January 16, 2000

Software Architectural Styles for
Network-based Applications

Roy T. Fielding
University of California, Irvine

Phase Il Survey Paper

Draft 2.0

A software architecture determines how system components are identified and allo-
cated, how the components interact to form a system, the amount and granularity of
communication needed for interaction, and the interface protocols used for communica-
tion. For a network-based application, system performance is dominated by network
communication. Therefore, selection of the appropriate architectural style(s) for use in
designing the software architecture can make the difference between success and failure
in the deployment of a network-based application.

Software architectural styles have been elcéerized by their aatrol-flow and data-

flow patterns, allocation of functionality across components, andhcaorant types.
Unfortunately, none of these characterizations are useful for understanding how a style
influences the set of architectural properties, or qualities, of a system. These properties
include, among others, user-perceivefprmance, network dffiency, simgicity,
modifiability, scalability, and portability. We use these styhehiced architectural prop-
erties to classify styles for network-based applications with the goal of understanding
why certain styles are better than others for some applications, thus providing additional
guidance for software engineers faced with the task of architectural design.

Keywords

software architecture, software architectural style, wekabased application, software
design, software design patterns, pattern languages

1

Introduction

Excuse me ... did you say ‘knives’?
— City Gent #1 (Michael Palin), The Architects Sketch [Python, 1970]

As predicted by Perry and Wolf [1992], software architecture has been a focal point for
software engineering research in the 1990s. The complexity of modern software
systems have necessitated a greater emphasis on componentized systems, where the
implementation is partitioned into independent components that communicate to
perform a desired task. Software architecture research igatsti methods fateter-

mining how best to partition a system, how components identify and communicate with
each other, how infornieon is communicated, how elements of a system can evolve
independently, and how all of the above can be described using formal and informal
notations.

This survey gplores a junction on the frontiers of two research disciplines in computer
science: software and networking. Softwaegsearch has long been concerned with the
categorization of software designs and the development of design methodologies, but
has rarely been able to objectively evaluate the impact of various design choices on
system behavior. Networking research, in contrast, is focused on the details of generic
communication behavior between systems and improving the performance of particular
communication techniques, often ignoring the fact that changing the interaction style of
an application can have more impact on performance than the communication protocols
used for that interaction. My work is motivated by the desire to understand and evaluate
the architectural design of network-based application software through principled use of
architectural constraints, thereby obtaining the functional, performance, and social
properties desired of an architecture. When given a name, a coordinated set of architec-
tural constraints becomes an architectural style.

Some architectural styles are often payted as “silver bullet” solutions for all forms of
software. However, a good designer should selestyle that matches the needs of the
particular problem being solved [Shaw, 1995]. Choosing the right architectural style for
a network-based application requires an understanding of the problem domain [Jackson,
1994] and thereby the communication needs of the application, an awareness of the
variety of architectural styles and the particular concerns they address, and the ability to
anticipate the sensitivity of each interaction style to the characteristics of network-based
communication [Waldo et al., 1994].

Section 2 examines various definitions of architecture and architectural styles and
defines those terms that will be used throughout the remainder of this paper. Section 3
describes what is intended by network-based application architectures, defining the
scope of this survey and the style-induced architectural properties used for style
comparison. Section 4 describes the survey methodology. A classification of software
architectural styles for network-based applications is presented in Section 5, followed in
Section 6 by a discussion of related work within the larger research areas of software
architecture and distributed systems. Finally, | conclude with some observations on the
relevance of this work to software engineering research and practice.

Context within Software Architecture Research

In spite of the interest in software architecture as a field of research, there is little agree-
ment among researchers as to what exactly should be included in the definition of archi-
tecture. In many cases, this has led to important aspects of architectural design being

Software Architectural Styles for Network-based Applications

21

211

overlooked by past research. This section defines a self-consistent terminolog§tfor s
ware architecture based on an examination of existing definitions within the literature
and my own insight with respect to network-based application architectures. Each defi-
nition, highlighted within a box for ease of reference, is followed by a discussion of how
it is derived from, or compares to, related research.

Software Architecture

A software architectureis defined by a configuration of architectural elements—}
components, connectors, and data—constrained in their relationships in order]to
achieve a desired set of architectural properties.

Architectural Elements

A comprehensive examination of the scope and intellectual basis for software architec-
ture can be found in Perry and Wolf992]. They present aodel that defines a soft-

ware architecture as a set of architectwlamentshat have a particuldiorm,

explicated by a set ahtionale. Architectural elements include processing, data, and
connecting elements. Form is defined by the properties of the elements and the relation-
ships among the elements — that is, the constraints on the elements. ibhaleat

provides the underlying basis for the architecture by capturing the motivation for the
choice of architectural style, the choice of elements, and the form.

The definitions | have chosen for software architecture are an elaborated version of
those within the Perry and Wolf model, except that | use the more prevalent terms of
componenandconnectorto refer to processing and connecting elements, respectively,
and exclude rationale. Although rationale is an important aspect of software architecture
research and of architectural description in particular, including it within the definition
of software architecture would imply that design documentation is part of the run-time
system. The presence or absence of rationale can influence the evolution of an architec-
ture, but, once constituted, the architecture is independent of its reasons for being.
Reflective systems [Maes, 1987] can use tharacteistics of past performance to

change future behavior, but in doing so they are replacing one lower-level architecture
with another lower-level architecture, rather than encompassing rationale within those
architectures.

As an illustration, consider what happens to a building if its blueprints and design plans
are burned. Does the building immediately collapse? No, since the properties by which
the walls sustain the weight of the roof remain intact. An architecture has, by design, a
set of properties that allow it to meet or exceed the system mremeintsignorance of

those properties may lead to later changes which violate the architecture, just as the
replacement of a load-bearing wall with a large window frame may violate the structural
stability of a building. Thus, instead of rationale, our definition of software arctitec
includes architectural properties. Rationale explicates those properties, and lack of ratio-
nale may result in gradual decay or degradation of the architecture over time, but the
rationale itself is not part of the architecture.

A key feature of the model in Perry and Wolf [1992] is the distinction of the various
element typesProcessing elemengse those that perform transformations on dd#da
elementsre those that contain the information that is used and transformed, and
connecting elementge the glue that holds the different pieces of the architecture
together. | use the more prevalent termgomponentandconnectorgo refer to
processing and connecting elements, respectively.

Software Architectural Styles for Network-based Applications 3

Garlan and Shaw [1993] describe software architecture vaguely as system structure. An
architecture of a specific system is a collection of computationalponentsogether

with a description of the interaicins betweenttesecomponents—theonnectorsThis
definition is expanded upon in Shaw et al. [1995]: The architecture of a software system
defines that system in terms of components and of interactions among those compo-
nents. In addition to specifying the structure and topology of the system, the architecture
shows the intended correspondence between the system requirements and elements of
the constructed system. Further elaboration of this definition canuefin Shaw and
Garlan [1996].

What is surprising about the Shaw et al. model is that, rather than defining the soft-
ware’s architecture as existing within the sadire, it is defning a desdption of the
software’s architecture as if that were the architecture. In the process, software architec-
ture as a whole is reduced to what is commonly found in most informal architecture
diagrams: boxes (components) and lines (connectors).datzents, wng with many

of the dynamic aspects of real software architectures, are ignored.

Components

A componentis an abstract unit of software that provides a transformation of dgta
via its interface.

Components are the most easily recognized aspect of software architecture. Perry and
Wolf’s [1992] processing elements are defined as those components that supply the
transformation on the data elements. Garlan and Shaw [1993] describe components
simply as the elements that perform computation. Our definition attempts to be more
precise in making the distinction between components and the software within connec-
tors.

A component is an abstract unit of software that provides a transformatet@¥ia its
interface. Example transformations include loading into memory from secondary
storage, performing some calculation, translating to a different format, encapsulation
with other data, etc. The behavior of each component is part of the architecture insofar
as that behavior can be observed or discerned from the point of view of another compo-
nent [Bass et al., 1998]. In other words, a component is defined by its interface and the
services it provides to other components, rather than by its implementation behind the
interface. Parnas [1971] would define this as the set of assumptions that other architec-
tural elements can make about the component.

Connectors

A connectoris an abstract mechanism that mediates communication, coordinal
or cooperation among components.

on,

Perry and Wolf [1992Hescribeconnecting elementsaguely as the glue thablds the
various pieces of the architecture together. A more precise definition is provided by
Shaw and Clements [1997]: A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among components. Examples include
shared representations, remote procedure calls, message-passing protocols, and data
streams.

Software Architectural Styles for Network-based Applications

2.1.2

Perhaps the best way to think about connectors is to contrast them with components.
Connectors enable communication between components by transferrirg elaants

from one interface to another without changing the data. Internatignaector may

consist of a subsystem of components that transform the data for transfer, perform the
transfer, and then reverse the transformation for delivery. However, the external behav-
ioral abstraction captured by the architecture ignores those details. In contrast, a compo-
nent may, but not always will, transform data from the external perspective.

Data

A datum is an element of information that is transferred from a component, or
received by a component, via a connector.

The presence of data elements is the most significant distinction between the model of
software architecture defined by Perry and Wolf [1992] and the model used by much of
the research labelled software architecture. Boasson [1995] criticizes current software
architecture research for its emphasis on component structures and architecture develop-
ment tools, suggesting that more focus should be placed on data-centric duchitec
modeling. Similar comments are made by Jackson [1994].

A datum is an element of information that is transferred from a component, or received

by a component, via a connector. Examples include byte-sequences, messages,
marshalled parameters, andiaézed objects, but do not include information that is
permanently resident or hidden within a component. From the architectural perspective,

a “file” is a transformation that a file system component might make from a “file name”
datum received on its interface to@ggience of bytes recorded within an internally

hidden storage system. Components can also generate data, as in the case of a software
encapsulation of a clock or sensor.

The nature of the data elements within a network-based application architecture will
often determine whether or not a given architectstgle is approgate. This is particu-

larly evident in the comparison of mobile code design paradigms [Fuggetta et al., 1998],
where the choice must be made between interacting with a component directly or trans-
forming the component into a data element, trangigrit across a network, and then
transforming it back to a component that can be interacted with locally. It is impossible
to evaluate such an architecture without considering data elements at the architectural
level.

Configurations

A configuration is the structure of architectural relationships among componerys,
connectors, and data during a period of system run-time.

Abowd et al. [1995] define architecturdésciption as supporting the description of
systems in terms of three basic syntactic classes: components, which are the locus of
computation; connectors, which define the interactions between components; and
configurations, which are collections of interacting components and connectors. Various
style-specific conete notations may be used to regent these visually, facilitate the
description of legal computations and interactions, and constrain the set of desirable
systems.

Software Architectural Styles for Network-based Applications 5

2.1.3

2.2

Strictly speaking, one might think of a configuration as being equivalent to a set of
specific constraints on component interaction. For example, Perry and Wolf [1992]
include topology in their definition of architectural form relationships. However, sepa-
rating the active topology from more general constraints allows an architect to more
easily distinguish the active configuration from the potential domain of all legitimate
configurations. Additional rationale for distinguishing configurations within architec-
tural description languages is presented in Medvidovic and Taylor [1997].

Architectural Properties

The set of architectural properties of a software architecture includes all properties that
derive from the selection and arrangement of components, connectors, and data within
the system. Examples include both the functional properties achieved by the system and
non-functional properties, such as relative ease of evolution, reusability of components,
efficiency, and dynamic exterslity. The goal of architectural design is to create an
architecture with a set of architectural properties that form a superset of the system
requirements.

The relative importance of the various architectural properties depends on the nature of
the intended system. Section 3.3 examines the properties that are of particular interest to
network-based application architectures.

Architectural Styles

An architectural style is a coordinated set of architectural constraints that restrfcts
the roles/features of architectural elements and the allowed relationships amorjg
those elements within any architecture that conforms to that style.

Since an architecture embodies both functional and non-functional properties, it can be
difficult to directly compare architectures for different types of systems, or for even the
same type of system set in different environments. Styles are a mechanisnefpo-cat
rizing architectures and for defining their common characteristics [Di Nitto and Rosen-
blum, 1999]. An architectural style characterizes a family of systems that are related by
shared structural and semantic properties [Monroe et al., 1997]. Each style provides an
abstraction for the interactions of components, capturing thernee of a pattern of
interaction by ignoring the incidental details of the rest of the architecture [Shaw, 1990].

Perry and Wolf [1992] define architectural style as an abstraction of element types and
formal aspects from various specific architectures, perhaps concentratimiyon

certain aspects of an architecture. An architectural style entapsimportant deci-

sions about the architectural elements and emphasizes important constraints on the
elements and their relationships. This definition allows for styles that focus only on the
connectors of an architecture, or on specific aspects of the component interfaces.

In contrast, Garlan and Shaw [1993], Garlan et al. [1994], and Shaw and Clements
[1997] all define style in terms of a pattern of interactions among typed components.
Specifically, an architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together with a set of constraints
on how they can be combined [Garlan and Shaw, 1993]. This restricted view of architec-
tural styles is a direct result of their definition of software architecture — thinking of
architecture as a formal description, rather than as a running system, leads to abstrac-
tions based only in the shared patterns of box and line diagrams. Abowd et al. [1995] go

Software Architectural Styles for Network-based Applications

2.3

further and define this explicitly as viewing the collection of conventions that are used
to interpret a class of architectural descriptions as defining an architectural style.

New architectures can be defined as instances of specific styles [Di Nitto and Rosen-
blum, 1999]. Since architectural styles may address different aspects of software archi-
tecture, a given architecture may be composed of multiple styles. Likewise, a hybrid
style can be formed by combining multiple basic styles into a single coordinated style.

Unfortunately, using the term style to refer to a coordinated set of constraints often leads
to confusion. This usage differs substantially from the etymologstylgé which would
emphasize personalization of the design process. Loerke [1990] devotes a chapter to
denigrating the notion that personal stylistic concerns have any place in the work of a
professional architect. Instead, he describes styles as the critics’ view of past architec-
ture, where the available choice of materials, the community culture, or the ego of the
local ruler were responsible for the architectural style, not the designer. In other words,
Loerke views the real source of style in traditional building architecture to be the set of
constraints applied to the design, and attaining or copying a specific style should be the
least of the designer’s goals.

Architectural Patterns and Pattern Languages

In parallel with the software engineering research in architectural styles, the object-
oriented programming community has been exploring the use of design patterns and
pattern languages tescribe recurring abstractions in object-based software develop-
ment. A design pattern is defined as an important and recurring system construct. A
pattern language is a system of patterns organized in a structure that guides the patterns’
application [Kerth and Cunningham, 1997]. Both concepts are based onitheysiof
Alexander et al. [1977, 1979] with regard to building architecture.

The design space of patterns includes implementation concerns specific to the tech-
niques of object-oriented programming, such as classitaimee and interfaceompo-
sition, as well as the higher-level design issues addressed by architectural styles
[Gamma et al., 1995]. In some cases, architectural stggeriptons have been recast as
architectural patterns [Shaw, 1996]. However, a primary benefit of patterns is that they
can describe relatively complex protocols of interactions between objects as a single
abstraction [Monroe et al., 1997], thus including both constraints on behavior and
specifics of the implementation. In general, a patterrpaitern Anguage in the case of
multiple integrated patterns, can be thought of as a recipe for implementing a desired set
of interactions among objects. In other words, a pattern defines a process for solving a
problem by following a path of design and implementation choices [Coplien, 1997].

Like software architectural styles, the software patterns research hiasetesomewhat

from its origin in building architecture. Indeed, Alexander’s [1979] notiopatterns

centers not on recurring arrangements of architectural elements, but rather on the recur-
ring pattern of events—human activity and emotion—that take place within a space,

with the understanding that a pattern of events cannot be separated from the space where
it occurs. Alexander’s design philosophy is to identify patterns of life that are common

to the target culture and determine what architectural constraints are needed to differen-
tiate a given space such that it enables the desired patterns to occur naturally. Such
patterns exist at multiple levels of abstraction and at all scales.

Software Architectural Styles for Network-based Applications 7

2.4

As an element in the world, each pattern is arelationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and
a certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this
spatial configuration can be used, over and over again, toresolve the given
system of forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the world,
and the rule which tells us how to create that thing, and when we must create it.
It is both a process and a thing; both a description of a thing whiciiige,

and a description of the process which will generate thaig.

[Alexander, 1979]

In many ways, Alexander’s patterns have more in common with software architectural
styles than the design patterns of OOPL research. An architectural style, as a coordi-
nated set of constraints, is applied to a design space in order to induce the architectural
properties that are desired of the system. By applying a style, an architect is differenti-
ating the software design space in the hope that the result will better match the forces
inherent in the application, thus leading to systeshavior that emances the natural

pattern rather than conflicting with it.

Architectural Views

An architectural viewpoint is often application-specific and varies widely
based on the application domain. ... we have seen architectural viewpoints that
address a variety of issues, including: temporal issues, state and control
approaches, data representation, transaction life cycle, security safeguards,
and peak demand and graceful degradation. No doubtthere are many more
possible viewpoints. [Kerth and Cunninghan99¥]

In addition to the many architectures within a system, and the many architectural styles
from which the architectures are composed, it is also possible to view an architecture
from many different perspectives. Perry and Wolf [1992] describe three important views

in software architecture: processing, data, and connection views. A process view
emphasizes the data flow through the components and some aspects of the connections
among the components with respect to the data. A data view emphasizes the processing
flow, with less emphasis on the connectors. A connection view emphasizes the relation-
ship between components and the state of communication.

Multiple architectural views are common within case studies of specific architectures
[Bass et al., 1998]. One architectural design methodology, the 4+1 View Model
[Kruchten, 1995], organizes the description of a software architecture using five concur-
rent views, each of which addresses a specific set of concerns.

Network-based Application Architectures

3.1

Survey Scope

Architecture is found at multiple levels within software systems. This survey examines
the highest level of abstraction in software architecture, where the interactions among
components are capable of being realized in network communication. We limit our
discussion to styles for network-based application architectures in order to reduce the
dimensions of variance among the styles studied.

Software Architectural Styles for Network-based Applications

3.1.1

3.1.2

3.2

Network-based vs. Distributed

Tanenbaum and van Renesse [1985] make a distinction between distributed systems and
network-based systems: a distributed system is one that looks to its users like an ordi-
nary centralized system, but runs on multiple, independent CPUs. In contrast, network-
based systems are those capable of operation across a network, but not necessarily in a
fashion that is transparent to the user. In some cases it is desirable for the user to be
aware of the difference between an action that requires a network request and one that is
satisfiable on their local system, particularly when netwas&ge implies an extra trans-
action cost [Waldo et al., 1994]. Thisrsey covers natork-based systems by not

limiting the candidate styles to those that preserve transparency for the user.

The primary distinction between network-based architectures and software architectures
in general is that communication between components is restricted to message passing
[Andrews, 1991], or the equilent of message passing if a meféicient mechanism
can be selected atin-timebased on the location @bmponents [Taylor et al., 1996].

Application Software vs. Networking Software

Another restriction on the scope of this survey is that we limit our discussion to applica-
tion architectures, excluding the operating system, networking software, and some
architectural styles that would only use a network for systeppert (e.g., process

control styles [Garlan and Shaw, 1993]). Applications represent the “business-aware”
functionality of a system [Umar, 1997].

Application software architecture is an abstracievel of an overall system, in which

the goals of a user action are representable as architectural properties. For example, a
hypermedia application must lsencerned with the location ofiformation pages,
performing requests, and rendering data streams. This is in contrast to a networking
abstraction, where the goal is to move bits from one location to anotittesw regard

to why those bits are being moved. It is only at the application level that we can evaluate
design trade-offs based on the number of interactions per user action, the location of
application state, the effective throughput of all data streams (as opposed to the potential
throughput of a single data stream), the extent of communication being performed per
user action, etc.

Evaluating the Design of Network-based Architectures

An architecture can be evaluated at many levels. Implementation. Protocol. Interactions.
But functionality gets in the way. What we are interested in is a method of evaluating the
design of a software architecture, such that the design can be replacedovéchpver

time. [UNFINISHED]

Architectural styles do not generally include application knowledge. Instead, we focus
on the architectural properties that a style induces on a system. The specific needs of a
network-based application can then be matched against the properties of a given style in
order to determine the style’s suitability for use within an architecture.

The set of architectural properties of a software architecture includes both functional
properties and the equivalent of quality attributes [Bass et al., 1998]. A quality attribute
can be induced by the constraints of an architectural style, usuatiyatex by

applying a software engineering principle [Ghezzi et al., 1991] to an aspect of the archi-
tectural elements. For example, tmaform pipe-and-filtesstyle obtains the qualities of
reusability of components and configurability of the application by applying generality
to its component interfaces — constraining the poments to a single interface type.
Hence, the architectural constraint is “uniform component interface,” motivated by the

Software Architectural Styles for Network-based Applications 9

3.3

3.31

generality principle, in order to obtain two desirable qualities that will become the archi-
tectural properties of reusable and configurable components when that style is instanti-
ated within an architecture.

Architectural Properties of Key Interest

This section describes the architectural properties used to differentiate and classify
architectural styles for the survey. It is not intended to be a comprehensiveniiste|
included only those properties that are clearly influenced by the restricted set of styles
surveyed. Additional properties, sometimes referred to as software qualities, are covered
by most textbooks on software engineering (e.g., [Ghezzi et391]). Bass et al.

[1998] examine qualities in regards to software architecture.

Performance

One of the main reasons to focus on styles for network-based applications is because
component interactions can be the dominant factor in determining user-perceived
performance and network efficiency. Since the architectural style influences the nature
of those interactions, selection of an appiate architectural style can make the differ-
ence between success and failure in the deployment of a network-based application.

The performance of a network-based application is bound first by the application
requirements, then by the chosen interaction style, followed by the realized architecture,
and finally by the implemetation of each component. In other words, softwaerot

avoid the basic cost of achieving the application needs; e.g., if the application requires
that data be located on system A and processed on system B, then the software cannot
avoid moving that data from A to B. Likewise, an architecture cannot be any more effi-
cient than its interaction style allows; e.g., the cost of multiple interactions to move the
data from A to B cannot be any less than that of a single interaction from A to B.

Finally, regardless of the quality of an architecture, no interaction can take place faster
than a component implementation can produce data and its recipient can consume data.

Network Performance

Network performance measures are used to describe some attributes of communication.
Throughputs the rate at which information, including both application data and
communication overhead, is transferred between compor@nesheaccan be sepa-

rated into initial setup overhead and per-interaction overhead, a distinction which is
useful for identifying connectors that can share setup overhead across multiple interac-
tions @mortizatior). Bandwidthis a measure of the maximum available throughput over

a given network linklUsable bandwidthefers to that portion of bandwidth which is
actually available to the application.

Styles impact network performance by their influence on the number of interactions per
user action and the granularity of data elements. A style that encourages small, strongly
typed interactions will be efficient in an applicatiamvolving small data transfers

among known components, bwill cause excessive overheadthin applications that
involve large data transfers or negotiated interfaces. Likewise, a style that involves the
coordination of multiple components arranged to filter a large data stream will be out of
place in an application that primarily requires small control messages.

User-perceived Performance

User-perceived performance differs from network performance in that the performance
of an action is measured in terms of its impact on the user in front of an application

10

Software Architectural Styles for Network-based Applications

rather than the rate at which the network moves information. The primary measures for
user-perceived perforance are latency and completion time.

Latencyis the time period between initial stimulus and the first indication of a response.
Latency occurs at several points in the processing of a network-based application action:
1) the time needed for the application to recognize the etvettinitiated the action; 2)

the time required to setup the interactions between components; 3) the time required to
transmit each interaction to the components; 4) the time required to process each inter-
action on those components; and, 5) the time required to complete sufficient transfer and
processing of the result of the interactions before the application is able to begin
rendering a usable result. It is important to note that, although only (3) and (5) represent
actual network communication, all five points can be impacted by the architectural style.
Furthermore, multiple component interactions per user action are additizetay

unless they take place in parallel.

Completionis the amount of time taken to cofepe an application action. Completion
time is dependent upon all of the aforemiened measures. The difference between an
action’s completion time and its latency represents the degree to which the application is
incrementally processing the data being ree@. For example, aWeb browser that can
render a large image while it is being received providigsificantly better user-

perceived performance than one that waits until the entire image is completely received
prior to rendering, even though both experience the same network performance.

It is important to note that design considerations for optimitatgncywill often have

the side-effect of degrading completion time, and vice versa. For example, compression
of a data stream can produce a more efficient encoding if the algorithm samples a signif-
icant portion of the data before producing #ecoded transformation, rééng in a

shorter completion time to transfer the encoded data across the network. However, if
this compression is being performed on-the-fly in response to a user abgonhuff-

ering a large sample before transfer may produce an unaccefatdriey.Balancing

these trade-offs can be difficult, particularly when it is unknown whether the recipient
cares more about latencg.g., Web browsers) or completion (e.g., Web spiders).

Network Efficiency

An interesting observation about network-based applications is that the best application
performance is obtained by not using the network. This essentially means that the most
efficient architectural styles for a network-based application are those that can effec-
tively minimize use of the network when it is possible to do so, through reuse of prior
interactions (caching), reduction of the frequency of network interactioredation to

user actions (replicated data and disconnected operation), or lmyirgrthe need for

some interactions by moving the processing of data closer to the source of the data
(mobile code).

The impact of the various performance issues is often related to the scope of distribution
for the application. The benefits of a style under local conditions may become draw-
backs when faced with global conditions. Thus, the properties of a style must be framed
in relation to the interaction distance:tin a single process, across processes on a
single host, inside a local-area network (LAN), or spread across a wide-area network
(WAN). Additional concerns become evident when interactions across a WAN, where a
single organization is involved, are compared to interactions across the Internet,
involving multiple trust boundaries.

Software Architectural Styles for Network-based Applications 11

3.3.2

3.33

3.34

Scalability

Scalability refers to the ability of the architecture to support large numbers of compo-
nents, or interactions among components, within an active configuration. Scalability can
be improved by simplifying components, by distributing services across many compo-
nents (decentralizing the interactions), and by controlling interactions and configura-
tions as a result of monitoring. Styles influence these factors by determining the location
of application state, the extent of distribution, and the coupling between components.

Scalability is also impacted by the frequency of interactions, whether the load on a
component will be distributed evenly over time or occur in peaks, whether an interaction
requires guaranteed delivery or a best-effort, whether a request involves synchronous or
asynchronous handling, and whether the environment is controlled or anarchic (i.e., can
you trust the other components?).

Simplicity

The primary means by which architectural styles induce simplicity is by applying the
principle of separation of concerns to the allocation of functionality within components.
If functionality can be allocated such that thdividual components are substantially

less complex, then they will be easier to understand and implement. Likewise, such
separation eases the task of reasoning about the overall architecture. | have chosen to
lump the qualities of complexity, understandability, and verifiability under the general
property of simplicity, since they go hand-in-hand for a network-based system.

Applying the principle of generality to architectural elements also improves simplicity,
since it decreases the variability within an architecture. Generality of connectors leads
to middleware (Section 6.3).

Modifiability

Modifiability is about theease with which a change can be made to an application archi-
tecture. Modifiability can be further broken down into evolvability, extensibility,
customizability, configurability, and reusability, as described below. A particular
concern of network-based systems is dynamic modifiability [Oreizy et al., 1998], where
the modification is made to a deployed application without stopping and restarting the
entire system.

Even if it were possible to build a software system that perfectly matches the require-
ments of its users, those requirements will change over time just as society changes over
time. Because the components participating in a network-based application may be
distributed across multiple organizational boundaries, the system must be prepared for
gradual and fragmented change, where old and new impitatienscoexist, without
preventing the new implementations from making use of their extended capabilities.

Evolvability

Evolvability represents the degree to which a component implementation can be
changed without negatively impacting other components. Static evolution of compo-
nents generally depends on how well the architectural abstraction is enforced by the
implementation, and thus is not something unique to any particular architectural style.
Dynamic evolution, however, can be influenced by the styleiifdtudes constraints on

the maintenance and location of application state. The same techniques used to recover
from partial failure conditions in a distributed system [Waldo et al., 1994] can be used to
support dynamic eslution.

12

Software Architectural Styles for Network-based Applications

3.35

3.3.6

Extensibility

Extensibility is defined as the ability to add functadity to a system [Pountain et al.,
1995]. Dynamic extensibility implies that functionality can be added to a deployed
system without impacting the rest of the system. Extensibility is induced within an
architectural style by reducing the coupling between components, as exemplified by
event-based integration (Section 5.5.1).

Customizability

Customizability is a specialization of extensibility in that it refers to modifying a
component at run-time, specifically so that the component can then perform an unusual
service. A component is customizable if it can be extended by one client of tihmgtazo
nent’s services without adversely impacting other clients of that component [Fuggetta et
al., 1998]. Styles that support customization may also improve simplicity and scal-
ability, since service components can be reduced in size and complexity byhdire
implementing only the most frequent services and allowing infrequent services to be
defined by the client. Customizability is a property induced by the remote evaluation
(Section 5.4.2) andode-ondemand (Section 5.4.3) styles.

Configurability

Configurability is related to both extensibility and reusiépin that it refers to post-
deployment modification of components, or configurations of components, such that
they are capable of using a new service or data element type. The pipe-and-filter
(Section 5.1.1) and code-on-demand (Section 5.4.3) styles are two examples that induce
configurability of configurations and components, respectively.

Reusability

Reusability is a property of an application architecture if its components, connectors, or
data elements can be reused, without modification, in other applications. The primary
mechanisms for inducing reusability within architectural styles is reduction of coupling
(knowledge of identity) between components and constraining the generality of compo-
nent interfaces. The uniform pipe-and-filter style (Section 5.1.2) exemplifies these types
of constraints.

Visibility

Styles can also influence the visibility of interactiomghin a network-based applica-

tion by restricting interfaces via gerality or providing access to monitoring. Visibility

in this case refers to the ability of a component to monitor or mediate the interaction
between two other components. Visibility can enable improved performance via shared
caching of interactions, scalability throutdyered services, reliability through reflec-

tive monitoring, and security by allowing the interactions to be inspected by mediators
(e.g., network firewalls). The mobile agent style (Section 5.4.5) is an example where the
lack of visibility may lead to security concerns.

This usage of visibility differs from that in Ghezzi et al. [1991], where they are referring
to visibility into the development process rather thanpgheduct.

Portability

Software is portable if it can run in different environmenthfazi et al. 1991]. Styles

that induce portability include those that move code along with the data to be processed,
such as the virtual machine (Section 5.4.1) and mobile agent (Section 5.4.5) styles, and
those that constrain the data elements to a set of standardized formats.

Software Architectural Styles for Network-based Applications 13

3.3.7

Reliability

Reliability, within the perspective of application architectures, can be viewed as the
degree to which an architecture is susceptible to failure at the system level in the pres-
ence of partial failures within components, connectors, or data. Styles can improve reli-
ability by avoiding single points of failure, abling edundancy, allowing monitoring,

or reducing the scope of failure to a recoverable action.

Classification Methodology

4.1

4.2

The purpose of building software is not to create a specific topology of interactions or
use a particular component type — it is to create a system that meets or exceeds the
application needs. The style must conform to those needs, not the other way around.
Therefore, in order to provide useful design guidancdaasification of architectural
styles should be based on the architectural properties induced by thiese sty

Selection of Architectural Styles for Classification

The set of architectural styles included in the classification is by no means comprehen-
sive of all possible network-based application styles. Indeed, a new style can be formed
merely by adding a new architectural constraint to any one of the styles surveyed. The
goal is to describe a representative sample of styles, particularly those already identified
within the software architecture literature, and provide a framework by which other
styles can be added to the classification as theylaveloped.

| have intentionally excluded styles that do not enhance the communicatioteadn

tion properties when combined with one of the surveyed styles to form a network-based
application. For example, the blackboard architectural style [Nii, 1986] consists of a
central repository and a set of components (knowledge sources) that operate opportunis-
tically upon the repository. A blackboard architecture can be extended to a network-
based system by distributing the components, but the properties of such an extension are
entirely based on the interaction style chosen to support the distribution — notifications
via event-based integration, polliregla client-server, or replication of the repository.

Thus, there would be no added value from including it in the classification even though
the hybrid style is network-capable.

Style-induced Architectural Properties

The classification useglative dhanges in the architectural properties induced by each
style as a means of illustrating the effect of each architectural style when applied to a
system for distributed hypermedia. Note that the evaluation of a style for a gregn

erty depends on the type of system interaction being studied, as described in Section 3.2.
The architectural properties are relative in the sense that adding an architectural
constraint may improve or reduce a giveroperty, or simultaneously improve one

aspect of the property and reduce some other aspect of the property. Likewise,
improving one property may lead to the reduction of another.

Although our discussion of architectural styles wiltlude those applicable to a wide

range of network-based systems, our evaluation of each style will be based on its impact
upon an architecture for a single type of software: network-based hypermedia systems.
Focusing on a particular type of software allows us to identify the advantages of one
style over another in the same way that a designer of a system would evaluate those
advantages. Since we do not intend to declare any single style as being universally desir-

14

Software Architectural Styles for Network-based Applications

able for all types of software, regtting the focus of our evaluation simpteduces the
dimensions over which we need to evaluate. Evaluating the same styles for other types
of application software is an open area for future research.

4.3 Visualization
| use a table of style versus architectural properties as the primary visualization for this
classification. The table values indicate the relative influence that the style for a given
row has on a column’s property. Minus)(symbols accumulate for negative influences
and plus ¢) symbols for positive, with plus-minugj indicating that it depends on
some aspect of the problem domain. Although this is a gross simplification of the details
presented in each section, it does indicate the degree to which a style has addressed (or
ignored) an architectural property.
An alternative visualization would be a property-based derivation graph for classifying
architectural styles. The styles would be classified according to how they are derived
from other styles, with the arcs between styles illustrated by architectural properties
gained or lost. The starting point of the graph would be the null style (no constraints). It
is possible to derive such a graph directly from the descriptions in Section 5.
5 Architectural Styles for Network-based Applications
5.1 Data-flow Styles
£ £ > P >) = i = > >
£ S 9 £ 2 = 5 N = = = 2
¢ & 5 2 £ £ T & 2 3§ £ 3§ %
o] o = g £ Q i g 5 3 @ 5 T
Style Derivation z > w n n w w S O o > o @
PF + + + + +
UPF PF - + ++ ++ ++ +
5.1.1 Pipe and Filter (PF)

In a pipe and filter style, each component (filter) reads streams of data on its inputs and
produces streams of data on its outputs, usually while applying a transformation to the
input streams and computing incrementally so that output begins before the input is
completely consumed [Garlan and Shaw, 1993]. This style is also referred to as a one-
way data flow network [Andrews, 1991]. The constraint is that a filter must be
completely independent of other filters (zero coupling): it must not share state, control
thread, or identity with the other filters on its upstream and downstream interfaces
[Garlan and Shaw, 1993].

Abowd et al. [1995] provide an extensive fornuscription of the pipe and filter style
using the Z language. Théhorossoftware development environment for image
processing [Rasure and Young, 1992] provides a good example of using the pipe and
filter style to build applications.

Garlan and Shaw [1993] describe the advantageous properties of the pipe and filter style
as follows. First, PF allows the designer to understand the overall input/output of the
system as a simple composition of the behaviors of the individual filters (simplicity).
Second, PF supports reuse: any two filters can be hooked together, provided they agree
on the data that is being transmitted between them (reusability). Third, PF systems can

Software Architectural Styles for Network-based Applications 15

be easily maintained and enhanced: new filters can be added to existing systems (exten-
sibility) and old filters can be replaced by improved ones (evolvability).réguhey

permit certain kinds of specialized analysis (verifiability), such asughput and dead-

lock analysis. Finally, they naturally support concurrent execution (user-perceived
performance).

Disadvantages of the PF style include: propagation delay is added through long pipe-
lines, batch sequential processing occurs if afilter cannot incrementally process its
inputs, and no interactivity is allowed. A filter cannot interact with its environment
because it cannot know that any particubatput stream shares argroller with any
particular input stream. These properties decrease user-perceivedmréerif the
problem being addressed does not fit the pattern of a data flow stream.

One aspect of PF styles that is rarely mentioned is that there is an implied “invisible

hand” that arranges the configuration of filters in order to establish the overall applica-
tion. A network of filters istypically arranged just prior to each activation, allowing the
application to specify the configuration of filter components based on the task at hand

and the nature of the data streams (configurability). This controller function is consid-

ered a separate operational phase of the system, and hence a separate architecture, even
though one cannot exist without the other.

5.1.2 Uniform Pipe and Filter (UPF)
The uniform pipe and filter style adds the constraint that all filters must have the same
interface. The primary example of this style is found in the Unperating system,
where filter processes have an interface consisting of one input data stream of characters
(stdin) and two output data streams of characters (stdout aadstRestricting the
interface allows independently developed filters to be arranged at will to form new
applications. It also simplifies the task of understang how agiven filter works.
A disadvantage of the uniform interface is that it may reduce network performance if the
data needs to be converted to or from its natural format.
5.2 Replication Styles
£ £ 2
s 5 3 & =2 £ £ s . 2 _ 2z 2
s § § = & € @ £ 3 | £ 3 3
o a o © s = S = = o) 3 g S
3] o = 8 g S = 5 S o} @ S 3]
Style Derivation z > w n n w w S O o > a @
RR ++ + +
$ RR + + +
5.2.1 Replicated Repository (RR)

Systems based on the replicated repository style [Andrews, 1991] improve the accessi-
bility of data and scalability of services by having mdinan one process provide the

same service. These decentralized servers interact to provide clients the illusion that
there is just one, centralized service. Distributed filesystems, such as XMS [Fridrich and
Older, 1985], and remote versioning systems, like CVS [www.cyclic.com], are the
primary examples.

Improved user-perceived performance is the primary advantage, both by reducing the
latency of normal requests and enabling disitected operation in the face of primary
server failure or intentional roaming off the network. Simplicity remains neutral, since

16

Software Architectural Styles for Network-based Applications

Style

5.2.2

5.3

Derivation

the complexity of replication is offset by the savings of allowing network-unaware
components to operate transparently on locally replicated data. Maintaining consistency
is the primary concern.

Cache ($)

A variant of replicated repository is found in the cache style: replication of the result of
an individual request such that it may be reused by later requests. This form of replica-
tion is most often found in cases where the potential data set far exceeds the capacity of
any one client, as in the WWW [Berners-Lee, 1996], or where complete access to the
repository is unnecessary. Lazy replication occurs when data is replicated upon a not-
yet-cached response for a request, relying on locality of reference and commonality of
interest to propagate useful items into the cache for later reuse. Active replication can be
performed by pre-fetching cachable entries based on anticipated requests.

Caching provides slightly less improveméhan the reptiated repositorgtyle in terms

of user-perceived performance, since more requests will miss the caclbelgnd

recently accessed data will be available for disemiad operation. On the other hand,
caching is much easier to implement, doesn’t require as much processing and storage,
and is more efficient because data is transmitted only wherrégisested. The cache

style becomes network-based when it is combined with a client-stateless-server style.

Hierarchical Styles

Net Perform
UP Perform.
Efficiency
Scalability
Simplicity
Evolvability
Extensibility
Customiz.
Configur.
Reusability
Visibility
Portability
Reliability

Cs
LS
LCS
CsSs
Csss
LC$SS
RS
RDA

CS+LS
Cs
CSSs+$
LCS+C$SS
Cs
Cs

+
+
+

++ + + + +

+++ ++ ++ + + + +

+ o+ o+ 4+

531

Client-Server (CS)

The client-server style is the most frequently encountered of the architectural styles for
network-based applications. A server component, offering a set of services, listens for
requests upon those services. A client component, desiring that a service be performed,
sends a request to the server via a connector. The server either rejects or performs the
request and sends a response back to the client. A variety of client-server systems are
surveyed by Sinha [1992] and Umar [1997].

Andrews [1991] describes client-server components as follows: A client is a triggering
process; a server is a reactive process. Clients make requests that trigger reactions from
servers. Thus, a client initiates activity at times of its choosing; it often then delays until
its request has been serviced. On the other hand, a server waits for requests to be made
and then reacts to them. A server is usually a non-terminating process and often
provides service to more than one client.

Software Architectural Styles for Network-based Applications 17

5.3.2

5.3.3

Separation of concerns is the principle behind the client-server constraints. A proper
separation of functionality should simplify the server component in order toawnep
scalability. This simplification usually takes the form of moving all of the user interface
functionality into the client component. The separation also allows the two types of
components to evolve independently, provided that the interface doesn’t change.

The basic form of client-server does not constrain how application state isqreaatit
between client and server components. It is often referred to by the mechanisms used for
the connector implenmation, such as remote procedure call [Birrell and Nelson, 1984]

or message-oriented middleware [Umar, 1997].

Layered System (LS) and Layered-Client-Server (LCS)

A layered system is organized hierarchically, each layer providing services to the layer
above it and using services of the layer below it [Garlan and Shaw, 1993]. Although
layered system is considered a “pure” style, its use within netweaded systems is
limited to its combination with the client-server style to provide layered-client-server.

Layered systems reduce coupling across multiple layers by hiding the inner layers from
all except the adjacent outer layer, thus improving evolvability and reusability. Exam-
ples include the processing of layered communication protocols, such as the TCP/IP and
OSI protocol stacks [Zimmerman, 1980], and haade inteface libraries. The primary
disadvantage of layered systems is that they add overhead and latency to the processing
of data, reducing user-perceived performance [Clark and TennenHd8&].

Layered-client-server adds proxy and gateway components to the client-server style. A
proxy [Shapiro, 1986] acts as a shared server for one or more client components, taking
requests and forwarding them, with possible translation, to server components. A
gateway component appears to be a normal server to clients or proxiesdbest its
services, but is in fact forwarding thossguests, witlpossible translation, to its “inner-
layer” servers. These additional mediator components can be added in multiple layers to
add features like load balancing and security checking to the system.

Architectures based on layered-client-server are referred to as two-tiered, three-tiered,
or multi-tiered architectures in the information systems literature [Umar, 1997].

LCS is also a solution to managing identity in a large scale distributed system, where
complete knowledge of all servers would be prohibitively expensive. Instead, servers are
organized in layers such that rarely used services are handled by intermediaries rather
than directly by each client [Andrews, 1991].

Client-Stateless-Server (CSS)

The client-stateless-server style derives from client-server with the additional constraint
of no session state allowed on the server component. Each request from client to server
must contain all of the information necessary to understand the request, and cannot take
advantage of any stored context on the server. Application state is kept entirely on the
client.

These constraints improve the properties of visibility, reliability, and scalability. Visi-
bility is improved because a monitoring system does not have tobbegknd a single

request datum in order to determine the full nature of the request. Reliability is

improved because it eases the task of recovering from patrtial failures [Waldo et al.,
1994]. Scalability is improved because not having to store state between requests allows
the server component to quickly free resources and further simplifieleimgptation.

18

Software Architectural Styles for Network-based Applications

534

5.3.5

5.3.6

5.3.7

The disadvantage of client-stateless-server is that it may decrease network performance
by increasing the repetitive data (per-interaction overhead) sent in a series of requests,
since that data cannot be left on the server in a shared context.

Client-Cache-Stateless-Server (C$SS)

The client-cache-stateless-server style derives from the client-stateless-server and cache
styles via the addition of cache components. A cache acts as a mediator beleren

and server in which the responses to prior requests can, if they are considered cachable,
be reused in response to later requests thatguizaent and likely to resultin a

response identical to that in the cache if the request were to be forwarded to the server.
An example system that makes effective use of this style is Sun Microsystems’ NFS
[Sandberg et al., 1985].

The advantage of adding cache qmments is that they have tpetential to partially or
completely eliminate some interactions, improving efficiency and user-perceived perfor-
mance.

Layered-Client-Cache-Stateless-Server (LC$SS)

The layered-client-cache-stateless-server style derives from both layered-client-server
and client-cache-stateless-server through the addition of proxy and/or gateway compo-
nents. Two examples of systems that use an LC$SS style are the Internet domain name
system (DNS) and the World Wide Web’s HTTP [Fielding et al., 1999].

The advantages and disadvantages of LC$SS are just a combination of those for LCS
and C$SS. However, note that we don’t count the contributions of the CS style twice,
since the benefits are not additive if they come from the same ancestral derivation.

Remote Session (RS)

The remote session style is a variant of client-server that attempts to minimize the
complexity, or maximize the reuse, of the client components rather than the server
component. Each client initiates a session on the server and then invokes a series of
services on the server, finally exiting the session. Application state is kept entirely on
the server. This style is typically used when it is desired to access a remote service using
a generic client (e.g., TELNET [Postel and Reynolds, 1983]) or via an interface that
mimics a generic client (e.g., FTP [Postel and Reynolds, 1985]).

The advantages of the remote session style are that it is easier to centrally maintain the
interface at the server, reducing concerns about inconsistencies in deployed clients when
functionality is extended, and improves efficiency if the interactions make use of
extended session context on the server. The disadvantages are that it redleigitity

of the server, due to the stored application state, and reduces visibility of interactions,
since a monitor would have to know the complédtge of the server.

Remote Data Access (RDA)

The remote data access style [Umar, 1997] is a variant of client-server that spreads the
application state across both client and server. A client sends a database query in a stan-
dard format, such as SQL, to a remote server. The server allocates a workspace and
performs the query, which may result in a very large data set. The client can then make
further operations upon the result set (such as table joins) or retrieve the result one piece
at a time. The client must know about the data structure of the service to build structure-
dependent queries.

Software Architectural Styles for Network-based Applications 19

Style

54

Derivation

The advantages of remote data access are that adatgeset can be iteratively reduced
on the server side without transmitting it across the network, improving efficiency, and
visibility is improved by using a standard query language. The disadvantages are that
the client needs to understand the satambase manipulation concepts as the server
implementation (lacking simplicity) and storing application context on the server
decreases scdldity. Reliability also sifers, since partial failure can leave therk-

space in an unknown state. Transactiorch@nisms (e.g., two-phase commit) can be
used to fix the reliability problem, though at a costamfded compxity and interaction
overhead.

Mobile Code Styles

Mobile code styles use mobility in order to dynamically change the distance between

the processing and source of data or destination of results. These styles are comprehen-
sively examined in Fuggetta et al. [1998]. A site abstraction i®dhiced at the archi-
tectural level, as part of the active configuration, in order to take intowat the

location of the different components. Introducing the concept of location makes it
possible to model the cost of an interaction between components at the design level. In
particular, an interaction between components that share the same location is considered
to have negligible cost when compared to an interaction involving communication
through the network. By changing its location, a component may improve the proximity
and quality of its interaction, reducing interaction costs dreteby improving effi-

ciency and user-perceived performance.

In all of the mobile code styles, a data element is dynamically transformed into a
component. Fuggetta et al. [1998] use an analysis that compares the code’s size as a data
element to the savings in normal data sfar in order to determine whether mobility is
desirable for a given action. This would be impossible to model from an architectural
standpoint if the definition of software architecture excludata elements.

Net Perform
UP Perform.
Efficiency
Scalability
Simplicity
Evolvability
Extensibility
Customiz.
Configur.
Reusability
Visibility
Portability
Reliability

VM
REV
COD
LCODC$SS
MA

CS+VM

CS+VM
LC$SS+COD
REV+COD

+

+

+ 1

H O+ W

+

1 1
+

+ o+ + 4+

++ ++ +4+

if
T

++

+
+
+
H+
+
+
+
+
|
+

54.1

Virtual Machine (VM)

Underlying all of the mobile code styles is the notion of a virtual machine, or interpreter,
style [Garlan and Shaw, 1993]. The code must be executed in some fashferaphe
within a controlled environment to satisfy security and reliability concerns, which is
exactly what the virtual machine style provides. It is not, in itself, a network-based style,
but it is commonly used as such when combined with apament in the clienterver

style (REV and COD styles).

Scripting languages are the most common use of virtual machines, including general
purpose languages like Perl [Wall et al., 1996] and task-specific languages like Post-
Script [Adobe, 1985]. The primary benefits are the separation between instruction and
implementation on a particular platform (portability) and ease of extensibility. Visibility

20

Software Architectural Styles for Network-based Applications

54.2

543

544

is reduced because it is hard to know what an executable will do simply by looking at
the code. Simplicity is reduced due to the need to manage the evaluatioaremeint,

but that may be compensated in some cases as a result of simplifying the static function-
ality.

Remote Evaluation (REV)

In the remote evaluation style [Fuggetta et al., 1998], derived from the client-server and
virtual machine styles, a client component has the know-how necessary to perform a
service, but lacks the resources (CPU cycles, data source, etc.) required, which happen
to be located at a remote site. Consequently, the client sends the know-how to a server
component at the remote site, which in turn executes the code using the resources avail-
able there. The results of that execution are then sent back to the client. The remote eval-
uation style assumes that the provided code will be executed in a sheltered environment,
such that it won't impact other clients of the same server aside from the resources being
used.

The advantages of remote evaluation include the ability to customize the sergo-

nent’s services, which provides for imgved extensibility and customiziity, and

better efficiency when the code can adapt its actions to the environment inside the server
(as opposed to the client making a series of interactions to do the same}ic&jnip

reduced due to the need to manage the evaluation environment, but that may be compen-
sated in some cases as a result of simplifying the static server functionality. Scalability

is reduced; this can be improved with the server's management of the execution environ-
ment (killing long-running or resource-intensive code when resourcetighty but the
management function itself leads to difficulties regarding partial failure and reliability.
The most significant limitation, however, is the lack of visibility due to the client

sending code instead of standardized queries. Lack of visibility leads to obviolaydep
ment problems if the server cannot trust the clients.

Code on Demand (COD)

In the codeon-demand style [Eggetta et al.1998], a client component has access to a
set of resources, but not the know-how on how to process them. It sends a request to a
remote server for the code mesenting that know-howeceives that code, and executes

it locally.

The advantages of code-on-demand include the ability to add features to a deployed
client, which provides for improved extensibility and configurability, and better user-
perceived performance andieféncy when theode caradapt its actions to the client's
environment and interact with the user locally rather than through remote interactions.
Simplicity is reduced due to the need to manage Hadumation environment, but that

may be compensated in some cases as a result of simplifying the client’s statiorfitunct
ality. Scalability of the server is improved, since it can off-load work to the client that
would otherwise have consumed its resources. Like remote evaluation, the most signifi-
cant limitation is the lack of vigiility due to the server sending code instead of simple
data. Lack of visibility leads to obviousegloyment problems if the client cannot trust
the servers.

Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)

As an example of how some architectures are complementary, consider the addition of
code-on-demand to the layered-client-cache-stateless-server style discussed above.
Since the code can be treated as just another data elemenmtpdsisot interfere with

the advantages of the LC$SS style. An example is the HotJavaWeb browser

Software Architectural Styles for Network-based Applications 21

[java.sun.com], which allows applets and protocol extensions to be downloaded as typed
media.

The advantages and disadvantages of LCODCS$SS are just a combination of those for
COD and LC$SS. We could go further and discuss the combination of COD with other
CS styles, but this survey is not intended to be exhaustive (taLesing).

5.4.5 Mobile Agent (MA)
In the mobile agent style [Fuggetta et dl998], an entire computational c@onent is
moved to a remote site, along with its state, the code it needs, and possibly some data
required to perform the task. This can be considered a derivation of the remote evalua-
tion and code-on-demand styles, since the mobility works both ways.
The primary advantage of the mobile agent style, beyond those alreadibdesr
REV and COD, is that there is greatdynamism in the selection of when to move the
code. An application can be in the midst of processing information at one location when
it decides to move to another location, presumably in order to reduce the distance
between it and the next set of data it wishes to process. In addition, the reliability
problem of partial failure is reduced because the application state is in one location at a
time [Fuggetta et al., 1998].
5.5 Peer-to-Peer Styles
£ £ 2
s 5 3 & 2 £ £ s . 2 _ 2z 2
& § § = <2 € @ £ 3 | £ 3 3
o a s © s = S = = o) 3 g S
@ o i 5] S S < S S o) @ S ©
Style Derivation z > w n n w w o O x > a @
EBI -— + + + + + - -
Cc2 EBI+LCS - + ++ + + ++ + + +
DO CS+CS - + + + + - -
BDO DO+LCS - - ++ + + ++ - +
5.5.1 Event-based Integration (EBI)

The event-based integration style, also known as the implicit invocation or event system
style, reduces coupling between components by removing the need for identity on the
connector interface. Instead of invoking another component directly, a component can
announce (or broadcast) one or more events. Other components in a system can register
interest in that type of event and, when the event is announced, the system itself invokes
all of the registered components [Garlan and Shaw, 1993]. Examples include the Model-
View-Controller paradigm in Smalltalk-80 [Krasner and Pope, 1988] and the integration
mechanisms of many software engineering environments, including Field [Reiss, 1990],
SoftBench [Cagan, 1990], and Polylith [Purtilo, 1994].

The event-based integration style providesrmsg support for extensibility through the

ease of adding new components that listen for events, for reuse by encouraging a general
event interface and integration mechanism, and for evolution by allowing components to
be replaced without affecting the interfaces of other components [Garlan and Shaw,
1993]. Like pipe-and-filter systems, a higher-level configuring architecture is needed for
the “invisible hand” that places components on the event interface. Most EBI systems
also include explicitinvocation as a complementary form of interaction [Garlan and
Shaw, 1993]. For applications that are dominated by data monitoring, rather than data
retrieval, EBI can improve efficiency by removing the need for polling interactions.

22

Software Architectural Styles for Network-based Applications

5.5.2

5.5.3

The basic form of EBI system consists of one event bus to which all compolistats

for events of interest to them. Of course, this immediately leads to scalability issues with
regard to the number of notifications, event storms as other components broadcast as a
result of events caused by that notification, and a sipgiet of failure in the notifica-

tion delivery system. This can be ameliorated though the use of layered systems and
filtering of events, at the cost of simplictty.

Other disadvantages of EBI systems are that it can be hard to anticipate what will
happen in response to an action (poor understandability) and event notifications are not
suitable for exchanging large-grain data [Garlan and Shaw, 1993]. Aswg is no

support for recovery from partial failure.

Cc2

The C2 architectural style [Taylor et al., 1996] is directed at supporting large-grain reuse
and flexible composition of system components by enforcing satesindependence. It
does so by combining event-based integration with layered-client-server. Asynchronous
notification messages going down, and asynchronous request messages going up, are
the sole means of intercomponent communication. This enforces loose coupling of
dependency on higher layers (service requests magraeed) and zero coupling with

lower levels (no knowledge of notifiti@an usage), impving control over the system
without losing most of the advantages of EBI.

Notifications are announcements oftatechange within a component. C2 does not
constrain what should be included with a natification: a flag, a delta of state change, or a
complete state representation are all possibilities. A connector's priraappnsibity

is the routing and broadcasting of messages; itsrsay responsility is message

filtering. The introduction of layered filtering of messages solves the EBI problems with
scalability, while improving evolvability and reusability as well. Heavyweight connec-
tors that include monitoring capabilities can be used to improve visibility and reduce the
reliability problems of partial failure.

Distributed Objects

The distributed objects style organizes a system as a set of components interacting as
peers. An object is an entity that encapsulates some private state information or data, a
set of associated operations or procedures that manipulate the data, and possibly thread
of control so that collectively they can be considered a single unit [Chin and Chanson,
1991]. In gmeral, an object’state is comletely hdden and protected from alttoer

objects. The only way it can be examined or modified is by makiregaest or invoca-

tion on one of the object’s publicly accessible operations. This creates a well-defined
interface for each object, enabling the specification of an object's operations to be made
public while at the same time keeping the implementation of its operations and the
representation of its state information private, thus improving eviltab

An operation may invoke other operations, possibly on other objects. These operations
may in turn make invocations on others, and so on. A chain of related invocations is
referred to as an action [Chin and Chanson, 1991]. State is distributed among the
objects. This can be advantageous in terms of keeping the state where it is most likely to
be up-to-date, but has the disadvantage in that it is difficult to obtain an overall view of
system activity (poor visibility).

In order for one object to interact with another, it must know the identity of that other
object. When the identity of an object changes, it is necessary to modify all other objects
that explicitly invoke it [Garlan and Shaw, 1993]. There must be some controller object
that is responsible for maintaining the system state in order to complete the application

Software Architectural Styles for Network-based Applications 23

554

requirements. Central issues for distributed object systems include: object management,
object interaction management, and resource mamant [Chin andChanson1991].

Object systems are designed to isolate the data being processed. As a consequence, data
streaming is not supported in general.vitver, this does pvide better support for
object mobility when combined with the mobile agent style.

Brokered Distributed Objects

In order to reduce the impact of identity, modern distributed object systems typically use
one or more intermediary styles to facilitate communication. This includes event-based
integration and brokered client/server [Buschmann etlbg]. The brokered distrib-

uted object style introduces name resolver components whose purpose is to answer
client object requests for general service names with the specific name of an object that
will satisfy the request. Although improving reusability and evolvability, the extra level

of indirection requires additional network interactions, reducing efficiency and user-
perceived performance.

Brokered distibuted object systems are currently dominated by the industrial standards
development of CORBA within the OMG [1997] and the international standards devel-
opment of Open Distributed Processing (ODP) within ISO/IEC [1995].

In spite of all the interest associated with distited objects, they fare poorly when
compared to most other network-based architectural styles. They are best used for appli-
cations that involve the remote invocation of encdgtd services, such as hardware
devices, where the efficiency and frequency of network interactions is less a concern.

Related Work

6.1

I include here only those areas of research tiestcribe, define, or ebody software
architectural styles. Other areas for software architectural research include architectural
analysis techniques, architecture recovery and reengineering, tools and environments for
architectural design, architecture refinement from specification to implementation, and
case studies of deployed software architectures [Garlan and Perry, 1995].

Classification of Architectural Styles and Patterns

The area of research most directly related to this survey is the identification and classifi-
cation of architectural styles and architecture-level patterns.

Shaw [1990] describes a few architectural styles, later expanded in Garlan and Shaw
[1993]. A preliminary classification of these styles is presented in Shaw and Clements
[1997] and repeated in Bass et al. [1998], in which a two-dimensional, tabular classifica-
tion strategy is used with control and data issues as the primary axes, organized by the
following categories of features: which kinds of componentsamhectors are used in

the style; how control is shared, allocated, andgfarred among the comonents; how

data is communicated through the system; how data and control interact; and, what type
of reasoning is compatible with the style. The primporpose of the taxonomy is to

identify style characteristics, rather than to assist in their comparisoon@iiudes with

a small set of “rules of thumb” as a form of design guidance

Unlike this survey, the Shaw and Clement89Y] classification does not assist in evalu-
ating designs in a way that is useful to an application designer. The problem is that the
purpose of building software is not to build a specific shape, topology or component
type, so organizing the classification in that fashion does not help a designer find a style

24

Software Architectural Styles for Network-based Applications

6.2

6.3

that corresponds to their needs. It also mixes the esserffededices among styles with
other issues which have only iidental significance, and obscures the derivation rela-
tionships among styles. Furthermore, it does not focus on any particular type of archi-
tecture, such as network-based applications. Finally, it does not describe how styles can
be combined, nor the effect of their combination.

Buschmann and Meunier [1995] describe a classification scheme that organizes patterns
according to granularity of abstraction, functionality, and structural principles. The
granularity of abstraction separates patterns into three categories: architectural frame-
works (templates for architectures), design patterns, and idioms. Their classification
addresses some of the same issues as this survey, such as separation of concerns and
structural principles that lead to architectural properties, but only covers two of the
architectural styles described here. Their classification is considerably expanded in
Buschmann et al. [1996] with more extensive discussion of architectural patterns and
their relation to software architecture.

Zimmer [1995] organizes design patterns using a graph based on theirnskdgis,

making it easier to understand the overall structure of the patterns in the Gamma et al.
[1995] catalog. However, the patterns classified are not architectural patterns, and the
classification is based exclusively on derivation or uses relationships rather than on
architectural properties.

Distributed Systems and Programming Paradigms

Andrews [1991] surveys how processes in a distributed program interact via message
passing. He defines concurrent programs, distributed programs, kinds of processesin a
distributed program (filters, clients, servers, peerdgraction paradigms, and commu-
nication channels. Interaction paradigms represent the communication aspects of soft-
ware architectural styles. He describes paradigms for one-way data flougthr

networks of filters (pipe-and-filter), client-server, heartbeat, probe/echo, broadcast,
token passing, replicated servers, and replicated workers with bag of tasks. However, the
presentation is from the perspective of multiple processes cooperating on a single task,
rather than general network-based architectural styles.

Sullivan and Notkin [1992] provide a survey of implicitinvocation research and

describe its application to improving the evolution quality of software tool suites.

Barrett et al. [1996] present a survey of event-based integration mechanisms by building
a framework for comparison and then seeing how some systems fit within that frame-
work. Rosenblum and Wolf [1997] investigate a design frameworkrfarnet-scale

event notification. All are coneceed with the scope and requirements of an EBI style,
rather than providing solutions for network-based systems.

Fuggetta et al. [1998] provide a thorough examination and classification of mobile code
paradigms. This survey builds upon their work to the extent that | compare the mobile
code styles with other network-capable styles, alattg@them within a single frame-

work and set of architectural definitions.

Middleware

Bernstein [1996] defines middleware as a distributed system service that includes stan-
dard programming interfaces and protocols. These services are called middleware
because they act as a layer above the OS and networking software and below industry-
specific applications. Umar [1997] presents an extensive treatment of the subject.

Software Architectural Styles for Network-based Applications 25

6.4

6.5

Architecture research regarding middleware focuses on the problems and effects of inte-
grating components with off-the-shelf middleware. Di Nitto and Rosenblum [1999]
describe how the usage of middleware and priegef components can influence the
architecture of a system being developed and, conversely, how specific architectural
choices can constrain the selection of middleware. Dashofy et al. [1999] discuss the use
of middleware with the C2 style.

Garlan et al. [1995] point out some of the architectural assumptions within off-the-shelf
components, examining the authors’ problems with reusing subsystems in creating the
Aesop tool for architectural design [Garlan et al., 1994]. They classify the problems into
four main categories of assumptions that can contribute to architectural mismatch:
nature of components, nature of connectors, global architectural structure, and construc-
tion process.

Design Methodologies

Most early research on software architecture was concentrated on design methodolo-
gies. For example, object-oriented design [Bodi986]advocates a way to structure
problems that leads naturally to an object-based architecture (or, more accurately, does
not lead naturally to any other form of architecture). One of the first design methodolo-
gies to emphasize design at the architectural level is Jackson System Development
[Cameron, 1986]. JSD intentionally structures the analysis of a problem so that it leads
to a style of architecture that combines pipe-and-filter (data flow) and process control
constraints. These design methodologies tend to produce only one style of architecture.

There has been some initial work investigating methodologies for the analysis and
development of architectures. Kazman et al. have described design methods for eliciting
the architectural aspects of a design through scenario-based analysis with SAAM [1994]
and architectural trade-off analysis viaATAM [1999]. ShEM95] compares a variety

of box-and-arrow designs for an automobile cruise control system, each done using a
different design methodology and encompassing several architectural styles.

Handbooks for Design, Design Patterns, and Pattern Languages

Shaw [1990] advocates the development of architectural handbooks along the same
lines as traditional engineering disciplines. As discussed in Section 2.3, the object-
oriented programming community has taken the lead aupcing catalogs of design
patterns, as exemplified by the “Gang of Four” book [Gamma efl8P5] and the

essays edited by Coplien and Schmit®95].

Software design patterns tend to be more problem-oriented than architectural styles.
Shaw [1996] presents eight example architectural patterns based on the architectural
styles described in [Garlan and Shaw, 1993], including information on the kinds of
problems best suited to each architecture. Buschmann et al. [1996] provide a compre-
hensive examination of the architectural patterns common to object-based development.
Both references are purely descriptive and make no attempt to compare or illustrate the
differences among architectural patterns.

Tepfenhart and Cusick [1997] use a two dimensional map to differentiate among
domain taxonomies, domain models, architectural styles, frameworks, kits, design
patterns, and applications. In the topology, design patterns are predefined design struc-
tures used as building blocks for a software architecture, whereas architectural styles are
sets of operational characteristics that identify an architectural family independent of
application domain. However, they fail to define architecture itself.

26

Software Architectural Styles for Network-based Applications

6.6

6.7

Reference Models and Domain-specific Software Architectures (DSSA)

Reference models are developed to provide conceptual frameworks for describing archi-
tectures and showing how components are related to each other [Shaw, 1990]. The
Object Management Architecture (OMA), developed by the OMG [1995] as a reference
model for brokered distributed object architectures, specifies how objects are defined
and created, how client applications invoke objects, and how objects can be shared and
reused. The emphasis is on management of distributed objects, rather than efficient
application interaction.

Hayes-Roth et al. [1995] define domain-specific software architecture (DSSA) as
comprising: a) a reference architecture, which describes a general computational frame-
work for a significant domain of applications, b) a component library, which contains
reusable chunks of domain expertise, and c) an application configuration method for
selecting and configuring components within the architecture to meet particular applica-
tion requirements. Tracz [1995] provides a general overview of DSSA.

DSSA projects have been successful at transferring architectural decisions to running
systems by restricting the software development space to a specific architectural style
that matches the domain requirements [Medvidovic et al., 1999]. Examples include
ADAGE [Batory et al., 1995] for avionics, AlIS [Hayes-Roth et al., 1995] for adaptive
intelligent systems, and MetaH [Vestal, 1996] for missile guidance, navigation, and
control systems. DSSA emphasize reuse of components within a common architectural
domain, rather than selecting an architectural style that is specific to each system.

Architecture Description Languages (ADL)

Most of the recent published work regarding software architectures is in the area of
architecture description languages (ADL). An ADL is, according to Medvidovic and
Taylor [1997], a language that provides features for the explicit specification and
modeling of a software system’s conceptual architecture, including at ianonim:
components, component interfaces, connectors, and architectural configurations.

Darwin is a declarative language which is intended to be a general purpose notation for
specifying the structure of systems composed of diverse components using diverse inter-
action mechanisms [Magee et al., 1995]. Darwin’s interesting qualities are that it allows
the specification of distributed architectures and dynamiaaiyposed architectures
[Magee and Kramer,996].

UniCon [Shaw et al., 1995] is a language and associated toolset for composing an archi-
tecture from a restricted set of component and connector examples. Wright [Allen and
Garlan, 1997] provides a formal basis for specifying the interactions between architec-
tural components by specifying connector types by their interaction protocols.

Like design methodologies, ADLs often introduce specific architectural assumptions
that may impact their ability to describe some architectural styles, and may conflict with
the assumptions in existing middleware [Di Nitto and Rosenblum, 1999]. In some cases,
an ADL is designed specifically for a single architectural style, thus improving its
capacity for specialized description and analysis at the cost of generality. For example,
C2SADEL [Medvidovic et al., 1999] is an ADL designed specifically to describe archi-
tectures developed in the C2 style [Taylor et al., 1996]. In contrast, ACME [Garlan et
al., 1997] is an ADL that attempts to be as generic as possible, but with the trade-off
being that it doesn’t support style-specific analysis.

Software Architectural Styles for Network-based Applications 27

6.8 Formal Architectural Models

Abowd et al. [1995] claim that architectural styles can be described formally in terms of
a small set of mappings from the syntactic domain of architectural descrigbors
and-line diagrams) to the semantic domain of architectural meaning. However, this
assumes that the architecture is the description, rather than an abstraction of a running
system.

Inverardi and Wolf [1995] use the Chemical Abstract Machine (CHAM) formalism to
model software architecture elements as chemicals whose reactions are controlled by
explicitly stated rules. It specifies the behavior of components according to how they
transform available data elements and uses caitipo rules to propagate the indi-

vidual transformations into an overall system result.While this is an interesting model, it
is unclear as to how CHAM could be used to describe any form of architecture whose
purpose goes beyond transforming a data stream.

Rapide [Luckham and Vera, 1995] is a concurrent, event-based simulation language
specifically designed for defining and simulating system architectures. The simulator
produces a partially-ordered set of events that can be analyzed for conformance to the
architectural constraints on interconnection. Le Métayer [1998] presents a formalism for
the definition of architectures in terms of graphs and graph grammars.

Conclusions

Each architectural style promotes a certigipe of interaction among components.
When components are distributed across a wide-area network, use or misuse of the
network drives application usability. Byharacteizing styles by their influence on
architectural properties, and particularly on network-based apigicperformance, we
gain the ability to better choose a software design thapropriate for the application.

The primary contributions of this survey are the development of a comprehensive set of
definitions for software architecture and architectural styles, identification of the archi-
tectural properties that are most influenced by the constraints of each style, and a classi-
fication of styles according to those properties.

There are, however, a couple limitations with the chosen classification. First, the evalua-
tion of all networkbased styles against the generic notion of network commumicat
rather than a specific type of communication, leads to difficulty in accurate comparisons
between styles that have different properties depending on the type of communication.
For example, many of the good qualities of the pipe-and-filter style disappear if the
communication is fine-grained control messages, and are not applicable at all if the
communication requires user interactivity. Likewise, layered caching only adds to
latency, without any benefit, if none of the responses to client requests are cachable.
This type of distinction does not appear in the classification, and is only addressed infor-
mally in the discussion of each style. | believe this limitation can be overcome by
creating separate classification tables for each type of communication problem.
Example problem areas would include, among others, large grain data retrieval, remote
information monitoring, search, remote control systems, and distributed processing.

A second limitation is with the grouping of architectural properties. In some cases, it is

better to identify the specific aspects of, for example, understandability and verifiability

induced by an architectural style, rather than lumping them together under the rubric of
simplicity. This is particularly the case for styles which might improve vebifity at

the expense of understandability. However, the more abstract notion of a property also

28

Software Architectural Styles for Network-based Applications

has value as a single metric, since we do not want to make the classification so specific
that no two styles impact the same category. Goiation would be a classificatiotihat
presented both the specific properties and a summary property.

Regardless, this initial survey and classification is a necessary prerequisite to any further
classifications that might address its limitations.

8 Acknowledgments

I'd like to thank Nenad Medvidovic for providing me with a copy of some hard-to-
obtain papers and pointing me in the diien of others. Peyman @izy's survey

[Oreizy, 1998] provided a useful outline for structuring this survey. This version has
benefited from comments on earlier drafts by Richard N. Taylor, Mark S. Ackerman,
and David S. Rosenblum.

9 References

[Abowd et al., 1995] G. D. Abowd, R. Allen, and D. Garlan. Formalizing styletderstand descriptions of
software architecture. ACM Transactions on Software Engineering and Methodology,
4(4), Oct. 1995, pp. 319-364. A shorter version also appeared as: Using styldeo
stand descriptions of software architecture. In Proceedings of the First AG8GFT
Symposium on the Foundations of Software Engineering (SIGSOFT*'93), Los Angeles,
CA, Dec. 1993, pp. 9-20.

[Adobe, 1985] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985.

[Alexander et al., 1977] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel.
A Pattern Language. Oxford University Press, New York, 1977.

[Alexander, 1979] C. Alexander. The Timeless Way of Building. Oxford University Press, New York,
1979.

[Allen and Garlan, 1997] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions
on Software Engineering and Methodology, 6(3), JL&@7. A shorter version also
appeared as: Formalizing architectural connection. In Proceedings of the 16th Interna-
tional Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 71-80. Also
as: Beyond Definition/Use: Architectural Interconnection. In Proceedings of the ACM
Interface Definition Language Workshop, Portland, Oregon, SIGPLAN Notices, 29(8),
Aug. 1994.

[Andrews, 1991] G. Andrews. Paradigms for process interaction in distributed programs. ACM
Computing Surveys, 23(1), Mar. 1991, pp. 49-90.

[Barrett et al., 1996] D. J. Barrett, L. A. Clarke, P. L. Tarr, A. E. Wise. A Framework for Event-Based Soft-
ware Integration. ACM Transactions on Software Engineering and Methodology, 5(4),
Oct. 1996, pp. 378-421.

[Bass et al., 1998] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Mass., 1998.

[Batory et al., 1995] D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE avionics reference
architecture. In Proceedings of AIAA Computing in Aerospace 10, San Antonio, 1995.

Software Architectural Styles for Network-based Applications 29

[Berners-Lee, 1996] T. Berners-Lee. WWW: Past, present, and future. IEEE Computer, 29(10), October
1996, pp. 69-77.

[Berners-Lee et al., 1998] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. Internet RFC 2396, Aug. 1998.

[Bernstein, 1996] P. Bernstein. Middleware: A model for distributed systems services. CACM,99&%.
pp. 86-98.

[Birrell and Nelson, 1984] A. D. Birrell and B. J. Nelson. Implementing remote procedure call. ACM Transactions
on Computer Systems, 2, Jan. 1984, pp. 39-59.

[Boasson, 1995] M. Boasson. The artistry of software architecture. IEEE Software, 12(6), Nov. 1995, pp.
13-16.

[Booch, 1986] G. Booch. Object-oriented development. IEEE Transactions on Software Engineering,
12(2), Feb. 1986, pp. 211-221.

[Buschmann and Meunier, 1995 F. Buschmann and R. Meunier. A system of patterns. Coplien and Schmidt (eds.),
Pattern Languages of Program Design, Addison-Wesley, 1995, pp. 325-343.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented
Software Architecture: A system of patterns. John Wiley & Sons Ltd., England, 1996.

[Cagan, 1990] M. R. Cagan. The HP SoftBench Environment: An architecture for a new generation of
software tools. Hewlett-Packard Journal, 41(3), June 1990, pp. 36-47.

[Cameron, 1986] J. R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering,
12(2), Feb. 1986, 222-240.

[Chin and Chanson, 1991] R. S. Chin and S. T. Chanson. Distributed object-based programming systems. ACM
Computing Surveys, 23(1), Mar. 1991, pp. 91-124.

[Clark and Tennenhouse, 1990] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new genera-
tion of protocols. In Proceedings of ACM SIGCOMM'90 Symposium, Phelatia,
PA, Sep. 1990, pp. 200-208.

[Coplien and Schmidt, 1995] J. O. Coplien and D. C. Schmidt, ed. Pattern Languages of Program Design. Addison-
Wesley, Reading, Mass., 1995.

[Coplien, 1997] J. O. Coplien. Idioms and Patterns as Architectural Literature. IEEE Software, 14(1),
Jan. 1997, pp. 36-42.

[Dashofy et al., 1999] E. M. Dashofy, N. Medvidovic, R. N. Taylor. Using off-the-shelf middleware to imple-
ment connectors in distributed software architectures. In Proceedings of the 1999 Inter-
national Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp. 3-12.

[DeRemer and Kron, 1976] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-
small. IEEE Transactions on Software Engineering, SE-2(2), June 1976, pp. 80-86.

[Di Nitto and Rosenblum, 1999] E. Di Nitto and D. Rosenblum. Exploiting ADLSs to specify architectural styles
induced by middleware infrastructures. In Proceedings of the 1999 International Confer-
ence on Software Engineering, Los Angeles, May 16-22, 1999, pp. 13-22.

[Fielding et al., 1999] R.T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Internet RFC 2616, June
1999. [Obsoletes RFC 2068, Jan. 1997.]

[Fridrich and Older, 1985] M. Fridrich and W. Older. Helix: The architecture of the XMS distributed file system.
IEEE Software, 2, May 1985, pp. 21-29.

30 Software Architectural Styles for Network-based Applications

[Fuggetta et al., 1998] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Transac-
tions on Software Engineering, 24(5), May 1998, pp2-361.

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reus-
able Object-oriented Software. Addison-Wesley, Reading, Mass., 1995.

[Garlan and llias, 1990] D. Garlan and E. llias. Low-cost, adaptable tool integration policies for integrated envi-

ronments. In Proceedings of the ACM SIGSOFT ‘90: Fourth Symposium on Software
Development Environments, Dec. 1990, pp. 1-10.

[Garlan and Shaw, 1993] D. Garlan and M. Shaw. An introduction to software architecture. Ambriola & Tortola

(eds.), Advances in Software Engineering & Knowledge Engineering, vol. Il, World
Scientific Pub Co., Singapore, 1993, pp. 1-39.

[Garlan et al., 1994] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design envi-

ronments. In Proceedings of the Second ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (SIGSOFT‘94), New Orleans, Dec. 1994, pp. 175-188.

[Garlan and Perry, 1995] D. Garlan and D. E. Perry. Introduction to the special issue on software architecture.
IEEE Transactions on Software Engineering, 21(4), Apr. 1995, pp. 269-274.

[Garlan et al., 1995] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch, or, Why it's hard to
build systems out of existing parts. In Proceedings of the 17th International Conference

on Software Engineering, Seattle, WA, 1995. Also appears as: Architectural mismatch:
Why reuse is so hard. IEEE Software, 12(6), Nov. 1995, pp. 17-26.

[Garlan et al., 1997] D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description language. In
Proceedings of CASCON'97, Nov. 1997.

[Ghezzi et al., 1991] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice-Hall, 1991.

[Hayes-Roth et al., 1995] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A domain-

specific software architecture for adaptiveelligent systems. IEEE Transactions on
Software Engineering, 21(4), Apr. 1995, pp. 288-301.

[Inverardi and Wolf, 1995] P. Inverardi and A. L. Wolf. Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE Transactions on Software Engi-
neering, 21(4), Apr. 1995, pp. 373-386.

[ISO/IEC, 1995] ISO/IEC JTC1/SC21/WG7. Reference Model of Open Distributed Processing. ITU-T

X.901: ISO/IEC 10746-1, 07 June 1995.

[Jackson, 1994] M. Jackson. Problems, methods, and specialization. IEEE Software, 11(6), [condensed

from Software Engineering Journal], Nov. 1994. pp. 57-62.

[Kazman et al., 1994] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A method for analyzing the
properties of software architectures. In Proceedings of the 16th Internationé&ic
ence on Software Engineering, Sorrento, Italy, May 1994, pp. 81-90.

[Kazman et al., 1999] R. Kazman, M. Barbacci, M. Klein, S. J. Carriére, and S. G. Woods. Experience with
performing architecture tradeoff analysis. In Proceedings of the 1999 International
Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp. 54-63.

[Kerth and Cunningham, 1997] N. L. Kerth and W. Cunningham. Using patterns to improve our architectural vision.
IEEE Software, 14(1), Jan. 1997, pp. 53-59.

[Krasner and Pope, 1988] G. E. Krasner and S. T. Pope. A cookbook for using the Model-View-Controller user

interface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1(3),
Aug.-Sep. 1988, pp. 26-49.

Software Architectural Styles for Network-based Applications 31

[Kruchten, 1995] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995,
pp. 42-50.

[Le Métayer, 1998] D. Le Métayer. Describing software architectural styles using graph grammars. IEEE
Transactions on Software Engineering, 24(7), Jul. 1998, pp. 521-533.

[Loerke, 1990] W. C. Loerke. On Style in Architecture. F. Wils@nchitecture: Fundamental Issues
Van Nostrand Reinhold, New York, 1990, pp. 203-218.

[Luckham et al., 1995] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Specifi-
cation and analysis of system architecture using Rapide. IEEE Transactions on Software
Engineering, 21(4), Apr. 1995, pp. 336-355.

[Luckham and Vera, 1995] D. C. Luckham and J. Vera. An event-based architecture definition language. IEEE
Transactions on Software Engineering, 21(9), Sep. 1995, pp. 717-734.

[Maes, 1987] P. Maes. Concepts and experiments in computational reflection. In Proceedings of
OOPSLA ‘87, Orlando, Florida, Oct. 1987, pp. 147-155.

[Magee et al., 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software archi-
tectures. In Proceedings of the 5th European Software Engineering Conference
(ESEC'95), Sitges, Spain, Sep. 1995, pp. 137-153.

[Magee and Kramer, 1996] J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceedings of
the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering
(SIGSOFT'96), San Francisco, Oct. 1996, pp. 3-14.

[Medvidovic and Taylor.1997] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing archi-
tecture description languages. In Proceedings of the 6th European Software Engineering
Conference held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 60-76.

[Medvidovic, 1998] Architecture-based specification-time software evolution. Ph.D. Dissertation, University
of California, Irvine, Dec. 1998.

[Medvidovic et al., 1999] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and environment for
architecture-based software development and evolution. In Proceedings of the 1999
International Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp.
44-53.

[Monroe et al, 1997] R.T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural Styles, Design
Patterns, and Objects. IEEE Software, 14(1), Jan. 1997, pp. 43-52.

[Moriconi et al., 1995] M. Moriconi, X. Qian, and R. A. Riemenscheider. Correct architecture refinement.
IEEE Transactions on Software Engineering, 21(4), April 1995, pp. 356-372.

[Nii, 1986] H. Penny Nii. Blackboard systems. Al Magazine, 7(3):38-53 and 7(4):821985.

[OMG, 1995] Object Management Group. Object Management Architecture Guide, Rev. 3.0. Soley &
Stone (eds.), New York: J. Wiley, 3rd ed., 1995.

[OMG, 1997] Object Management Group. The Common Object Request Broker: Architecture and
Specification (CORBA 2.1). <http://www.omg.org/>, Aug. 1997.

[Oreizy et al., 1998] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software evolu-
tion. In Proceedings of the 1998 International Conference on Software Engineering,
Kyoto, Japan, Apr. 1998.

[Oreizy, 1998] P. Oreizy. Decentralized software evolution. Unpublished manuscript (Phase Il Survey
Paper), Dec. 1998.

32 Software Architectural Styles for Network-based Applications

[Parnas, 1971] D. L. Parnas. Information distribution aspects of design methodology. In Proceedings of
IFIP Congress 71, Ljubljana, Aug. 1971, pp. 339-344.

[Parnas, 1972] D. L. Parnas. On the criteria to be used in decomposing system®dhtiesn Commu-
nications of the ACM, 15(12), Dec. 1972, pp. 1053-1058.

[Parnas, 1979] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Transac-
tions on Software Engineering, SE-5(3), Mar. 1979.

[Parnas et al., 1985] D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of complex
systems. IEEE Transactions on Software Engineering, SE-11(3), 1985, pp. 259-266.

[Perry and Wolf, 1992] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4), Oct. 1992, pp. 40-52.

[Postel and Reynolds, 1983] J. Postel and J. Reynolds. TELNET Protocol Specifitatésnet STD 8, RFC 854
May 1983.

[Postel and Reynolds, 1985] J. Postel and J. Reynolds. File Transfer Pratdeniet STD 9, RFC 95®ctober
1985.

[Pountain et al., 1994] D. Pountain and C. Szyperski. Extensible software systems. Byte, May 1994, pp. 57-62.

[Prieto-Diaz et al., 1986] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal of
Systems and Software, 6(4), Nov. 1986, pp. 307-334.

[Purtilo, 1994] J. M. Purtilo. The Polylith software bus. ACM Transactions on Programming
Languages and Systems, 16(1), Jan. 1994, pp. 151-174.

[Python, 1970] M. Python. The Architects Sketch. Monty Python’s Flying Circus TV Show, Episode
17, Sep. 1970. Transcript at <http://www.stone-dead.asn.au/sketches/architec.htm>.

[Rasure and Young, 1992] J. Rasure and M. Young. Open environment for image processing and software develop-
ment. In Proceedings of the 1992 SPIE/IS&T Symposium on Electronic Imaging, Vol.
1659, Feb. 1992.

[Reiss, 1990] S. P. Reiss. Connecting tools using message passing in the Field environment. IEEE
Software, 7(4), July 1990, pp. 57-67.

[Rosenblum and Wolf, 1997] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observa-
tion and notification. In Proceedings of the 6th European Software EngineeonfgC
ence held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 344-360.

[Sandberg et al., 1985] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementa-
tion of the Sun network filesystem. In Proceedings of the Usenix Conference, June
1985, pp. 119-130.

[Shapiro, 1986] M. Shapiro. Structure and encapsulation in distributed systems: The proxy principle. In
Proceedings of the 6th International Conference on Distributed Computing Systems,
Cambridge, MA, May 1986, pp. 198-204.

[Shaw, 1990] M. Shaw. Toward high&vel abstractions for software systems. Data & Knowledge
Engineering, 5, 1990, pp. 119-128.

[Shaw et al., 1995] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnick. Abstrac-
tions for software architecture and tools to support them. IEEE Transactions on Soft-
ware Engineering, 21(4), Apr. 1995, pp. 314-335.

[Shaw, 1995] M. Shaw. Comparing architectural design styles. IEEE Software, 12(6), Nov. 1995, pp.
27-41.

Software Architectural Styles for Network-based Applications 33

[Shaw, 1996] M. Shaw. Some patterns for software architecture. Vlissides, Coplien & Kerth (eds.),
Pattern Languages of Program Design, Vol. 2, Addison-Wesley, 1996, pp. 255-269.

[Shaw and Garlan, 1996] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging discipline.
Prentice-Hall, 1996.

[Shaw and Clements, 1997] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of
architectural styles for software systems. In Proceedings of the Twenty-First Annual
International Computer Software and Applications Coafecee (COMPSAC'97), Wash-
ington, D.C., Aug. 1997, pp.6-13.

[Sinha, 1992] A. Sinha. Client-server computing. CACM, Ji®92, pp. 77-98.

[Sullivan and Notkin, 1992] K. J. Sullivan and D. Notkin. Reconciling environment integration and software evolu-
tion. ACM Transactions on Software Engineering and Methodology, 1(3), July 1992,
pp. 229-268.

[Tanenbaum et al.., 1985] A. S. Tanenbaum and R. van Renesse. Distributed Operating Systems. ACM Computing
Surveys, 17(4), Dec. 1985, pp. 419-470.

[Taylor et al., 1996] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A.
Nies, P. Oreizy, and D. L. Dubrow. A component- and message-based architectural style
for GUI software. IEEE Transactions on Software Engineering, 22(6), June 1996, pp.
390-406.

[Tepfenhart and Cusick, 1997] W. Tephenhart and J. J. Cusick. A Unified Object Toptiaty.Software 14(1),
Jan. 1997, pp. 31-35.

[Tracz, 1995] W. Tracz. DSSA (domain-specific software architecture) pedagogical example. Soft-
ware Engineering Notes, 20(3), July 1995, pp. 49-62.

[Umar, 1997] A. Umar. Object-Oriented Client/Server Internet Environments. Prentice Hall PTR,
1997.

[Vestal, 1996] S. Vestal. MetaH programmer’s manual, version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

[Waldo et al., 1994] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc., Nov. 1994.

[Wall et al., 1996] L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl, 2nd ed. O'Reilly &
Associates, 1996.

[Zimmer, 1995] W. Zimmer. Relationships between design patterns. Coplien andddkds.), Pattern
Languages of Program Design, Addison-Wesley, 1995, pp. 345-364.

[Zimmerman, 1980] H. Zimmerman. OSlfezence model --- The ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28, Apr. 1980, pp.
425-432.

34 Software Architectural Styles for Network-based Applications

10 Summary of Architectural Style Classification

¢ ¢ 8§ £ 5 2 5 § £ % 5 % &
Style Derivation § % E 7 (7 i i 8 8 & g £ &
PF + + + + + +
UPF PF - + ++ + + ++ ++ +
Cs + + +
LS - + + + +
LCS CS+LS - ++ + ++ + +
CSss CSs - + + + + +
C$SS CSS+$ - + + ++ + + + +
LC$SS LCS+C$SS - + + +++ ++ ++ + + + +
RS CSs + - + + -
RDA cs + - - + _
VM * + - +
REV CS+VM + - + + + - + -
CcOD CS+VM + + + + + + -
LCODCS$SS LC$SS+COD - ++ ++ +4+ -+ ++ + + + + + +
MA REV+COD + ++ + ++ + + - +
RR ++ + +
$ RR + + + +
EBI + -- + + + + + - -
Cc2 EBI+LCS - + ++ + + ++ + + +
DO CS+CS - + + + + + - -
BDO DO+LCS - - ++ + + ++ - +
Software Architectural Styles for Network-based Applications 35

	Software Architectural Styles for Network-based Applications
	Keywords
	1 Introduction
	2 Context within Software Architecture Research
	2.1 Software Architecture
	2.1.1 Architectural Elements
	Components
	Connectors
	Data

	2.1.2 Configurations
	2.1.3 Architectural Properties

	2.2 Architectural Styles
	2.3 Architectural Patterns and Pattern Languages
	2.4 Architectural Views

	3 Network-based Application Architectures
	3.1 Survey Scope
	3.1.1 Network-based vs. Distributed
	3.1.2 Application Software vs. Networking Software

	3.2 Evaluating the Design of Network-based Architectures
	3.3 Architectural Properties of Key Interest
	3.3.1 Performance
	Network Performance
	User-perceived Performance
	Network Efficiency

	3.3.2 Scalability
	3.3.3 Simplicity
	3.3.4 Modifiability
	Evolvability
	Extensibility
	Customizability
	Configurability
	Reusability

	3.3.5 Visibility
	3.3.6 Portability
	3.3.7 Reliability

	4 Classification Methodology
	4.1 Selection of Architectural Styles for Classification
	4.2 Style-induced Architectural Properties
	4.3 Visualization

	5 Architectural Styles for Network-based Applications
	5.1 Data-flow Styles
	5.1.1 Pipe and Filter (PF)
	5.1.2 Uniform Pipe and Filter (UPF)

	5.2 Replication Styles
	5.2.1 Replicated Repository (RR)
	5.2.2 Cache ($)

	5.3 Hierarchical Styles
	5.3.1 Client-Server (CS)
	5.3.2 Layered System (LS) and Layered-Client-Server (LCS)
	5.3.3 Client-Stateless-Server (CSS)
	5.3.4 Client-Cache-Stateless-Server (C$SS)
	5.3.5 Layered-Client-Cache-Stateless-Server (LC$SS)
	5.3.6 Remote Session (RS)
	5.3.7 Remote Data Access (RDA)

	5.4 Mobile Code Styles
	5.4.1 Virtual Machine (VM)
	5.4.2 Remote Evaluation (REV)
	5.4.3 Code on Demand (COD)
	5.4.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)
	5.4.5 Mobile Agent (MA)

	5.5 Peer-to-Peer Styles
	5.5.1 Event-based Integration (EBI)
	5.5.2 C2
	5.5.3 Distributed Objects
	5.5.4 Brokered Distributed Objects

	6 Related Work
	6.1 Classification of Architectural Styles and Patterns
	6.2 Distributed Systems and Programming Paradigms
	6.3 Middleware
	6.4 Design Methodologies
	6.5 Handbooks for Design, Design Patterns, and Pattern Languages
	6.6 Reference Models and Domain-specific Software Architectures (DSSA)
	6.7 Architecture Description Languages (ADL)
	6.8 Formal Architectural Models

	7 Conclusions
	8 Acknowledgments
	9 References
	10 Summary of Architectural Style Classification

