**Planar orientations with low out-degree and compaction of adjacency matrices**.

M. Chrobak and D. Eppstein.

*Theor. Comp. Sci.*86 (2): 243–266, 1991.Describes efficient sequential and parallel algorithms for orienting the edges of an undirected planar graph so that each vertex has few outgoing edges. From such an orientation one can test in constant time whether a given edge exists. One consequence is a parallel algorithm to list all subgraphs isomorphic to K3 or K4. More recently this paper has been cited for its applications to scheduling update operations in parallel finite element methods.

(BibTeX – Citations – CiteSeer – ACM DL)

**Efficient sequential and parallel algorithms for computing recovery points in trees and paths**.

M. Chrobak, D. Eppstein, G.F. Italiano, and M. Yung.

*2nd ACM-SIAM Symp. Discrete Algorithms,*San Francisco, 1991, pp. 158–167.

ALCOM Report 91-74, University of Rome, 1991.Described slightly superlinear algorithms for partitioning a tree into a given number of subtrees, making them all as short as possible. Frederickson at the same conference further improved the sequential time to linear. There may still be something worth publishing in the parallel algorithms.

Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine

Semi-automatically filtered from a common source file.