**A deterministic linear time algorithm for geometric separators and its applications**.

D. Eppstein, G.L. Miller, and S.-H. Teng.

*9th ACM Symp. Comp. Geom.,*San Diego, 1993, pp. 99–108.

*Fundamenta Informaticae*22: 309–330, 1995 (special issue on computational geometry).Teng and others previously showed that certain geometric graphs had small separators that could be found by lifting the graph to a sphere one dimension up and choosing a random great circle. Here we show that epsilon-cuttings and the method of conditional expectations can be used to guide a deterministic prune-and-search method for the same problem. Applications include finding the intersection graph of a collection of spheres and computing or approximating the maximum number of spheres having a common intersection.

(BibTeX – Citations – CiteSeer)

**Approximating center points with iterated Radon points**.

K. Clarkson, D. Eppstein, G.L. Miller, C. Sturtivant, and S.-H. Teng.

*9th ACM Symp. Comp. Geom.,*San Diego, 1993, pp. 91–98.

*Int. J. Comp. Geom. & Appl.*6 (3): 357–377, 1996.Given a collection of

*n*sites, a center point is a point (not necessarily a site) such that no hyperplane through the centerpoint partitions the collection into a very small and a very large subset. Center points have been used by Teng and others as a key step in the construction of geometric separators. One can find a point with this property by choosing a random sample of the collection and applying linear programming, but the complexity of that method grows exponentially with the dimension. This paper proposes an alternate method that produces lower quality approximations (in terms of the size of the worst hyperplane partition) but takes time polynomial in both*n*and*d.*

Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine

Semi-automatically filtered from a common source file.