowest bandwidth overhead and decodes deterministi-
cally, making it a good choice when differences are small and band-
width is precious. However, as we discuss next, its computational
overhead is substantial.

6.4 KeyDiff Performance
We now examine the benefits of Difference Digest in system-

level benchmarks using KeyDiff service described in Section 5.
We quantify the performance of KeyDiff using Difference Digests
versus ART, CPISync, and List. For these experiments, we
deployed KeyDiff on two dual-processor quad-core Xeon servers

running Linux 2.6.32.8. Our test machines were connected via 10
Gbps Ethernet and report an average RTT of 93µs.

Computational Overhead. In the KeyDiff model, the applica-
tions at the client and server both add keys to KeyDiff. When diff
is called the client requests the appropriate data from the server to
compute the set difference. We begin by evaluating the computa-
tion time required to add new keys to KeyDiff and the time required
by the server to generate its response when using each algorithm.
For this experiment, we added 1 million keys to the KeyDiff server
then requested a structure to decode a difference of 100. In Table 1,
we show the average time required for these operations.

For adding new keys, we see that List and ART are slower than
both CPISync and IBF since both perform log(|S|) operations
— the List to do an ordered insertion, and ART to update hashes
along a path in its tree. In contrast, CPISync and IBF simply
store the new keys to an unordered list until they learn the size of
the structure to build from the client’s request.

For server compute time, we note that the latencies correspond
closely with the number of memory locations each algorithm touches.
List is quickest at 6.545 msec, as the server only needs to read
and serialize the keys. In contrast, IBF and CPISync must allo-
cate and populate appropriately-sized structures by scanning their
stored lists of keys. For IBF this requires updating 4 cells per key,
while CPISync must evaluate 100 linear equations, each involv-
ing all 1M keys. The time for ART is roughly twice that of IBF
as it must traverse its tree containing 2|S| nodes, to build a Bloom
Filter representation of its set.

At the bottom of Table 1, we show the add and server-compute
times for the three estimation algorithms. Note that since the length
of the IBF’s in the Strata and Hybrid estimators are static, they can
be updated online. We also note that although the Hybrid estimator
maintains 2160 Min-wise hash values, its addition times are sig-
nificantly lower that the original Min-wise estimator. This occurs
because the Min-wise structure in the Hybrid estimator only sam-
ples the elements not assigned to one of the seven strata. Thus,
while the basic Min-wise estimator must compute 3840 hashes for
each key, the Hybrid Min-wise estimator only computes hashes for
approximately 1/28 of the elements in the set. Since each of the
estimators is updated during its add operations, minimal server
compute time is required to serialize each structure.

Costs and Benefits of Incremental Updates. As we have seen
in Table 1, the server computation time for many of the reconcilia-
tion algorithms is significant and will negatively affect the speed of
our diff operation. The main challenge for IBF and CPISync
is that the size of the difference must be known before a space-
efficient structure can be constructed. We can avoid this runtime
computation by maintaining several IBF’s of predetermined sizes
within KeyDiff. Each key is added to all IBF’s and, once the size
of the difference is know, the smallest suitable IBF is returned. The
number of IBF’s to maintain in parallel will depend on the comput-
ing and bandwidth overheads encountered for each application.

In Table 1, we see that the time to add a new key when doing pre-
computation on 8 IBF’s takes 31µs, two orders of magnitude longer
than IBF without precomputation. However, this reduces the server
compute time to from 3.9 seconds to 22µs, a massive improve-
ment for diff latency. For most applications, the small cost (10’s
of microseconds) for incremental updates during each add opera-
tion should not dramatically affect overall application performance,
while the speedup during diff (seconds) is a clear advantage.

Diff Performance. We now look at time required to run the
diff operation. As we are primarily concerned with the perfor-
mance of computing set differences as seen by an application built
on top of these algorithms, we use incremental updates and measure



Reconciliation Algorithm Add (µs) Serv. Compute

List (sorted) 1.309 6.545 msec
ART 1.995 6,937.831 msec
CPISync (d=100) 0.216 34,051.480 msec
IBF (no precompute) 0.217 3,957.847 msec

IBF (1x precompute) 3.858 0.023 msec
IBF (8x precompute) 31.320 0.022 msec

Estimation Algorithms (precompute)

Min-wise (3840 hashes) 21.909 0.022 msec
Strata (16x80 cells) 4.224 0.021 msec
Hybrid (7x80 cells + 2160 hash) 4.319 0.023 msec

Table 1: Time required to add a key to KeyDiff and the time

required to generate a KeyDiff response for sets of 1M keys

with a delta of 100. The time per add call is averaged across

the insertion of the 1M keys.

the wall clock time required to compute the set difference. Differ-
ence Digests are run with 15.3 KB dedicated to the Estimator, and
8 parallel, precomputed IBF’s with sizes ranging from 256 to 400K
cells in factors of 4. To present the best case scenario, CPISync
was configured with foreknowledge of the difference size and the
correctly sized CPISync structure was precomputed at the server
side. We omit performance results for ART as it has the unfair ad-
vantage of only approximating the membership of DA−B , unlike
the other algorithms, which return all of DA−B and DB−A.

For our tests, we populated the first host, A with a set of 1 mil-
lion, unique 32-bit keys, SA, and copied a random subset of those
keys, SB , to the other host, B. From host A we then query Key-
Diff to compute the set of unique keys. Our results can be seen in
Figure 11a. We note that there are 3 components contributing to the
latency for all of these methods, the time to generate the response at
host B, the time to transmit the response, and the time to compare
the response to the set stored at host A. Since we maintain each
data structure online, the time for host B to generate a response is
negligible and does not affect the overall latency.

We see from these results that the List shows predictable per-
formance across difference sizes, but performs particularly well rel-
ative to other methods as the size of the difference increases beyond
20K. Since the size of the data sent decreases as the size of the dif-
ference increases, the transmission time and the time to sort and
compare at A decrease accordingly. On the other hand, the Differ-
ence Digest performs best at small set differences. Since the es-
timator is maintained online, the estimation phase concludes very
quickly, often taking less than 1 millisecond. We note that precom-
puting IBF’s at various sizes is essential and significantly reduces
the latency by the IBF’s construction at host B at runtime. Fi-
nally, we see that even though its communication overhead is very
low, the cubic decoding complexity for CPISync dramatically in-
creases its latency at differences larger than 100.

In considering the resources required for each algorithm, List
requires 4|SB | bytes in transmission and touches |SA| + |SB | val-
ues in memory. Difference Digest has a constant estimation phase
of 15.3KB followed by an average of 24d bytes in transmission
and 3d × hash_count memory operations (3 fields in each IBF
cell). Finally, CPISync requires only 10d bytes of transmission
to send a vector of sums from it’s linear equations, but d3 memory
operations to solve its matrix.

If our experimental setup were completely compute bound, we
would expect List to have superior performance for large differ-
ences and Difference Digest to shine for small difference. If we
assume a hash_count of 4, then Difference Digest’s latency is

12d, while List’s is |SA| + |SB | = 2|SA| − d. Thus, they will
have equivalent latency at d = 2

12+1
|SA|, or a difference of 15%.

Guidance for Constrained Computation. We conclude that,
for our high-speed test environment, precomputed Difference Di-
gests are superior for small deltas (less than 2%), while sending a
full list is preferable at larger difference sizes. We argue that in
environments where computation is severely constrained relative
to bandwidth, this crossover point can reach up to 15%. In such
scenarios, precomputation is vital to optimize diff performance.

Varying Bandwidth. We now investigate how the latency of
each algorithm changes as the speed of the network decreases. For
this we consider bandwidths of 10 Mbps and 100Kbps, which are
speeds typical in wide-area networks and mobile devices, respec-
tively. By scaling the transmission times from our previous exper-
iments, we are able to predict the performance at slower network
speeds. We show these results in Figure 11b and Figure 11c.

As discussed previously, the data required by List, CPISync,
and Difference Digests is 4|SB |, 10d and roughly 24d, respectively.
Thus, as the network slows and dominates the running time, we ex-
pect that the low bandwidth overhead of CPISync and Difference
Digests will make them attractive for a wider range of deltas ver-
sus the sorted List. With only communication overhead, List
will take 4|SB | = 4(|SA| − d), which will equal Difference Di-
gest’s running time at d = 4

24+4
|SA|, or a difference of 14%. As

the communication overhead for Difference Digest grows due to
widely spaced precomputed IBF’s the trade off point will move to-
ward differences that are a smaller percentage of the total set size.
However, for small to moderate set sizes and highly constrained
bandwidths KeyDiff should create appropriately sized IBF’s on de-
mand to reduce memory overhead and minimize transmission time.

Guidance for Constrained Bandwidth. As bandwidth becomes
a predominant factor in reconciling a set difference, the algorithm
with the lowest data overhead should be employed. Thus, List
will have superior performance for differences greater than 14%.
For smaller difference sizes, IBF will achieve faster performance,
but the crossover point will depend on the size increase between
precomputed IBF’s. For constrained networks and moderate set
sizes, IBF’s could be computed on-demand to optimize communi-
cation overhead and minimize overall latency.

7. CONCLUSIONS
We have shown how Difference Digests can efficiently compute

the set difference of data objects on different hosts using computa-
tion and communication proportional to the size of the set differ-
ence. The constant factors are roughly 12 for computation (4 hash
functions, resulting in 3 updates each) and 24 for communication
(12 bytes/cell scaled by two for accurate estimation and decoding).

The two main new ideas are whole set differencing for IBF’s, and
a new estimator that accurately estimates small set differences via a
hierarchy of sampled IBF’s. One can think of IBF’s as a particularly
simple random code that can deal with both erasures and insertions
and hence uses a simpler structure than Tornado codes but a similar
decoding procedure.

We learned via experiments that 3 to 4 hash functions work best,
and that a simple rule of thumb is to size the second phase IBF equal
to twice the estimate found in the first phase. We implemented
Difference Digests in a KeyDiff service run on top of TCP that
can be utilized by different applications such as Peer-to-Peer file
transfer. There are three calls in the API (Figure 4): calls to add
and delete a key, and a call to find the difference between a set of
keys at another host.

In addition, using 80 cells per strata in the estimator worked well
and, after the first 7 strata, augmenting the estimator with Min-
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Figure 11: Time to run KeyDiff diff for |SA|= 1M keys and varying difference sizes. We show our measured results in 11a, then

extrapolate the latencies for more constrained network conditions in 11b and 11c.

wise hashing provides better accuracy. Combined as a Difference
Digest, the IBF and Hybrid Estimator provide the best performance
for differences less than 15% of the set size. This threshold changes
with the ratio of bandwidth to computation, but could be estimated
by observing the throughput during the estimation phase to choose
the optimal algorithm.

Our system level benchmarks show that Difference Digests must
be precomputed or the latency for computation at runtime can swamp
the gain in transmission time compared to simple schemes that send
the entire list of keys. This is not surprising as computing a Dif-
ference Digest touches around twelve 32-bit words for each key
processed compared to one 32-bit word for a naive scheme that
sends a list of keys. Thus, the naive scheme can be 10 times faster
than Difference Digests if we do no precomputation. However, with
precomputation, if the set difference is small, then Difference Di-
gest is ten times or more faster. Precomputation adds only a few
microseconds to updating a key.

While we have implemented a generic Key Difference service
using Difference Digests, we believe that a KeyDiff service could
be used by some application involving either reconciliation or dedu-
plication to improve overall user-perceived performance. We hope
the simplicity and elegance of Difference Digests and their appli-
cation to the classical problem of set difference will also inspire
readers to more imaginative uses.
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