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Abstract

Two applications of sparsification to parametric computing are
given. The first is a fast algorithm for enumerating all distinct mini-
mum spanning trees in a graph whose edge weights vary linearly with a
parameter. The second is an asymptotically optimal algorithm for the
minimum ratio spanning tree problem, as well as other search prob-
lems, on dense graphs.

1 Introduction

In the parametric minimum spanning tree problem, one is given an n-node,
m-edge undirected graph G where each edge e has a linear weight function
we(λ) = ae+λbe. Let Z(λ) denote the weight of the minimum spanning tree
relative to the weights we(λ). It can be shown that Z(λ) is a piecewise linear
concave function of λ [Gus80]; the points at which the slope of Z changes
are called breakpoints.

We shall present two results regarding parametric minimum spanning
trees. First, we show that Z(λ) can be constructed inO(min{nm log n, TMST (2n, n)·
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b(m,n)}) time, where TMST (m,n) is the time to compute a minimum span-
ning tree and b(m,n) is the worst-case number of breakpoints of Z(λ). It is
known that b(m,n) = O(m

√
n) [Gus80, KaIb83] and b(m,n) = Ω(mα(n))

[Epp95], and that TMST (m,n) = O(m log β(m,n)) [GGST86] (here β(m,n) =
min{i : log(i) n ≤ m/n}) 1. Our algorithm improves on the Eisner-Severance
method [EiSe76], which, when applied to parametric minimum spanning
trees, takes O(TMST (m,n) · b(m,n)) time. Thus, if b(m,n) = O(m

√
n), our

algorithm runs in O(nm log n) time, while the Eisner-Severance approach
takes time O(n1/2m2 log β(m,n)); the speedup is less dramatic, but still
significant, if b(m,n) is, say, O(mα(n)). Our construction procedure can
be used for problems such as the stochastic spanning trees studied by Ishii
et al. [ISN81], which are solved by enumerating the different solutions ob-
tained when the parameter is varied throughout its range. Several other
applications are discussed by Hassin and Tamir [HaTa89].

Our second result is an approach for solving the following closely-related
parametric search problems in O(n

√
m log2(n2/m)) time:

(P1) Given a value λ1 find the first breakpoint λ∗ of Z(λ) such that λ∗ ≥ λ1.

(P2) Find a value λ∗ such that Z(λ∗) = 0. This assumes that the slopes
of the edge weight functions are either all negative or all positive; we
shall assume the former.

(P3) Find a λ∗ such that Z(λ∗) = maxλ Z(λ).

Problem (P1) is a standard problem in sensitivity analysis [Gus83], (P2)
arises in the solution of the minimum-ratio spanning tree problem (MRST)
[Cha77, Meg83], and (P3) arises in Lagrangian relaxation, in particular,
when dealing with spanning tree problems with side constraints [CMV89,
RaGo96].

Our result should be contrasted with the fastest known algorithm for the
above problems, due to Cole [Cole87], which solves them inO(TMST (m,n) logn) =
O(m log β(m,n) logn) time. Thus, our algorithm is faster than Cole’s for
all sufficiently dense graphs — i.e., m = n2/o(log n) — and is optimal, to
within a constant factor, for graphs with Θ(n2) edges. While our search pro-
cedure is an improvement over existing methods only for the upper ranges of
graph density, it constitutes what, to our knowledge, is the first non-trivial
progress on the problem in many years. We hope that this result will lead to

1Linear time (i.e., O(m)) algorithms can be obtained either through randomization
[KKT95], or by working in less restrictive models of computation [FrWi90].
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improvements in other ranges as well. We should note that, while problems
(P1)–(P3) deal with with graphic matroids, counterparts for other matroids
can be defined. Linear-time algorithms for an analog to (P2) for uniform
matroids have been devised by Eppstein and Hirschberg [EpHi95].

Cole’s parametric minimum spanning tree algorithm is a clever applica-
tion of Megiddo’s method of parametric search [Meg79, Meg83], a technique
with numerous applications to optimization and computational geometry
[CoMe93, Tol93a, CEGS92, MaSc93, ShTo94]. Indeed, MRST has the dis-
tinction of being one of the original problems to which Megiddo applied his
approach. Megiddo’s technique relies on the existence of an algorithm E
for the underlying non-parametric version of the problem; for MRST, such
an algorithm would solve the minimum spanning tree problem. Algorithm
E is simulated to determine its computation path at the value λ∗ being
sought. Algorithm E is also used to implement an oracle for narrowing the
search interval. This dual use of E tends to lead to algorithms that are, at
best, a polylogarithmic factor slower than the algorithms for the underlying
non-parametric problems.

The research reported here is part of an ongoing attempt to determine
the conditions under which one can eliminate the slowdown that seems inher-
ent in Megiddo’s method. We have been motivated in part by Frederickson’s
observation [Fre90] that, as the search progresses, it is sometimes possible
to compile information that can speed up subsequent oracle calls. This idea
was used to devise linear-time algorithms for a variety of location problems
on trees [Fre90]. Subsequently we showed that a large class of parametric
optimization problems can be solved in linear time for graphs of bounded
tree-width [FeSl94]. More recently, we showed that related techniques lead
to linear time algorithms for several parametric minimum spanning tree
problems on planar graphs [FeSl95].

The above-mentioned work and the results in the current paper suggest
that a combination of certain ideas can lead to the elimination of much
of the overhead implicit in Megiddo’s method. Among these is the use of
sampling to decide which portion of the search interval to focus our attention
on, and the use of a looser variant of Megiddo’s method in which, instead
of attempting to maintain only one computation path of E at any phase
of the simulation, several are maintained simultaneously; this exhibits the
strong connection between construction and search problems. A crucial
component of our algorithms is sparsification [EGIN92, EGI93], which allows
us to organize computations in such a way that successive steps examine
progressively less of the input. Finally, our algorithms rely critically on
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the processing of intersections of arrangements of lines associated with edge
costs. We note that, in contrast to many of the known applications of
parametric search, we do not rely explicitly on parallelism in the solution of
the underlying non-parametric problem.

2 Sparsification

Sparsification relies on the observation that for many graph problems —
minimum spanning trees included — the portion of the graph that actu-
ally participates in the final solution is relatively small. The same property
often holds for updates as well, a fact that has been used by Eppstein et
al. [EGIN92, EGI93] to solve several dynamic graph problems. We shall now
summarize one of the key ideas behind sparsification: the use of sparsifica-
tion trees, which were introduced in [EGI93] (see also Frederickson’s work
[Fre85a, Fre91]).

Sparsification trees are built in two steps. In the first, a vertex partition
tree is constructed by splitting the vertex set into two equal-size parts (to
within 1) and then recursively partitioning each half. This results in a
complete binary tree of height at most log n where nodes at depth i have
n/2i vertices. The vertex partition tree is used to build an edge partition
tree. For any nodes α and β of the vertex partition tree at the same depth i,
containing vertex sets Vα and Vβ , we create a node Eαβ in the edge partition
tree containing all edges of G in Vα×Vβ. The parent of Eαβ is Eγδ, where γ
and δ are, respectively, the parents of α and β in the vertex partition tree.
An internal node Eαβ will have three children if α = β and four otherwise.
The sparsification tree, denoted TG, is built from the edge partition tree by
including only those nodes Eαβ that contain at least one edge of E(G).

Consider any node u = Eαβ in TG. We will denote by Gu the subgraph of
G whose vertex set is Vα ∪ Vβ and whose edge set is E(G)∩ (Vα × Vβ). The
next lemma summarizes, for future reference, properties of sparsification
trees that are either straightforward or have been proved elsewhere [EGI93].

Lemma 2.1 For any k between 0 and the depth of the sparsification tree, (i)
there are at most 22k depth k nodes; (ii) the edge sets of the graphs associated
with the nodes at depth k are disjoint and form a partition of E(G); and
(iii) if u is a node at depth k, |V (Gu)| ≤ n/2k, and |E(Gu)| ≤ n2/22k.
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3 Generating Z(λ)

We now describe two algorithms for generating Z(λ); we begin with an
arrangement-based method that generates Z(λ) in O(mn log n) time.

We assume without loss of generality that no two pairs of edge weights
become equal simultaneously, and that for each value λ, the minimum span-
ning tree is unique. The former assumption can be enforced without sig-
nificantly changing Z(λ) by perturbing the weight functions infinitesimally.
Such a perturbation can be done symbolically without changing the asymp-
totic running time of our algorithms. The second assumption can be enforced
at no additional cost by resolving ties between edge costs using an arbitrary
but fixed ordering of the edges.

First let us discuss a simpler algorithm for the same problem, which
runs in O(m2 log n) time, and appears to be folklore. Our improved result
comes from applying sparsification to this technique. The key observation
(also used in previous work on the subject) is that if λ∗ is a breakpoint of
Z(λ), then two edges e and f have equal weights at λ∗, and the symmetric
difference of the minimum spanning trees before and after λ∗ is {e, f}. The
idea is to compute for each pair {e, f} the potential breakpoint at which the
two weights become equal. We then compute Z(λ) by sweeping through the
sequence of potential breakpoints, maintaining the minimum spanning tree
as we do. A potential breakpoint corresponds to an actual change in the
MST exactly when the edge that is heavier before the breakpoint (say e) is
not already in the MST and induces a cycle in the MST containing f ; this
can be tested in O(log n) time per potential breakpoint using the dynamic
tree data structure of Sleator and Tarjan [SlTa83].

In this O(m2 log n) time algorithm, there are many more potential than
actual breakpoints, so it seems we are wasting work testing them all. Our
idea is to apply sparsification to reduce the number of breakpoints we test.

We will need some notation. Let u be any node of a sparsification tree
TG of G. Then, Zu(λ) will denote the minimum spanning forest function2

for Gu, bu will denote the number of breakpoints of Zu, and nu and mu

will denote, respectively, the number of vertices and edges of Gu; Fu(λ) will
denote the minimum spanning forest of Gu at λ. To avoid subscripts on
subscripts, we shall assume all internal nodes of the sparsification tree have
exactly four children; handling fewer children is straightforward.

2Since Gu need not be connected, we must consider spanning forests rather than span-
ning trees, but this does not lead to any additional complication.
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Lemma 3.1 Let p, q, r, and s be the four children of node u in the spar-
sification tree. Then, for every λ, Fu(λ) is a subgraph of Fp(λ) ∪ Fq(λ) ∪
Fr(λ) ∪ Fs(λ).

Proof: The lemma is an immediate consequence of the following well-known
fact (it is used, for example, in a recent paper by Karger et al. [KKT95]):
Let H be a subgraph of G, let TH be a minimum spanning forest of H, and
let EH be the set of edges of H that are not in TH . Then G has a minimum
spanning tree that does not contain any edge of EH . 2

We will describe our algorithm in geometric terms, following Eppstein [Epp95].
Graph the weight functions of the individual edges in Gu as lines w = we(λ),
drawn in a plane with coordinates (λ,w). Then the potential breakpoints
discussed above occur at the vertices of this arrangement of lines. We form
a line segment arrangement Au by taking subsegments of the lines; specif-
ically, we include those portions of the line we(λ) corresponding to values
of λ for which e belongs to Fu(λ). The following fact was proved by Epp-
stein [Epp95].

Lemma 3.2 The arrangement Au consists of bu + 1 line segments that can
be grouped to form nu − 1 convex chains in the (λ,w) plane.

The proof of this lemma is given by an argument in which we assign
tokens to the edges in Fu(λ); when two edges {e, f} are swapped we pass
the token from e to f ; then the convex polygons described by the lemma
are traced out by the nu − 1 tokens.

Lemma 3.3 Let p, q, r, and s be the four children of node u in the sparsifi-
cation tree and let {e, f} be a swap occurring at Fu(λ∗). Then there is a pair
of line segments {se, sf} in the line segment arrangement Ap∪Aq∪Ar∪As,
on the two lines we(λ) and wf (λ) respectively, that either cross at a point
(λ∗, we(λ∗)) or both have endpoints at that point.

Proof: We have already seen that the lines we(λ) and wf (λ) cross at this
point. But, by Lemma 3.1, if e is in Fu(λ∗−ε), it is also in one of Fp, Fq, Fr,
or Fs, so there is a line segment in the arrangement that goes through the
points (λ∗ − ε, we(λ∗ − ε)). A symmetric argument shows that there is also
a line segment corresponding to f through the points (λ∗ + ε, wf (λ∗ + ε)).
If one of these segments does not cross at (λ∗, we(λ∗)), it must be because
the same two edges took part in a swap at one of the children of u, in which
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case both segments terminate at that point. 2

Our algorithm then is to calculate Zu(λ), and Au(λ) by traversing TG
in postorder, computing these quantities at each node by combining the
same information from the node’s children. Specifically, we compute the line
segment intersections in the arrangement Ap∪Aq∪Ar∪As, sort them by their
λ-coordinates, and use these as potential breakpoints in an algorithm for
computing Zu similar to the folklore one described above: we sweep through
the sequence of potential breakpoints, maintaining the minimum spanning
tree as we do. A potential breakpoint corresponds to an actual change in
the MST exactly when the edge that is heavier before the breakpoint (say e)
is not already in the MST and induces a cycle in the MST containing f ; this
can be tested in O(log n) time per potential breakpoint using the dynamic
tree data structure of Sleator and Tarjan [SlTa83].

Lemma 3.4 The number of potential breakpoints tested by the algorithm
above, at node u of the sparsification tree, is O(munu).

Proof: By Lemma 3.3 each potential breakpoint {e, f} occurs at a point
(λ,we(λ)) where a segment on line we(λ) crosses another segment in one of
Ap, Aq, Ar, or As. In particular, it corresponds to a point where line we(λ)
crosses one of the at most 4(nu − 1) polygons into which (by Lemma 3.2)
these four arrangements can be grouped. Each line can only cross each poly-
gon at most twice, so there are at most 8mu(nu − 1) crossings total. 2

Theorem 3.5 The algorithm described above computes Z(λ) in O(mn log n)
total time.

Proof: It takes time O(bu log bu + munu) to compute the set of potential
crossings [ChEd92], O(munu log n) to sort them by λ, and O(munu log n) to
use the algorithm of Sleator and Tarjan to test each potential breakpoint.
Thus the total time per node u is O(munu log n). The overall bound comes
from summing this quantity over the nodes of the sparsification tree. 2

An alternative algorithm. We now discuss how to generate Z(λ) in
O(b(m,n) · n log log∗ n) time.

We rely on a well-known result of Eisner and Severance [EiSe76]. Let I
be an interval and let f be a piecewise-linear concave function. Let bI(f)
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be the number of breakpoints of f within λ. By an evaluation of f at λ0 we
shall mean to determine the value of f(λ0), as well as a supporting line of
the set {(λ, µ) : µ ≤ f(λ)} that goes through (λ0, f(λ0)).

Lemma 3.6 A complete description of f within an interval I can be gen-
erated with O(bI(f)) evaluations of f .

Function Z can be evaluated at any value λ0 in O(m log β(m,n)) time by
computing the minimum spanning tree relative to the weights we(λ0); the
equation of a supporting line going through (λ0, Z(λ0)) is the sum of weight
functions of the edges in the minimum spanning tree at λ0. By Lemma 3.6,
this means that Z can be generated in O(b(m,n) ·m log β(m,n)) time. We
improve on this by reducing the evaluation time through sparsification.

An efficient representation of Zu within an interval I is one that enables
us to quickly retrieve two pieces of information for any λ ∈ I: the value of
Zu(λ) and the minimum spanning forest Fu(λ) of Gu at λ. The representa-
tion can be implemented using balanced binary search trees [CLR90, FeSl94],
in order to support retrieval in time logarithmic in bI(Zu). Based on the
known bounds on the number of breakpoints, the retrieval time will be
O(log nu).

Lemma 3.7 Given efficient representations of Zv within an interval I for
each child v of u, an efficient representation of Zu within I can be con-
structed in O(bI(Zu) · nu log log∗ nu) time.

Proof: Construct Zu using the Eisner-Severance method (Lemma 3.6). To
evaluate Zu(λ0), first retrieve Fv(λ0) for every child v of u. This will take
a total of O(log nu) time, since each of the at most four such v’s contains
O(nu) nodes. Next, compute the minimum spanning forest of the union of
the Fv(λ0)’s. Observe that, since the latter graphs are forests with at most
nu/2 edges each (see Lemma 2.1), the total number of edges in their union
is at most 2nu. By Lemma 3.1, the minimum spanning forest of the union
is also a minimum spanning forest of Gu. The time needed to compute the
minimum spanning forest is O(nu log β(2nu, nu)) = O(nu log log∗ nu). The
lemma follows. 2

For the next result, we assume that the upper bound b(m,n) on the
number of breakpoints is O(m · f(n)), for some nondecreasing function f .

Theorem 3.8 Z(λ) can be generated in O(b(m,n) · n log log∗ n) time.
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Proof: The algorithm consists of traversing TG in postorder, computing an
efficient representation of Zu for every node u. Let Lk denote the set of nodes
at depth k in TG, and let D be the depth of TG. By Lemmas 3.6 and 3.7,
the total time needed to generate Zu for every u ∈ Lk within some interval
I is

O

∑
u∈Lk

bI(Zu) · nu log log∗ nu

 = O

( n
2k

log log∗
n

2k

) ∑
u∈Lk

bI(Zu)

 ,
(1)

where the equality follows from Lemma 2.1. Since I = (−∞,+∞), we have
bI(Zu) ≤ b(mu, nu) = O(muf(nu)). Because the edge sets of the nodes in
Lk are disjoint (see Lemma 2.1), the total time for all u ∈ Lk is

O

(
nm

2k
f
(
n/2k

)
log log∗(n/2k)

)
Adding this up over all Lk, we obtain a bound of

O

nm D∑
k=0

f
(
n/2k

)
log log∗(n/2k)

2k

 = O (m · f(n) · n log log∗ n)

= O (b(m,n) · n log log∗ n) ,

as desired.
The preceding analysis does not address how to process leaves of the spar-

sification tree. It can be verified that leaves have O(1) edges and vertices
and thus each leaf can be processed in O(1) time; thus, the total construc-
tion time is indeed O (b(m,n) · n log log∗ n). 2

Remark. An analysis similar to the preceding one shows that if instead of a
O(m log β(m,n)) minimum spanning tree algorithm, a randomized or non-
randomized O(m)-time procedure is used, the result will be a O(b(m,n) ·
m) algorithm for generating Z(λ). Depending on the true value of b and
on the minimum spanning tree algorithm used, the bound achieved by the
algorithm presented above will be no worse than O(n3/2m log log∗ n) and no
better than O(nmα(n)).

4 Parametric search problems

We now give an algorithm for problems (P1)–(P3) of the Introduction. For
concreteness, we will describe our approach in the context of problem (P2),
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which asks one to find the value λ∗ such that Z(λ∗) = 0; a similar approach
works for the other problems. Problem (P2) arises in the solution of the
minimum ratio spanning tree problem, a problem that is defined as follows.
Given a graph where every edge e has two weights, ae and be, find a spanning
tree T of G such that the ratio

∑
e∈T ae/

∑
e∈T be is minimized [Cha77] (the

be’s are assumed to be either all negative or all positive). MRST arises in the
design of communication networks, where the number ae represents the cost
of building link e, and be represents the time required to build that link. The
goal is to find a tree that minimizes the ratio of total cost over construction
time. Other applications of MRST are given elsewhere [CMV89, Meg83].
MRST can be reduced to a problem of type (P2) by associating with each
edge e ∈ G a linear weight function we(λ) = ae−λbe and letting Z(λ) denote
the weight of the minimum spanning tree relative to the weights we(λ). It
can be shown [Cha77] that the minimum ratio is the root λ∗ of Z(λ).

Our algorithm resembles the construction algorithm of the previous sec-
tion in that it traverses the sparsification tree TG from the bottom up,
constructing Zu for every node u; there are, however, some key differences.
First, while the construction algorithm only required postorder traversal
of the nodes, the search algorithm processes nodes level by level. Second,
when processing a node u, the search algorithm computes Zu(λ) only for a
restricted interval I containing λ∗ within which Zu has few breakpoints.

In more detail, the search algorithm is as follows. The initialization
consists of (i) constructing the sparsification tree TG of G up to a depth D
to be specified later, (ii) initializing the search interval I to (−∞,+∞), and
(iii) generating Zu within I for every node u at depth D in TG. Next, for
every value of k from D−1 down to 0, it does the following two steps. First,
it narrows I, so that, in addition to λ∗ ∈ I, the following property holds:∑

u∈Lk
bI(Zu) ≤ 22k, (2)

where, as in Section 3, bI(f) is the number of breakpoints of f within I
and Lk denotes the set of nodes at depth k in TG. The second step is to
construct a representation of Zu within I for every depth-k node u. This
two-step processing of all nodes at depth k will be called phase k.

After phase 0 is complete, the root of TG will have a complete description
of Z(λ) within I. In the final step, the algorithm searches Z(λ) to locate
the value λ∗ such that Zr(λ∗) = 0

Next, we will describe the implementation of the main steps of the algo-
rithm.

10



    

Constructing the Zu’s. For u ∈ LD, Zu is constructed using Theo-
rem 3.5. Nodes at depth k < D are processed using a slightly modified
version of the algorithm described in the proof of Theorem 3.8, the differ-
ence being that Zu is only generated within an interval I satisfying (2).

Lemma 4.1 The method described above generates Zu within I for every
node u at depth k in total time O((nm/2D) log(n/2D)) for k = D and in
total time O(n2k log log∗(n/2k)) for 0 ≤ k ≤ D − 1.

Proof: By Theorem 3.5, the total time to process all nodes at level D is

O

 ∑
u∈LD

numu log nu

 = O

(n/2D) log(n/2D) ·
∑
u∈LD

mu


= O

(
(nm/2D) log(n/2D)

)
,

where the first equality follows from Lemma 2.1.
For each of the remaining levels, the time is given by (1). Assuming (2),

this is O(n2k log log∗(n/2k)). 2

Narrowing the search interval. Narrowing requires the use of an oracle,
a procedure that can determine the position of any λ-value λ0 relative to λ∗;
we refer to this as resolving λ0. We will only describe the oracles for (P2);
the other two problems can be handled analogously. Observe that any value
λ0 6∈ I can be resolved in O(1) time by determining its position relative to
the endpoints of I. Suppose, instead, that λ0 ∈ I. Assume that the slopes of
all the edge costs are nonpositive (the case where they are all nonnegative is
handled analogously). Then, Z(λ) is a nonincreasing function and we have
three possibilities [Meg83]: If Z(λ0) = 0, then, λ0 = λ∗. If Z(λ0) > 0, then,
λ0 < λ∗. Finally, if Z(λ0) < 0, then, λ0 > λ∗. Thus, resolving a λ-value λ0

reduces in O(1) time to evaluating Z(λ0). We shall therefore focus on the
evaluation problem.

Each phase of the search algorithm uses a different oracle; the oracle
for phase k is denoted by Ck. Oracle CD evaluates Z using a minimum
spanning tree algorithm with running time TMST (m,n) = O(m log β(m,n)).
For k < D, oracle Ck computes Z(λ) by retrieving the values of the Zu(λ)’s
for all depth k+ 1 nodes and then processing the nodes of the sparsification
tree from depth k + 1 up.
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Lemma 4.2 The running time of Ck is

tk =

{
m log β(m,n) for k = D

O
(
n2k log log∗

(
n/2k

))
for 0 ≤ k ≤ D − 1

Proof: We only need to bound the running time of Ck for k ≤ D − 1; this
is

O

 0∑
j=k+1

∑
u∈Lj

TMST (mu, nu)

 = O

 0∑
j=k+1

n2j log β
(
n/2j−1, n/2j

)
= O

(
n2k log log∗

(
n/2k

))
.

Note that we are using TMST (m,n) = O(m log β(m,n)). 2

We now describe how to narrow I using the oracles. Assume that at
the beginning of phase k,

∑
u∈Lk+1

bI(Zu) ≤ 22k+2; our objective is to find
a subinterval of I such that (2) holds. To ensure that our assumption holds
at the beginning of phase D − 1, it will be necessary to do some narrowing
immediately after the initialization step, in which the nodes at depth D
are processed. By Lemma 2.1 and Gusfield’s bound on b(m,n) [Gus80], for
I = (−∞,+∞), we have

∑
u∈LD

bI(Zu) = O

 ∑
u∈LD

mu
√
nu

 = O
(√

nm/2D/2
)
.

One can narrow I so that
∑
u∈LD bI(Zu) ≤ 22D by makingO(log(m

√
n/25D/2))

calls to CD. The approach is standard: do a series of steps each of which
halves the number of breakpoints by locating the median breakpoint within
I, and, by resolving it, decides whether to discard the part of I before the
median, or the part after the median [FeSl95].

To narrow the search interval in the remaining phases, we rely again on
Lemma 3.3, which shows that when determining the breakpoints of Zu for a
depth-k node u, it suffices to consider intersections between line segments in
the union of the arrangements corresponding to u’s children. However, un-
like in Section 3, we cannot afford to simply generate all intersection points,
since this would be too time-consuming. We shall, instead, repeatedly use
a procedure Select, which allows us to select specific intersection points in
an arrangement of cost lines.
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Select(A, k, I): Given an arrangement of lines A, an integer k, and an
interval I, return the intersection point in A with the kth largest
abscissa amongst those intersection points whose abscissa falls within
I.

Agarwal [Aga91] showed that Select can be implemented inO(r log r) time,
where r is the number of lines in the arrangement.

Roughly speaking, the interval narrowing algorithm uses Select to
generate sample points in the middle of each subinterval of Iu; the ora-
cle will then be used to halve these intervals. This process is repeated
logarithmically-many times until the interval is small enough. The details
of the algorithm are given below. In the description, we shall write le to
denote the line on the (λ,w) plane traced by the cost of e ∈ E(G), and
we shall write I(B) to denote the subdivision of I induced by a set of λ-
values B. The algorithm assumes that, prior to being called, λ∗ ∈ I and∑
u∈Lk+1

bI(Zu) ≤ 22k+2.

Narrow(k,I)
0 N :=

(n/2k
2

)
1 for each u ∈ Lk do
2 Bu := {λ ∈ I : λ is a breakpoint of Zv for some child v of u}
3 for i := 2 to logN do
4 for each u ∈ Lk and each subinterval J of I(Bu) do
5 Cu := {le : e ∈ Fv(λ), λ ∈ J , for some child v of u}

Comment: By definition of Bu, Fv(λ) is the same for all λ ∈ J
6 Add to Bu the λ-coordinate of Select(Cu, N/2i,J )
7 Reduce I so that λ∗ ∈ I and |L ∩ I| ≤ 22k, where L =

⋃
u∈Lk Bu

8 return I

Lemma 4.3 Narrow computes an interval I containing λ∗ satisfying (2)
in O(n2k log2(n/2k)) time.

Proof: Suppose that, at the beginning of each iteration of the loop begin-
ning at line 3, |⋃Bu| ≤ 22k+2; by assumption this is true at the beginning
of the first iteration. Thus, steps 4–6 take O(n2k log(n/2k)) time and, in
step 7, we will have |L| ≤ 22k+3.

Step 7 can be implemented with three calls to Ck as follows. First,
discard all values in L that fall outside I. Next, in O(|L|) time [CLR90],
compute the median value λm of L, and apply Ck to resolve its position
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relative to λ∗. The answer allows us to either discard the portion of I
to the left of λm or the portion to the right of λm, thereby halving the
number of elements of L in I. Repeating this process at most two additional
times will ensure that |L ∩ I ′| ≤ 22k. Hence, the total time for Step 7,
including the median computations, is O(22k + tk). Since statements 3–7
are iterated O(log(n/2k)) times, the running time of the narrowing algorithm
is O(n2k log2(n/2k)+tk log(n/2k)); the time bound follows from Lemma 4.2.

After the ith iteration of statements 3–7, each subinterval of I(Bu) will
have at most

(n/2k
2

)
/2i intersection points of Cu. Thus, after the last itera-

tion, for every u ∈ Lk, no subinterval of I(Bu) will have any such intersection
points. The total size of the Bu’s will be at most 22k; this, together with
Lemma 3.3, implies that the interval returned by Narrow satisfies (2). 2

Analysis. We now state the main result of this section:

Theorem 4.4 The search algorithm runs in O(n
√
m log2(n2/m)) time.

Proof: We choose D = d0.5 logme. Thus, the initialization (including the
processing of all nodes at depth D) takes O(n

√
m log(n2/m)) time. The ini-

tial narrowing prior to the beginning of phaseD−1 takesO(m log β(m,n) log(n2/m))
time. By Lemmas 4.1 and 4.3, the total running time of phases D − 1 to 0
is

O

(
n

0∑
k=D

2k log2(n/2k)

)
= O

((
n2D

)
log2

(
n/2D

))
= O

(
n
√
m log2

(
n2/m

))
,

At the end of the last phase, we will have an representation of Z(λ) within
an interval λ∗ ∈ I. Since the number of breakpoints of Z is polynomially-
bounded in n, a binary search on its representation will enable us to locate
λ∗ in O(log n) time. Thus, the total running time is O(n

√
m log2(n2/m)). 2

5 Discussion

We have presented algorithms for construction and search problems aris-
ing from parametric minimum spanning trees. While our time bounds for
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constructing Z improve on the Eisner-Severance approach, the latter seems
more output-sensitive. It is an open problem to determine if there is a faster,
perhaps output-sensitive, algorithm for the construction problem. Finally,
we note that our search algorithm is inefficient for non-dense graphs; whether
or not it is possible to find an algorithm whose running time matches TMST

remains open.
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