
January 16, 2000
Software Architectural Styles for
Network-based Applications

Roy T. Fielding
University of California, Irvine

Phase II Survey Paper

Draft 2.0
-
f
nica-
k
in

ailure

tyle
rties

g
onal
A software architecture determines how system components are identified and allo
cated, how the components interact to form a system, the amount and granularity o
communication needed for interaction, and the interface protocols used for commu
tion. For a network-based application, system performance is dominated by networ
communication. Therefore, selection of the appropriate architectural style(s) for use
designing the software architecture can make the difference between success and f
in the deployment of a network-based application.

Software architectural styles have been characterized by their control-flow and data-
flow patterns, allocation of functionality across components, and component types.
Unfortunately, none of these characterizations are useful for understanding how a s
influences the set of architectural properties, or qualities, of a system. These prope
include, among others, user-perceived performance, network efficiency, simplicity,
modifiability, scalability, and portability.We use these style-induced architectural prop-
erties to classify styles for network-based applications with the goal of understandin
why certain styles are better than others for some applications, thus providing additi
guidance for software engineers faced with the task of architectural design.

Keywords

software architecture, software architectural style, network-based application, software
design, software design patterns, pattern languages
1

t for

the

ith

l

ter
e
but

ric
ular
e of
cols

uate
e of

hitec-

for
kson,
e
ity to
sed

n 3

re
d in
re
the

ree-
rchi-

ing
1 Introduction

Excuse me ... did you say ‘knives’?

— City Gent #1 (Michael Palin), The Architects Sketch [Python, 1970]

As predicted by Perry and Wolf [1992], software architecture has been a focal poin
software engineering research in the 1990s. The complexity of modern software
systems have necessitated a greater emphasis on componentized systems, where
implementation is partitioned into independent components that communicate to
perform a desired task. Software architecture research investigates methods fordeter-
mining how best to partition a system, how components identify and communicate w
each other, how information is communicated, how elements of a system can evolve
independently, and how all of the above can be described using formal and informa
notations.

This survey explores a junction on the frontiers of two research disciplines in compu
science: software and networking. Softwareresearch has long been concerned with th
categorization of software designs and the development of design methodologies,
has rarely been able to objectively evaluate the impact of various design choices on
system behavior. Networking research, in contrast, is focused on the details of gene
communication behavior between systems and improving the performance of partic
communication techniques, often ignoring the fact that changing the interaction styl
an application can have more impact on performance than the communication proto
used for that interaction. My work is motivated by the desire to understand and eval
the architectural design of network-based application software through principled us
architectural constraints, thereby obtaining the functional, performance, and social
properties desired of an architecture. When given a name, a coordinated set of arc
tural constraints becomes an architectural style.

Some architectural styles are often portrayed as “silver bullet” solutions for all forms of
software. However, a good designer should select astyle that matches the needs of the
particular problem being solved [Shaw, 1995]. Choosing the right architectural style
a network-based application requires an understanding of the problem domain [Jac
1994] and thereby the communication needs of the application, an awareness of th
variety of architectural styles and the particular concerns they address, and the abil
anticipate the sensitivity of each interaction style to the characteristics of network-ba
communication [Waldo et al., 1994].

Section 2 examines various definitions of architecture and architectural styles and
defines those terms that will be used throughout the remainder of this paper. Sectio
describes what is intended by network-based application architectures, defining the
scope of this survey and the style-induced architectural properties used for style
comparison. Section 4 describes the survey methodology. A classification of softwa
architectural styles for network-based applications is presented in Section 5, followe
Section 6 by a discussion of related work within the larger research areas of softwa
architecture and distributed systems. Finally, I conclude with some observations on
relevance of this work to software engineering research and practice.

2 Context within Software Architecture Research

In spite of the interest in software architecture as a field of research, there is little ag
ment among researchers as to what exactly should be included in the definition of a
tecture. In many cases, this has led to important aspects of architectural design be
2 Software Architectural Styles for Network-based Applications

s
re
defi-
ow

tec-

ation-

f
f
ly,
ture
n
e

hitec-

ure
se

ans
ich
, a

e
ral

ratio-
e

overlooked by past research. This section defines a self-consistent terminology foroft-
ware architecture based on an examination of existing definitions within the literatu
and my own insight with respect to network-based application architectures. Each
nition, highlighted within a box for ease of reference, is followed by a discussion of h
it is derived from, or compares to, related research.

2.1 Software Architecture

2.1.1 Architectural Elements

A comprehensive examination of the scope and intellectual basis for software archi
ture can be found in Perry and Wolf [1992]. They present a model that defines a soft-
ware architecture as a set of architecturalelementsthat have a particularform,
explicated by a set ofrationale. Architectural elements include processing, data, and
connecting elements. Form is defined by the properties of the elements and the rel
ships among the elements — that is, the constraints on the elements. The rationale
provides the underlying basis for the architecture by capturing the motivation for the
choice of architectural style, the choice of elements, and the form.

The definitions I have chosen for software architecture are an elaborated version o
those within the Perry and Wolf model, except that I use the more prevalent terms o
componentandconnectorto refer to processing and connecting elements, respective
and exclude rationale. Although rationale is an important aspect of software architec
research and of architectural description in particular, including it within the definitio
of software architecture would imply that design documentation is part of the run-tim
system. The presence or absence of rationale can influence the evolution of an arc
ture, but, once constituted, the architecture is independent of its reasons for being.
Reflective systems [Maes, 1987] can use the characteristics of past performance to
change future behavior, but in doing so they are replacing one lower-level architect
with another lower-level architecture, rather than encompassing rationale within tho
architectures.

As an illustration, consider what happens to a building if its blueprints and design pl
are burned. Does the building immediately collapse? No, since the properties by wh
the walls sustain the weight of the roof remain intact. An architecture has, by design
set of properties that allow it to meet or exceed the system requirements.Ignorance of
those properties may lead to later changes which violate the architecture, just as th
replacement of a load-bearing wall with a large window frame may violate the structu
stability of a building. Thus, instead of rationale, our definition of software architecture
includes architectural properties. Rationale explicates those properties, and lack of
nale may result in gradual decay or degradation of the architecture over time, but th
rationale itself is not part of the architecture.

A key feature of the model in Perry andWolf [1992] is the distinction of the various
element types.Processing elementsare those that perform transformations on data,data
elementsare those that contain the information that is used and transformed, and
connecting elementsare the glue that holds the different pieces of the architecture
together. I use the more prevalent terms ofcomponentsandconnectorsto refer to
processing and connecting elements, respectively.

A software architecture is defined by a configuration of architectural elements—
components, connectors, and data—constrained in their relationships in order to
achieve a desired set of architectural properties.
Software Architectural Styles for Network-based Applications 3

e. An

tem
o-
ture
ts of

hitec-

and
e
ts
e
nec-

n
ofar

po-
the

the
itec-

e
ata

n,
Garlan and Shaw [1993] describe software architecture vaguely as system structur
architecture of a specific system is a collection of computationalcomponentstogether
with a description of the interactions between thesecomponents—theconnectors. This
definition is expanded upon in Shaw et al. [1995]: The architecture of a software sys
defines that system in terms of components and of interactions among those comp
nents. In addition to specifying the structure and topology of the system, the architec
shows the intended correspondence between the system requirements and elemen
the constructed system. Further elaboration of this definition can be found in Shaw and
Garlan [1996].

What is surprising about the Shaw et al. model is that, rather than defining the soft-
ware’s architecture as existing within the software, it is defining a description of the
software’s architecture as if that were the architecture. In the process, software arc
ture as a whole is reduced to what is commonly found in most informal architecture
diagrams: boxes (components) and lines (connectors). Dataelements, along with many
of the dynamic aspects of real software architectures, are ignored.

Components

Components are the most easily recognized aspect of software architecture. Perry
Wolf’s [1992] processing elements are defined as those components that supply th
transformation on the data elements. Garlan and Shaw [1993] describe componen
simply as the elements that perform computation. Our definition attempts to be mor
precise in making the distinction between components and the software within con
tors.

A component is an abstract unit of software that provides a transformation ofdata via its
interface. Example transformations include loading into memory from secondary
storage, performing some calculation, translating to a different format, encapsulatio
with other data, etc. The behavior of each component is part of the architecture ins
as that behavior can be observed or discerned from the point of view of another com
nent [Bass et al., 1998]. In other words, a component is defined by its interface and
services it provides to other components, rather than by its implementation behind
interface. Parnas [1971] would define this as the set of assumptions that other arch
tural elements can make about the component.

Connectors

Perry and Wolf [1992]describeconnecting elementsvaguely as the glue thatholds the
various pieces of the architecture together. A more precise definition is provided by
Shaw and Clements [1997]: A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among components. Examples includ
shared representations, remote procedure calls, message-passing protocols, and d
streams.

A componentis an abstract unit of software that provides a transformation of data
via its interface.

A connector is an abstract mechanism that mediates communication, coordinatio
or cooperation among components.
4 Software Architectural Styles for Network-based Applications

ts.

the
av-
mpo-

l of
h of
are
velop-

ved

tive,
e”

ftware

ll

98],
rans-

ble
ural

of

ious

le
Perhaps the best way to think about connectors is to contrast them with componen
Connectors enable communication between components by transferring dataelements
from one interface to another without changing the data. Internally, aconnector may
consist of a subsystem of components that transform the data for transfer, perform
transfer, and then reverse the transformation for delivery. However, the external beh
ioral abstraction captured by the architecture ignores those details. In contrast, a co
nent may, but not always will, transform data from the external perspective.

Data

The presence of data elements is the most significant distinction between the mode
software architecture defined by Perry and Wolf [1992] and the model used by muc
the research labelled software architecture. Boasson [1995] criticizes current softw
architecture research for its emphasis on component structures and architecture de
ment tools, suggesting that more focus should be placed on data-centric architectural
modeling. Similar comments are made by Jackson [1994].

A datum is an element of information that is transferred from a component, or recei
by a component, via a connector. Examples include byte-sequences, messages,
marshalled parameters, and serialized objects, but do not include information that is
permanently resident or hidden within a component. From the architectural perspec
a “file” is a transformation that a file system component might make from a “file nam
datum received on its interface to a sequence of bytes recorded within an internally
hidden storage system. Components can also generate data, as in the case of a so
encapsulation of a clock or sensor.

The nature of the data elements within a network-based application architecture wi
often determine whether or not a given architecturalstyle is appropriate. This is particu-
larly evident in the comparison of mobile code design paradigms [Fuggetta et al., 19
where the choice must be made between interacting with a component directly or t
forming the component into a data element, transferring it across a network, and then
transforming it back to a component that can be interacted with locally. It is impossi
to evaluate such an architecture without considering data elements at the architect
level.

2.1.2 Configurations

Abowd et al. [1995] define architecturaldescription as supporting the description of
systems in terms of three basic syntactic classes: components, which are the locus
computation; connectors, which define the interactions between components; and
configurations, which are collections of interacting components and connectors. Var
style-specific concrete notations may be used to represent these visually, facilitate the
description of legal computations and interactions, and constrain the set of desirab
systems.

A datum is an element of information that is transferred from a component, or
received by a component, via a connector.

A configuration is the structure of architectural relationships among components,
connectors, and data during a period of system run-time.
Software Architectural Styles for Network-based Applications 5

a-

that
ithin

and
nts,

re of
est to

n be
the

en-
d by
s an

90].

and

e
he

.

ints
itec-

ac-
] go
Strictly speaking, one might think of a configuration as being equivalent to a set of
specific constraints on component interaction. For example, Perry and Wolf [1992]
include topology in their definition of architectural form relationships. However, sep
rating the active topology from more general constraints allows an architect to more
easily distinguish the active configuration from the potential domain of all legitimate
configurations. Additional rationale for distinguishing configurations within architec-
tural description languages is presented in Medvidovic and Taylor [1997].

2.1.3 Architectural Properties

The set of architectural properties of a software architecture includes all properties
derive from the selection and arrangement of components, connectors, and data w
the system. Examples include both the functional properties achieved by the system
non-functional properties, such as relative ease of evolution, reusability of compone
efficiency, and dynamic extensibility. The goal of architectural design is to create an
architecture with a set of architectural properties that form a superset of the system
requirements.

The relative importance of the various architectural properties depends on the natu
the intended system. Section 3.3 examines the properties that are of particular inter
network-based application architectures.

2.2 Architectural Styles

Since an architecture embodies both functional and non-functional properties, it ca
difficult to directly compare architectures for different types of systems, or for even
same type of system set in different environments. Styles are a mechanism for catego-
rizing architectures and for defining their common characteristics [Di Nitto and Ros
blum, 1999]. An architectural style characterizes a family of systems that are relate
shared structural and semantic properties [Monroe et al., 1997]. Each style provide
abstraction for the interactions of components, capturing the essence of a pattern of
interaction by ignoring the incidental details of the rest of the architecture [Shaw, 19

Perry and Wolf [1992] define architectural style as an abstraction of element types
formal aspects from various specific architectures, perhaps concentrating ononly
certain aspects of an architecture. An architectural style encapsulates important deci-
sions about the architectural elements and emphasizes important constraints on th
elements and their relationships. This definition allows for styles that focus only on t
connectors of an architecture, or on specific aspects of the component interfaces.

In contrast, Garlan and Shaw [1993], Garlan et al. [1994], and Shaw and Clements
[1997] all define style in terms of a pattern of interactions among typed components
Specifically, an architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together with a set of constra
on how they can be combined [Garlan and Shaw, 1993]. This restricted view of arch
tural styles is a direct result of their definition of software architecture — thinking of
architecture as a formal description, rather than as a running system, leads to abstr
tions based only in the shared patterns of box and line diagrams. Abowd et al. [1995

An architectural style is a coordinated set of architectural constraints that restricts
the roles/features of architectural elements and the allowed relationships among
those elements within any architecture that conforms to that style.
6 Software Architectural Styles for Network-based Applications

d

n-
rchi-

le.

ads

to
a
ec-
he
rds,
of

e the

d
-

terns’

-

ey
le

d set
g a

ecur-
,
where
on
eren-
further and define this explicitly as viewing the collection of conventions that are use
to interpret a class of architectural descriptions as defining an architectural style.

New architectures can be defined as instances of specific styles [Di Nitto and Rose
blum, 1999]. Since architectural styles may address different aspects of software a
tecture, a given architecture may be composed of multiple styles. Likewise, a hybrid
style can be formed by combining multiple basic styles into a single coordinated sty

Unfortunately, using the term style to refer to a coordinated set of constraints often le
to confusion. This usage differs substantially from the etymology ofstyle, which would
emphasize personalization of the design process. Loerke [1990] devotes a chapter
denigrating the notion that personal stylistic concerns have any place in the work of
professional architect. Instead, he describes styles as the critics’ view of past archit
ture, where the available choice of materials, the community culture, or the ego of t
local ruler were responsible for the architectural style, not the designer. In other wo
Loerke views the real source of style in traditional building architecture to be the set
constraints applied to the design, and attaining or copying a specific style should b
least of the designer’s goals.

2.3 Architectural Patterns and Pattern Languages

In parallel with the software engineering research in architectural styles, the object-
oriented programming community has been exploring the use of design patterns an
pattern languages todescribe recurring abstractions in object-based software develop
ment. A design pattern is defined as an important and recurring system construct. A
pattern language is a system of patterns organized in a structure that guides the pat
application [Kerth and Cunningham, 1997]. Both concepts are based on the writings of
Alexander et al. [1977, 1979] with regard to building architecture.

The design space of patterns includes implementation concerns specific to the tech
niques of object-oriented programming, such as class inheritance and interfacecompo-
sition, as well as the higher-level design issues addressed by architectural styles
[Gamma et al., 1995]. In some cases, architectural styledescriptions have been recast as
architectural patterns [Shaw, 1996]. However, a primary benefit of patterns is that th
can describe relatively complex protocols of interactions between objects as a sing
abstraction [Monroe et al., 1997], thus including both constraints on behavior and
specifics of the implementation. In general, a pattern, orpattern language in the case of
multiple integrated patterns, can be thought of as a recipe for implementing a desire
of interactions among objects. In other words, a pattern defines a process for solvin
problem by following a path of design and implementation choices [Coplien, 1997].

Like software architectural styles, the software patterns research has deviated somewhat
from its origin in building architecture. Indeed, Alexander’s [1979] notion ofpatterns
centers not on recurring arrangements of architectural elements, but rather on the r
ring pattern of events—human activity and emotion—that take place within a space
with the understanding that a pattern of events cannot be separated from the space
it occurs. Alexander’s design philosophy is to identify patterns of life that are comm
to the target culture and determine what architectural constraints are needed to diff
tiate a given space such that it enables the desired patterns to occur naturally. Such
patterns exist at multiple levels of abstraction and at all scales.
Software Architectural Styles for Network-based Applications 7

ral
i-

tural
nti-
es

yles
re
ws

ctions
ssing
tion-

s

cur-

es
ng

the
As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and
a certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this
spatial configuration can be used, over and over again, to resolve the given
system of forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the world,
and the rule which tells us how to create that thing, and when we must create it.
It is both a process and a thing; both a description of a thing which isalive,
and a description of the process which will generate that thing.
[Alexander, 1979]

In many ways, Alexander’s patterns have more in common with software architectu
styles than the design patterns of OOPL research. An architectural style, as a coord
nated set of constraints, is applied to a design space in order to induce the architec
properties that are desired of the system. By applying a style, an architect is differe
ating the software design space in the hope that the result will better match the forc
inherent in the application, thus leading to systembehavior that enhances the natural
pattern rather than conflicting with it.

2.4 Architectural Views

An architectural viewpoint is often application-specific and varies widely
based on the application domain. ... we have seen architectural viewpoints that
address a variety of issues, including: temporal issues, state and control
approaches, data representation, transaction life cycle, security safeguards,
and peak demand and graceful degradation. No doubt there are many more
possible viewpoints. [Kerth and Cunningham, 1997]

In addition to the many architectures within a system, and the many architectural st
from which the architectures are composed, it is also possible to view an architectu
from many different perspectives. Perry and Wolf [1992] describe three important vie
in software architecture: processing, data, and connection views. A process view
emphasizes the data flow through the components and some aspects of the conne
among the components with respect to the data. A data view emphasizes the proce
flow, with less emphasis on the connectors. A connection view emphasizes the rela
ship between components and the state of communication.

Multiple architectural views are common within case studies of specific architecture
[Bass et al., 1998]. One architectural design methodology, the 4+1View Model
[Kruchten, 1995], organizes the description of a software architecture using five con
rent views, each of which addresses a specific set of concerns.

3 Network-based Application Architectures

3.1 Survey Scope

Architecture is found at multiple levels within software systems. This survey examin
the highest level of abstraction in software architecture, where the interactions amo
components are capable of being realized in network communication. We limit our
discussion to styles for network-based application architectures in order to reduce
dimensions of variance among the styles studied.
8 Software Architectural Styles for Network-based Applications

s and
rdi-
ork-
ly in a
e
hat is
-

tures
ssing

lica-

e”

e, a

g

ate
of
ential
per

ions.
the

us
of a
yle in

l
ute

rchi-

ity

he
3.1.1 Network-based vs. Distributed

Tanenbaum and van Renesse [1985] make a distinction between distributed system
network-based systems: a distributed system is one that looks to its users like an o
nary centralized system, but runs on multiple, independent CPUs. In contrast, netw
based systems are those capable of operation across a network, but not necessari
fashion that is transparent to the user. In some cases it is desirable for the user to b
aware of the difference between an action that requires a network request and one t
satisfiable on their local system, particularly when network usage implies an extra trans
action cost [Waldo et al., 1994]. This survey covers network-based systems by not
limiting the candidate styles to those that preserve transparency for the user.

The primary distinction between network-based architectures and software architec
in general is that communication between components is restricted to message pa
[Andrews, 1991], or the equivalent of message passing if a moreefficient mechanism
can be selected atrun-timebased on the location ofcomponents [Taylor et al., 1996].

3.1.2 Application Software vs. Networking Software

Another restriction on the scope of this survey is that we limit our discussion to app
tion architectures, excluding the operating system, networking software, and some
architectural styles that would only use a network for system support (e.g., process
control styles [Garlan and Shaw, 1993]). Applications represent the “business-awar
functionality of a system [Umar, 1997].

Application software architecture is an abstractionlevel of an overall system, in which
the goals of a user action are representable as architectural properties. For exampl
hypermedia application must beconcerned with the location of information pages,
performing requests, and rendering data streams. This is in contrast to a networkin
abstraction, where the goal is to move bits from one location to another without regard
to why those bits are being moved. It is only at the application level that we can evalu
design trade-offs based on the number of interactions per user action, the location
application state, the effective throughput of all data streams (as opposed to the pot
throughput of a single data stream), the extent of communication being performed
user action, etc.

3.2 Evaluating the Design of Network-based Architectures

An architecture can be evaluated at many levels. Implementation. Protocol. Interact
But functionality gets in the way. What we are interested in is a method of evaluating
design of a software architecture, such that the design can be replaced or improved over
time. [UNFINISHED]

Architectural styles do not generally include application knowledge. Instead, we foc
on the architectural properties that a style induces on a system. The specific needs
network-based application can then be matched against the properties of a given st
order to determine the style’s suitability for use within an architecture.

The set of architectural properties of a software architecture includes both functiona
properties and the equivalent of quality attributes [Bass et al., 1998]. A quality attrib
can be induced by the constraints of an architectural style, usually motivated by
applying a software engineering principle [Ghezzi et al., 1991] to an aspect of the a
tectural elements. For example, theuniform pipe-and-filterstyle obtains the qualities of
reusability of components and configurability of the application by applying general
to its component interfaces — constraining the components to a single interface type.
Hence, the architectural constraint is “uniform component interface,” motivated by t
Software Architectural Styles for Network-based Applications 9

chi-
nti-

les
ered

se

ure
-
n.

ture,

ires
nnot
ffi-
he

ter
data.

ation.

rac-
er

per
ngly

he
t of

nce
generality principle, in order to obtain two desirable qualities that will become the ar
tectural properties of reusable and configurable components when that style is insta
ated within an architecture.

3.3 Architectural Properties of Key Interest

This section describes the architectural properties used to differentiate and classify
architectural styles for the survey. It is not intended to be a comprehensive list. Ihave
included only those properties that are clearly influenced by the restricted set of sty
surveyed. Additional properties, sometimes referred to as software qualities, are cov
by most textbooks on software engineering (e.g., [Ghezzi et al., 1991]). Bass et al.
[1998] examine qualities in regards to software architecture.

3.3.1 Performance

One of the main reasons to focus on styles for network-based applications is becau
component interactions can be the dominant factor in determining user-perceived
performance and network efficiency. Since the architectural style influences the nat
of those interactions, selection of an appropriate architectural style can make the differ
ence between success and failure in the deployment of a network-based applicatio

The performance of a network-based application is bound first by the application
requirements, then by the chosen interaction style, followed by the realized architec
and finally by the implementation of each component. In other words, software cannot
avoid the basic cost of achieving the application needs; e.g., if the application requ
that data be located on system A and processed on system B, then the software ca
avoid moving that data from A to B. Likewise, an architecture cannot be any more e
cient than its interaction style allows; e.g., the cost of multiple interactions to move t
data from A to B cannot be any less than that of a single interaction from A to B.
Finally, regardless of the quality of an architecture, no interaction can take place fas
than a component implementation can produce data and its recipient can consume

Network Performance

Network performance measures are used to describe some attributes of communic
Throughputis the rate at which information, including both application data and
communication overhead, is transferred between components.Overheadcan be sepa-
rated into initial setup overhead and per-interaction overhead, a distinction which is
useful for identifying connectors that can share setup overhead across multiple inte
tions (amortization). Bandwidthis a measure of the maximum available throughput ov
a given network link.Usable bandwidthrefers to that portion of bandwidth which is
actually available to the application.

Styles impact network performance by their influence on the number of interactions
user action and the granularity of data elements. A style that encourages small, stro
typed interactions will be efficient in an applicationinvolving small data transfers
among known components, butwill cause excessive overhead within applications that
involve large data transfers or negotiated interfaces. Likewise, a style that involves t
coordination of multiple components arranged to filter a large data stream will be ou
place in an application that primarily requires small control messages.

User-perceived Performance

User-perceived performance differs from network performance in that the performa
of an action is measured in terms of its impact on the user in front of an application
10 Software Architectural Styles for Network-based Applications

for

se.
tion:

d to
nter-
r and

sent
yle.

n
on is

ived

sion
ignif-

if

nt

ation
most
c-
r

tion

med

rk
re a
rather than the rate at which the network moves information. The primary measures
user-perceived performance are latency and completion time.

Latencyis the time period between initial stimulus and the first indication of a respon
Latency occurs at several points in the processing of a network-based application ac
1) the time needed for the application to recognize the eventthat initiated the action; 2)
the time required to setup the interactions between components; 3) the time require
transmit each interaction to the components; 4) the time required to process each i
action on those components; and, 5) the time required to complete sufficient transfe
processing of the result of the interactions before the application is able to begin
rendering a usable result. It is important to note that, although only (3) and (5) repre
actual network communication, all five points can be impacted by the architectural st
Furthermore, multiple component interactions per user action are additive tolatency
unless they take place in parallel.

Completionis the amount of time taken to complete an application action. Completion
time is dependent upon all of the aforementioned measures. The difference between a
action’s completion time and its latency represents the degree to which the applicati
incrementally processing the data being received. For example, aWeb browser that can
render a large image while it is being received providessignificantly better user-
perceived performance than one that waits until the entire image is completely rece
prior to rendering, even though both experience the same network performance.

It is important to note that design considerations for optimizinglatencywill often have
the side-effect of degrading completion time, and vice versa. For example, compres
of a data stream can produce a more efficient encoding if the algorithm samples a s
icant portion of the data before producing theencoded transformation, resulting in a
shorter completion time to transfer the encoded data across the network. However,
this compression is being performed on-the-fly in response to a user action,then buff-
ering a large sample before transfer may produce an unacceptablelatency.Balancing
these trade-offs can be difficult, particularly when it is unknown whether the recipie
cares more about latency (e.g.,Web browsers) or completion (e.g., Web spiders).

Network Efficiency

An interesting observation about network-based applications is that the best applic
performance is obtained by not using the network. This essentially means that the
efficient architectural styles for a network-based application are those that can effe
tively minimize use of the network when it is possible to do so, through reuse of prio
interactions (caching), reduction of the frequency of network interactions in relation to
user actions (replicated data and disconnected operation), or by removing the need for
some interactions by moving the processing of data closer to the source of the data
(mobile code).

The impact of the various performance issues is often related to the scope of distribu
for the application. The benefits of a style under local conditions may become draw-
backs when faced with global conditions. Thus, the properties of a style must be fra
in relation to the interaction distance: within a single process, across processes on a
single host, inside a local-area network (LAN), or spread across a wide-area netwo
(WAN). Additional concerns become evident when interactions across a WAN, whe
single organization is involved, are compared to interactions across the Internet,
involving multiple trust boundaries.
Software Architectural Styles for Network-based Applications 11

o-
can
o-
-
tion
s.

tion
us or
, can

ts.

n to
al

ty,
ds

chi-

ere
he

e-
over

for

.

-
e
le.

cover
d to
3.3.2 Scalability

Scalability refers to the ability of the architecture to support large numbers of comp
nents, or interactions among components, within an active configuration. Scalability
be improved by simplifying components, by distributing services across many comp
nents (decentralizing the interactions), and by controlling interactions and configura
tions as a result of monitoring. Styles influence these factors by determining the loca
of application state, the extent of distribution, and the coupling between component

Scalability is also impacted by the frequency of interactions, whether the load on a
component will be distributed evenly over time or occur in peaks, whether an interac
requires guaranteed delivery or a best-effort, whether a request involves synchrono
asynchronous handling, and whether the environment is controlled or anarchic (i.e.
you trust the other components?).

3.3.3 Simplicity

The primary means by which architectural styles induce simplicity is by applying the
principle of separation of concerns to the allocation of functionality within componen
If functionality can be allocated such that theindividual components are substantially
less complex, then they will be easier to understand and implement. Likewise, such
separation eases the task of reasoning about the overall architecture. I have chose
lump the qualities of complexity, understandability, and verifiability under the gener
property of simplicity, since they go hand-in-hand for a network-based system.

Applying the principle of generality to architectural elements also improves simplici
since it decreases the variability within an architecture. Generality of connectors lea
to middleware (Section 6.3).

3.3.4 Modifiability

Modifiability is about theease with which a change can be made to an application ar
tecture. Modifiability can be further broken down into evolvability, extensibility,
customizability, configurability, and reusability, as described below. A particular
concern of network-based systems is dynamic modifiability [Oreizy et al., 1998], wh
the modification is made to a deployed application without stopping and restarting t
entire system.

Even if it were possible to build a software system that perfectly matches the requir
ments of its users, those requirements will change over time just as society changes
time. Because the components participating in a network-based application may be
distributed across multiple organizational boundaries, the system must be prepared
gradual and fragmented change, where old and new implementationscoexist, without
preventing the new implementations from making use of their extended capabilities

Evolvability

Evolvability represents the degree to which a component implementation can be
changed without negatively impacting other components. Static evolution of compo
nents generally depends on how well the architectural abstraction is enforced by th
implementation, and thus is not something unique to any particular architectural sty
Dynamic evolution, however, can be influenced by the style if itincludes constraints on
the maintenance and location of application state. The same techniques used to re
from partial failure conditions in a distributed system [Waldo et al., 1994] can be use
support dynamic evolution.
12 Software Architectural Styles for Network-based Applications

y

sual

ta et

e

t

duce

, or
ry

ing
po-

pes

ared

ors
the

ng

sed,
, and
Extensibility

Extensibility is defined as the ability to add functionality to a system [Pountain et al.,
1995]. Dynamic extensibility implies that functionality can be added to a deployed
system without impacting the rest of the system. Extensibility is induced within an
architectural style by reducing the coupling between components, as exemplified b
event-based integration (Section 5.5.1).

Customizability

Customizability is a specialization of extensibility in that it refers to modifying a
component at run-time, specifically so that the component can then perform an unu
service. A component is customizable if it can be extended by one client of that compo-
nent’s services without adversely impacting other clients of that component [Fugget
al., 1998]. Styles that support customization may also improve simplicity and scal-
ability, since service components can be reduced in size and complexity by directly
implementing only the most frequent services and allowing infrequent services to b
defined by the client. Customizability is a property induced by the remote evaluation
(Section 5.4.2) andcode-on-demand (Section 5.4.3) styles.

Configurability

Configurability is related to both extensibility and reusability in that it refers to post-
deployment modification of components, or configurations of components, such tha
they are capable of using a new service or data element type. The pipe-and-filter
(Section 5.1.1) and code-on-demand (Section 5.4.3) styles are two examples that in
configurability of configurations and components, respectively.

Reusability

Reusability is a property of an application architecture if its components, connectors
data elements can be reused, without modification, in other applications. The prima
mechanisms for inducing reusability within architectural styles is reduction of coupl
(knowledge of identity) between components and constraining the generality of com
nent interfaces. The uniform pipe-and-filter style (Section 5.1.2) exemplifies these ty
of constraints.

3.3.5 Visibility

Styles can also influence the visibility of interactionswithin a network-based applica-
tion by restricting interfaces via generality or providing access to monitoring. Visibility
in this case refers to the ability of a component to monitor or mediate the interaction
between two other components. Visibility can enable improved performance via sh
caching of interactions, scalability throughlayered services, reliability through reflec-
tive monitoring, and security by allowing the interactions to be inspected by mediat
(e.g., network firewalls). The mobile agent style (Section 5.4.5) is an example where
lack of visibility may lead to security concerns.

This usage of visibility differs from that in Ghezzi et al. [1991], where they are referri
to visibility into the development process rather than theproduct.

3.3.6 Portability

Software is portable if it can run in different environments [Ghezzi et al.,1991]. Styles
that induce portability include those that move code along with the data to be proces
such as the virtual machine (Section 5.4.1) and mobile agent (Section 5.4.5) styles
those that constrain the data elements to a set of standardized formats.
Software Architectural Styles for Network-based Applications 13

es-
reli-

or
e
d.

en-
med
he

tified

sed

rtunis-
-
n are
ons

ugh

h
a

n 3.2.

pact
ms.

e
desir-
3.3.7 Reliability

Reliability, within the perspective of application architectures, can be viewed as the
degree to which an architecture is susceptible to failure at the system level in the pr
ence of partial failures within components, connectors, or data. Styles can improve
ability by avoiding single points of failure, enabling redundancy, allowing monitoring,
or reducing the scope of failure to a recoverable action.

4 Classification Methodology

The purpose of building software is not to create a specific topology of interactions
use a particular component type — it is to create a system that meets or exceeds th
application needs. The style must conform to those needs, not the other way aroun
Therefore, in order to provide useful design guidance, a classification of architectural
styles should be based on the architectural properties induced by those styles.

4.1 Selection of Architectural Styles for Classification

The set of architectural styles included in the classification is by no means compreh
sive of all possible network-based application styles. Indeed, a new style can be for
merely by adding a new architectural constraint to any one of the styles surveyed. T
goal is to describe a representative sample of styles, particularly those already iden
within the software architecture literature, and provide a framework by which other
styles can be added to the classification as they aredeveloped.

I have intentionally excluded styles that do not enhance the communication or interac-
tion properties when combined with one of the surveyed styles to form a network-ba
application. For example, the blackboard architectural style [Nii, 1986] consists of a
central repository and a set of components (knowledge sources) that operate oppo
tically upon the repository. A blackboard architecture can be extended to a network
based system by distributing the components, but the properties of such an extensio
entirely based on the interaction style chosen to support the distribution — notificati
via event-based integration, pollinga la client-server, or replication of the repository.
Thus, there would be no added value from including it in the classification even tho
the hybrid style is network-capable.

4.2 Style-induced Architectural Properties

The classification uses relative changes in the architectural properties induced by eac
style as a means of illustrating the effect of each architectural style when applied to
system for distributed hypermedia. Note that the evaluation of a style for a givenprop-
erty depends on the type of system interaction being studied, as described in Sectio
The architectural properties are relative in the sense that adding an architectural
constraint may improve or reduce a given property, or simultaneously improve one
aspect of the property and reduce some other aspect of the property. Likewise,
improving one property may lead to the reduction of another.

Although our discussion of architectural styles willinclude those applicable to a wide
range of network-based systems, our evaluation of each style will be based on its im
upon an architecture for a single type of software: network-based hypermedia syste
Focusing on a particular type of software allows us to identify the advantages of one
style over another in the same way that a designer of a system would evaluate thos
advantages. Since we do not intend to declare any single style as being universally
14 Software Architectural Styles for Network-based Applications

pes

this
n

tails
ed (or

ng
d

). It

and
the

ne-

rol

nd

style
e

gree
can
able for all types of software, restricting the focus of our evaluation simplyreduces the
dimensions over which we need to evaluate. Evaluating the same styles for other ty
of application software is an open area for future research.

4.3 Visualization

I use a table of style versus architectural properties as the primary visualization for
classification. The table values indicate the relative influence that the style for a give
row has on a column’s property. Minus (−−−−) symbols accumulate for negative influences
and plus (++++) symbols for positive, with plus-minus (±±±±) indicating that it depends on
some aspect of the problem domain. Although this is a gross simplification of the de
presented in each section, it does indicate the degree to which a style has address
ignored) an architectural property.

An alternative visualization would be a property-based derivation graph for classifyi
architectural styles. The styles would be classified according to how they are derive
from other styles, with the arcs between styles illustrated by architectural properties
gained or lost. The starting point of the graph would be the null style (no constraints
is possible to derive such a graph directly from the descriptions in Section 5.

5 Architectural Styles for Network-based Applications

5.1 Data-flow Styles

5.1.1 Pipe and Filter (PF)

In a pipe and filter style, each component (filter) reads streams of data on its inputs
produces streams of data on its outputs, usually while applying a transformation to
input streams and computing incrementally so that output begins before the input is
completely consumed [Garlan and Shaw, 1993]. This style is also referred to as a o
way data flow network [Andrews, 1991]. The constraint is that a filter must be
completely independent of other filters (zero coupling): it must not share state, cont
thread, or identity with the other filters on its upstream and downstream interfaces
[Garlan and Shaw, 1993].

Abowd et al. [1995] provide an extensive formaldescription of the pipe and filter style
using the Z language. TheKhorossoftware development environment for image
processing [Rasure and Young, 1992] provides a good example of using the pipe a
filter style to build applications.

Garlan and Shaw [1993] describe the advantageous properties of the pipe and filter
as follows. First, PF allows the designer to understand the overall input/output of th
system as a simple composition of the behaviors of the individual filters (simplicity).
Second, PF supports reuse: any two filters can be hooked together, provided they a
on the data that is being transmitted between them (reusability). Third, PF systems

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ±±±± ++++ ++++ ++++ ++++ ++++

UPF PF −−−− ±±±± ++++++++ ++++ ++++ ++++++++ ++++++++ ++++
Software Architectural Styles for Network-based Applications 15

xten-

e-

a-

nd
d-
e, even

e

cters

the

ssi-

at
and

he

e

be easily maintained and enhanced: new filters can be added to existing systems (e
sibility) and old filters can be replaced by improved ones (evolvability). Fourth, they
permit certain kinds of specialized analysis (verifiability), such as throughput and dead-
lock analysis. Finally, they naturally support concurrent execution (user-perceived
performance).

Disadvantages of the PF style include: propagation delay is added through long pip
lines, batch sequential processing occurs if a filter cannot incrementally process its
inputs, and no interactivity is allowed. A filter cannot interact with its environment
because it cannot know that any particularoutput stream shares a controller with any
particular input stream. These properties decrease user-perceived performance if the
problem being addressed does not fit the pattern of a data flow stream.

One aspect of PF styles that is rarely mentioned is that there is an implied “invisible
hand” that arranges the configuration of filters in order to establish the overall applic
tion. A network of filters istypically arranged just prior to each activation, allowing the
application to specify the configuration of filter components based on the task at ha
and the nature of the data streams (configurability). This controller function is consi
ered a separate operational phase of the system, and hence a separate architectur
though one cannot exist without the other.

5.1.2 Uniform Pipe and Filter (UPF)

The uniform pipe and filter style adds the constraint that all filters must have the sam
interface. The primary example of this style is found in the Unixoperating system,
where filter processes have an interface consisting of one input data stream of chara
(stdin) and two output data streams of characters (stdout and stderr). Restricting the
interface allows independently developed filters to be arranged at will to form new
applications. It also simplifies the task of understanding how agiven filter works.

A disadvantage of the uniform interface is that it may reduce network performance if
data needs to be converted to or from its natural format.

5.2 Replication Styles

5.2.1 Replicated Repository (RR)

Systems based on the replicated repository style [Andrews, 1991] improve the acce
bility of data and scalability of services by having morethan one process provide the
same service. These decentralized servers interact to provide clients the illusion th
there is just one, centralized service. Distributed filesystems, such as XMS [Fridrich
Older, 1985], and remote versioning systems, like CVS [www.cyclic.com], are the
primary examples.

Improved user-perceived performance is the primary advantage, both by reducing t
latency of normal requests and enabling disconnected operation in the face of primary
server failure or intentional roaming off the network. Simplicity remains neutral, sinc

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

RR ++++++++ ++++ ++++

$ RR ++++ ++++ ++++ ++++
16 Software Architectural Styles for Network-based Applications

ency

of
ica-
ity of

he
ot-
y of
n be

age,

le.

for
for
med,
the
are

ng
from

ntil
made
the complexity of replication is offset by the savings of allowing network-unaware
components to operate transparently on locally replicated data. Maintaining consist
is the primary concern.

5.2.2 Cache ($)

A variant of replicated repository is found in the cache style: replication of the result
an individual request such that it may be reused by later requests. This form of repl
tion is most often found in cases where the potential data set far exceeds the capac
any one client, as in the WWW [Berners-Lee, 1996], or where complete access to t
repository is unnecessary. Lazy replication occurs when data is replicated upon a n
yet-cached response for a request, relying on locality of reference and commonalit
interest to propagate useful items into the cache for later reuse. Active replication ca
performed by pre-fetching cachable entries based on anticipated requests.

Caching provides slightly less improvementthan the replicated repositorystyle in terms
of user-perceived performance, since more requests will miss the cache andonly
recently accessed data will be available for disconnected operation. On the other hand,
caching is much easier to implement, doesn’t require as much processing and stor
and is more efficient because data is transmitted only when it isrequested. The cache
style becomes network-based when it is combined with a client-stateless-server sty

5.3 Hierarchical Styles

5.3.1 Client-Server (CS)

The client-server style is the most frequently encountered of the architectural styles
network-based applications. A server component, offering a set of services, listens
requests upon those services. A client component, desiring that a service be perfor
sends a request to the server via a connector. The server either rejects or performs
request and sends a response back to the client. A variety of client-server systems
surveyed by Sinha [1992] and Umar [1997].

Andrews [1991] describes client-server components as follows: A client is a triggeri
process; a server is a reactive process. Clients make requests that trigger reactions
servers. Thus, a client initiates activity at times of its choosing; it often then delays u
its request has been serviced. On the other hand, a server waits for requests to be
and then reacts to them. A server is usually a non-terminating process and often
provides service to more than one client.

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

CS ++++ ++++ ++++

LS −−−− ++++ ++++ ++++ ++++

LCS CS+LS −−−− ++++++++ ++++ ++++++++ ++++ ++++

CSS CS −−−− ++++++++ ++++ ++++ ++++ ++++

C$SS CSS+$ −−−− ++++ ++++ ++++++++ ++++ ++++ ++++ ++++

LC$SS LCS+C$SS −−−− ±±±± ++++ ++++++++++++ ++++++++ ++++++++ ++++ ++++ ++++ ++++

RS CS ++++ −−−− ++++ ++++ −−−−

RDA CS ++++ −−−− −−−− ++++ −−−−
Software Architectural Styles for Network-based Applications 17

r

ce

d for
4]

yer

.

rom
-
and

ssing

e. A
king

rs to

red,

re
are

ther

raint
erver
t take
the

llows
Separation of concerns is the principle behind the client-server constraints. A prope
separation of functionality should simplify the server component in order to improve
scalability. This simplification usually takes the form of moving all of the user interfa
functionality into the client component. The separation also allows the two types of
components to evolve independently, provided that the interface doesn’t change.

The basic form of client-server does not constrain how application state is partitioned
between client and server components. It is often referred to by the mechanisms use
the connector implementation, such as remote procedure call [Birrell and Nelson, 198
or message-oriented middleware [Umar, 1997].

5.3.2 Layered System (LS) and Layered-Client-Server (LCS)

A layered system is organized hierarchically, each layer providing services to the la
above it and using services of the layer below it [Garlan and Shaw, 1993]. Although
layered system is considered a “pure” style, its use within network-based systems is
limited to its combination with the client-server style to provide layered-client-server

Layered systems reduce coupling across multiple layers by hiding the inner layers f
all except the adjacent outer layer, thus improving evolvability and reusability. Exam
ples include the processing of layered communication protocols, such as the TCP/IP
OSI protocol stacks [Zimmerman, 1980], and hardware interface libraries. The primary
disadvantage of layered systems is that they add overhead and latency to the proce
of data, reducing user-perceived performance [Clark and Tennenhouse,1990].

Layered-client-server adds proxy and gateway components to the client-server styl
proxy [Shapiro, 1986] acts as a shared server for one or more client components, ta
requests and forwarding them, with possible translation, to server components. A
gateway component appears to be a normal server to clients or proxies thatrequest its
services, but is in fact forwarding thoserequests, withpossible translation, to its “inner-
layer” servers. These additional mediator components can be added in multiple laye
add features like load balancing and security checking to the system.

Architectures based on layered-client-server are referred to as two-tiered, three-tie
or multi-tiered architectures in the information systems literature [Umar, 1997].

LCS is also a solution to managing identity in a large scale distributed system, whe
complete knowledge of all servers would be prohibitively expensive. Instead, servers
organized in layers such that rarely used services are handled by intermediaries ra
than directly by each client [Andrews, 1991].

5.3.3 Client-Stateless-Server (CSS)

The client-stateless-server style derives from client-server with the additional const
of no session state allowed on the server component. Each request from client to s
must contain all of the information necessary to understand the request, and canno
advantage of any stored context on the server. Application state is kept entirely on
client.

These constraints improve the properties of visibility, reliability, and scalability. Visi-
bility is improved because a monitoring system does not have to lookbeyond a single
request datum in order to determine the full nature of the request. Reliability is
improved because it eases the task of recovering from partial failures [Waldo et al.,
1994]. Scalability is improved because not having to store state between requests a
the server component to quickly free resources and further simplifies implementation.
18 Software Architectural Styles for Network-based Applications

ance
sts,

cache

hable,

rver.

rfor-

rver
po-
ame

CS
e,

of
n
sing

t

the
when

s,

the
stan-

d
ake

piece
ture-
The disadvantage of client-stateless-server is that it may decrease network perform
by increasing the repetitive data (per-interaction overhead) sent in a series of reque
since that data cannot be left on the server in a shared context.

5.3.4 Client-Cache-Stateless-Server (C$SS)

The client-cache-stateless-server style derives from the client-stateless-server and
styles via the addition of cache components. A cache acts as a mediator betweenclient
and server in which the responses to prior requests can, if they are considered cac
be reused in response to later requests that are equivalent and likely to result in a
response identical to that in the cache if the request were to be forwarded to the se
An example system that makes effective use of this style is Sun Microsystems’ NFS
[Sandberg et al., 1985].

The advantage of adding cache components is that they have thepotential to partially or
completely eliminate some interactions, improving efficiency and user-perceived pe
mance.

5.3.5 Layered-Client-Cache-Stateless-Server (LC$SS)

The layered-client-cache-stateless-server style derives from both layered-client-se
and client-cache-stateless-server through the addition of proxy and/or gateway com
nents. Two examples of systems that use an LC$SS style are the Internet domain n
system (DNS) and the World Wide Web’s HTTP [Fielding et al., 1999].

The advantages and disadvantages of LC$SS are just a combination of those for L
and C$SS. However, note that we don’t count the contributions of the CS style twic
since the benefits are not additive if they come from the same ancestral derivation.

5.3.6 Remote Session (RS)

The remote session style is a variant of client-server that attempts to minimize the
complexity, or maximize the reuse, of the client components rather than the server
component. Each client initiates a session on the server and then invokes a series
services on the server, finally exiting the session. Application state is kept entirely o
the server. This style is typically used when it is desired to access a remote service u
a generic client (e.g., TELNET [Postel and Reynolds, 1983]) or via an interface tha
mimics a generic client (e.g., FTP [Postel and Reynolds, 1985]).

The advantages of the remote session style are that it is easier to centrally maintain
interface at the server, reducing concerns about inconsistencies in deployed clients
functionality is extended, and improves efficiency if the interactions make use of
extended session context on the server. The disadvantages are that it reduces scalability
of the server, due to the stored application state, and reduces visibility of interaction
since a monitor would have to know the complete state of the server.

5.3.7 Remote Data Access (RDA)

The remote data access style [Umar, 1997] is a variant of client-server that spreads
application state across both client and server. A client sends a database query in a
dard format, such as SQL, to a remote server. The server allocates a workspace an
performs the query, which may result in a very large data set. The client can then m
further operations upon the result set (such as table joins) or retrieve the result one
at a time. The client must know about the data structure of the service to build struc
dependent queries.
Software Architectural Styles for Network-based Applications 19

nd
at

n
ehen-

l. In
dered

ity

a data

l

ter,

yle,

al
t-
nd

ty
The advantages of remote data access are that a largedata set can be iteratively reduced
on the server side without transmitting it across the network, improving efficiency, a
visibility is improved by using a standard query language. The disadvantages are th
the client needs to understand the samedatabase manipulation concepts as the server
implementation (lacking simplicity) and storing application context on the server
decreases scalability. Reliability also suffers, since partial failure can leave the work-
space in an unknown state. Transaction mechanisms (e.g., two-phase commit) can be
used to fix the reliability problem, though at a cost ofadded complexity and interaction
overhead.

5.4 Mobile Code Styles

Mobile code styles use mobility in order to dynamically change the distance betwee
the processing and source of data or destination of results. These styles are compr
sively examined in Fuggetta et al. [1998]. A site abstraction is introduced at the archi-
tectural level, as part of the active configuration, in order to take into account the
location of the different components. Introducing the concept of location makes it
possible to model the cost of an interaction between components at the design leve
particular, an interaction between components that share the same location is consi
to have negligible cost when compared to an interaction involving communication
through the network. By changing its location, a component may improve the proxim
and quality of its interaction, reducing interaction costs and thereby improving effi-
ciency and user-perceived performance.

In all of the mobile code styles, a data element is dynamically transformed into a
component. Fuggetta et al. [1998] use an analysis that compares the code’s size as
element to the savings in normal data transfer in order to determine whether mobility is
desirable for a given action. This would be impossible to model from an architectura
standpoint if the definition of software architecture excludesdata elements.

5.4.1 Virtual Machine (VM)

Underlying all of the mobile code styles is the notion of a virtual machine, or interpre
style [Garlan and Shaw, 1993]. The code must be executed in some fashion, preferably
within a controlled environment to satisfy security and reliability concerns, which is
exactly what the virtual machine style provides. It is not, in itself, a network-based st
but it is commonly used as such when combined with a component in the client-server
style (REV and COD styles).

Scripting languages are the most common use of virtual machines, including gener
purpose languages like Perl [Wall et al., 1996] and task-specific languages like Pos
Script [Adobe, 1985]. The primary benefits are the separation between instruction a
implementation on a particular platform (portability) and ease of extensibility. Visibili

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

VM ±±±± ++++ −−−− ++++

REV CS+VM ++++ −−−− ±±±± ++++ ++++ −−−− ++++ −−−−

COD CS+VM ++++ ++++ ++++ ±±±± ++++ ++++ −−−−

LCODC$SS LC$SS+COD −−−− ++++++++ ++++++++ ++++4444++++ ++++±±±±++++ ++++++++ ++++ ++++ ++++ ±±±± ++++ ++++

MA REV+COD ++++ ++++++++ ±±±± ++++++++ ++++ ++++ −−−− ++++
20 Software Architectural Styles for Network-based Applications

at

ction-

and
a

ppen
ver
avail-
eval-

ment,
eing

erver

mpen-
lity
iron-

.

p

to a
s

d

ns.

t

nifi-

n of
e.
is reduced because it is hard to know what an executable will do simply by looking
the code. Simplicity is reduced due to the need to manage the evaluation environment,
but that may be compensated in some cases as a result of simplifying the static fun
ality.

5.4.2 Remote Evaluation (REV)

In the remote evaluation style [Fuggetta et al., 1998], derived from the client-server
virtual machine styles, a client component has the know-how necessary to perform
service, but lacks the resources (CPU cycles, data source, etc.) required, which ha
to be located at a remote site. Consequently, the client sends the know-how to a ser
component at the remote site, which in turn executes the code using the resources
able there. The results of that execution are then sent back to the client. The remote
uation style assumes that the provided code will be executed in a sheltered environ
such that it won’t impact other clients of the same server aside from the resources b
used.

The advantages of remote evaluation include the ability to customize the servercompo-
nent’s services, which provides for improved extensibility and customizability, and
better efficiency when the code can adapt its actions to the environment inside the s
(as opposed to the client making a series of interactions to do the same). Simplicity is
reduced due to the need to manage the evaluation environment, but that may be co
sated in some cases as a result of simplifying the static server functionality. Scalabi
is reduced; this can be improved with the server’s management of the execution env
ment (killing long-running or resource-intensive code when resources aretight), but the
management function itself leads to difficulties regarding partial failure and reliability
The most significant limitation, however, is the lack of visibility due to the client
sending code instead of standardized queries. Lack of visibility leads to obvious deloy-
ment problems if the server cannot trust the clients.

5.4.3 Code on Demand (COD)

In the code-on-demand style [Fuggetta et al.,1998], a client component has access to a
set of resources, but not the know-how on how to process them. It sends a request
remote server for the code representing that know-how,receives that code, and execute
it locally.

The advantages of code-on-demand include the ability to add features to a deploye
client, which provides for improved extensibility and configurability, and better user-
perceived performance and efficiency when thecode canadapt its actions to the client’s
environment and interact with the user locally rather than through remote interactio
Simplicity is reduced due to the need to manage the evaluation environment, but that
may be compensated in some cases as a result of simplifying the client’s static funcion-
ality. Scalability of the server is improved, since it can off-load work to the client that
would otherwise have consumed its resources. Like remote evaluation, the most sig
cant limitation is the lack of visibility due to the server sending code instead of simple
data. Lack of visibility leads to obvious deployment problems if the client cannot trust
the servers.

5.4.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)

As an example of how some architectures are complementary, consider the additio
code-on-demand to the layered-client-cache-stateless-server style discussed abov
Since the code can be treated as just another data element, thisdoes not interfere with
the advantages of the LC$SS style. An example is the HotJavaWeb browser
Software Architectural Styles for Network-based Applications 21

yped

for
er

ata
lua-

hen

at a

tem
the
an
gister
okes
odel-
ion
90],

neral
ts to
,
for
s

ata
[java.sun.com], which allows applets and protocol extensions to be downloaded as t
media.

The advantages and disadvantages of LCODC$SS are just a combination of those
COD and LC$SS. We could go further and discuss the combination of COD with oth
CS styles, but this survey is not intended to be exhaustive (nor exhausting).

5.4.5 Mobile Agent (MA)

In the mobile agent style [Fuggetta et al.,1998], an entire computational component is
moved to a remote site, along with its state, the code it needs, and possibly some d
required to perform the task. This can be considered a derivation of the remote eva
tion and code-on-demand styles, since the mobility works both ways.

The primary advantage of the mobile agent style, beyond those already described for
REV and COD, is that there is greaterdynamism in the selection of when to move the
code. An application can be in the midst of processing information at one location w
it decides to move to another location, presumably in order to reduce the distance
between it and the next set of data it wishes to process. In addition, the reliability
problem of partial failure is reduced because the application state is in one location
time [Fuggetta et al., 1998].

5.5 Peer-to-Peer Styles

5.5.1 Event-based Integration (EBI)

The event-based integration style, also known as the implicit invocation or event sys
style, reduces coupling between components by removing the need for identity on
connector interface. Instead of invoking another component directly, a component c
announce (or broadcast) one or more events. Other components in a system can re
interest in that type of event and, when the event is announced, the system itself inv
all of the registered components [Garlan and Shaw, 1993]. Examples include the M
View-Controller paradigm in Smalltalk-80 [Krasner and Pope, 1988] and the integrat
mechanisms of many software engineering environments, including Field [Reiss, 19
SoftBench [Cagan, 1990], and Polylith [Purtilo, 1994].

The event-based integration style provides strong support for extensibility through the
ease of adding new components that listen for events, for reuse by encouraging a ge
event interface and integration mechanism, and for evolution by allowing componen
be replaced without affecting the interfaces of other components [Garlan and Shaw
1993]. Like pipe-and-filter systems, a higher-level configuring architecture is needed
the “invisible hand” that places components on the event interface. Most EBI system
also include explicit invocation as a complementary form of interaction [Garlan and
Shaw, 1993]. For applications that are dominated by data monitoring, rather than d
retrieval, EBI can improve efficiency by removing the need for polling interactions.

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

EBI ++++ − − − − −−−− ±±±± ++++ ++++ ++++ ++++ −−−− −−−−

C2 EBI+LCS −−−− ++++ ++++ ++++++++ ++++ ++++ ++++++++ ±±±± ++++ ±±±±

DO CS+CS −−−− ++++ ++++ ++++ ++++ ++++ −−−− −−−−

BDO DO+LCS −−−− −−−− ++++++++ ++++ ++++ ++++++++ −−−− ++++
22 Software Architectural Styles for Network-based Applications

with
as a

d

not

use

nous
are

or a

ith
-
the

as
ta, a
hread
on,

d
ade

ions

ly to
of

r
ects
ject
tion
The basic form of EBI system consists of one event bus to which all componentslisten
for events of interest to them. Of course, this immediately leads to scalability issues
regard to the number of notifications, event storms as other components broadcast
result of events caused by that notification, and a singlepoint of failure in the notifica-
tion delivery system. This can be ameliorated though the use of layered systems an
filtering of events, at the cost of simplicity.

Other disadvantages of EBI systems are that it can be hard to anticipate what will
happen in response to an action (poor understandability) and event notifications are
suitable for exchanging large-grain data [Garlan and Shaw, 1993]. Also, there is no
support for recovery from partial failure.

5.5.2 C2

The C2 architectural style [Taylor et al., 1996] is directed at supporting large-grain re
and flexible composition of system components by enforcing substrate independence. It
does so by combining event-based integration with layered-client-server. Asynchro
notification messages going down, and asynchronous request messages going up,
the sole means of intercomponent communication. This enforces loose coupling of
dependency on higher layers (service requests may be ignored) and zero coupling with
lower levels (no knowledge of notification usage), improving control over the system
without losing most of the advantages of EBI.

Notifications are announcements of a statechange within a component. C2 does not
constrain what should be included with a notification: a flag, a delta of state change,
complete state representation are all possibilities. A connector’s primary responsibility
is the routing and broadcasting of messages; its secondary responsibility is message
filtering. The introduction of layered filtering of messages solves the EBI problems w
scalability, while improving evolvability and reusability as well. Heavyweight connec
tors that include monitoring capabilities can be used to improve visibility and reduce
reliability problems of partial failure.

5.5.3 Distributed Objects

The distributed objects style organizes a system as a set of components interacting
peers. An object is an entity that encapsulates some private state information or da
set of associated operations or procedures that manipulate the data, and possibly t
of control so that collectively they can be considered a single unit [Chin and Chans
1991]. In general, an object’sstate is completely hidden and protected from all other
objects. The only way it can be examined or modified is by making arequest or invoca-
tion on one of the object’s publicly accessible operations. This creates a well-define
interface for each object, enabling the specification of an object’s operations to be m
public while at the same time keeping the implementation of its operations and the
representation of its state information private, thus improving evolvability.

An operation may invoke other operations, possibly on other objects. These operat
may in turn make invocations on others, and so on. A chain of related invocations is
referred to as an action [Chin and Chanson, 1991]. State is distributed among the
objects. This can be advantageous in terms of keeping the state where it is most like
be up-to-date, but has the disadvantage in that it is difficult to obtain an overall view
system activity (poor visibility).

In order for one object to interact with another, it must know the identity of that othe
object. When the identity of an object changes, it is necessary to modify all other obj
that explicitly invoke it [Garlan and Shaw, 1993]. There must be some controller ob
that is responsible for maintaining the system state in order to complete the applica
Software Architectural Styles for Network-based Applications 23

ent,

e, data

use
sed

r
t that
el

rds
vel-

appli-

rn.

tural
ts for
nd

ssifi-

w
nts
fica-
the

type

-
the

t
style
requirements. Central issues for distributed object systems include: object managem
object interaction management, and resource management [Chin andChanson,1991].

Object systems are designed to isolate the data being processed. As a consequenc
streaming is not supported in general. However, this does provide better support for
object mobility when combined with the mobile agent style.

5.5.4 Brokered Distributed Objects

In order to reduce the impact of identity, modern distributed object systems typically
one or more intermediary styles to facilitate communication. This includes event-ba
integration and brokered client/server [Buschmann et al.,1996]. The brokered distrib-
uted object style introduces name resolver components whose purpose is to answe
client object requests for general service names with the specific name of an objec
will satisfy the request. Although improving reusability and evolvability, the extra lev
of indirection requires additional network interactions, reducing efficiency and user-
perceived performance.

Brokered distributed object systems are currently dominated by the industrial standa
development of CORBA within the OMG [1997] and the international standards de
opment of Open Distributed Processing (ODP) within ISO/IEC [1995].

In spite of all the interest associated with distributed objects, they fare poorly when
compared to most other network-based architectural styles. They are best used for
cations that involve the remote invocation of encapsulated services, such as hardware
devices, where the efficiency and frequency of network interactions is less a conce

6 Related Work

I include here only those areas of research thatdescribe, define, or embody software
architectural styles. Other areas for software architectural research include architec
analysis techniques, architecture recovery and reengineering, tools and environmen
architectural design, architecture refinement from specification to implementation, a
case studies of deployed software architectures [Garlan and Perry, 1995].

6.1 Classification of Architectural Styles and Patterns

The area of research most directly related to this survey is the identification and cla
cation of architectural styles and architecture-level patterns.

Shaw [1990] describes a few architectural styles, later expanded in Garlan and Sha
[1993]. A preliminary classification of these styles is presented in Shaw and Cleme
[1997] and repeated in Bass et al. [1998], in which a two-dimensional, tabular classi
tion strategy is used with control and data issues as the primary axes, organized by
following categories of features: which kinds of components andconnectors are used in
the style; how control is shared, allocated, and transferred among the components; how
data is communicated through the system; how data and control interact; and, what
of reasoning is compatible with the style. The primarypurpose of the taxonomy is to
identify style characteristics, rather than to assist in their comparison. Itconcludes with
a small set of “rules of thumb” as a form of design guidance

Unlike this survey, the Shaw and Clements [1997] classification does not assist in evalu
ating designs in a way that is useful to an application designer. The problem is that
purpose of building software is not to build a specific shape, topology or componen
type, so organizing the classification in that fashion does not help a designer find a
24 Software Architectural Styles for Network-based Applications

hi-
s can

tterns

e-
n
and

d

al.
he

ge
s in a

soft-

r, the
ask,

lding
e-

ode
ile

tan-

stry-
that corresponds to their needs. It also mixes the essential differences among styles with
other issues which have only incidental significance, and obscures the derivation rela-
tionships among styles. Furthermore, it does not focus on any particular type of arc
tecture, such as network-based applications. Finally, it does not describe how style
be combined, nor the effect of their combination.

Buschmann and Meunier [1995] describe a classification scheme that organizes pa
according to granularity of abstraction, functionality, and structural principles. The
granularity of abstraction separates patterns into three categories: architectural fram
works (templates for architectures), design patterns, and idioms. Their classificatio
addresses some of the same issues as this survey, such as separation of concerns
structural principles that lead to architectural properties, but only covers two of the
architectural styles described here. Their classification is considerably expanded in
Buschmann et al. [1996] with more extensive discussion of architectural patterns an
their relation to software architecture.

Zimmer [1995] organizes design patterns using a graph based on their relationships,
making it easier to understand the overall structure of the patterns in the Gamma et
[1995] catalog. However, the patterns classified are not architectural patterns, and t
classification is based exclusively on derivation or uses relationships rather than on
architectural properties.

6.2 Distributed Systems and Programming Paradigms

Andrews [1991] surveys how processes in a distributed program interact via messa
passing. He defines concurrent programs, distributed programs, kinds of processe
distributed program (filters, clients, servers, peers), interaction paradigms, and commu-
nication channels. Interaction paradigms represent the communication aspects of
ware architectural styles. He describes paradigms for one-way data flow through
networks of filters (pipe-and-filter), client-server, heartbeat, probe/echo, broadcast,
token passing, replicated servers, and replicated workers with bag of tasks. Howeve
presentation is from the perspective of multiple processes cooperating on a single t
rather than general network-based architectural styles.

Sullivan and Notkin [1992] provide a survey of implicit invocation research and
describe its application to improving the evolution quality of software tool suites.
Barrett et al. [1996] present a survey of event-based integration mechanisms by bui
a framework for comparison and then seeing how some systems fit within that fram
work. Rosenblum and Wolf [1997] investigate a design framework forInternet-scale
event notification. All are concerned with the scope and requirements of an EBI style,
rather than providing solutions for network-based systems.

Fuggetta et al. [1998] provide a thorough examination and classification of mobile c
paradigms. This survey builds upon their work to the extent that I compare the mob
code styles with other network-capable styles, and place them within a single frame-
work and set of architectural definitions.

6.3 Middleware

Bernstein [1996] defines middleware as a distributed system service that includes s
dard programming interfaces and protocols. These services are called middleware
because they act as a layer above the OS and networking software and below indu
specific applications. Umar [1997] presents an extensive treatment of the subject.
Software Architectural Styles for Network-based Applications 25

f inte-

l
use

helf
the

into

struc-

lo-

does
olo-
t
ads
rol
ture.

iting
994]

a

e

s.
ral

re-
ent.

e the

truc-
s are

of
Architecture research regarding middleware focuses on the problems and effects o
grating components with off-the-shelf middleware. Di Nitto and Rosenblum [1999]
describe how the usage of middleware and predefined components can influence the
architecture of a system being developed and, conversely, how specific architectura
choices can constrain the selection of middleware. Dashofy et al. [1999] discuss the
of middleware with the C2 style.

Garlan et al. [1995] point out some of the architectural assumptions within off-the-s
components, examining the authors’ problems with reusing subsystems in creating
Aesop tool for architectural design [Garlan et al., 1994]. They classify the problems
four main categories of assumptions that can contribute to architectural mismatch:
nature of components, nature of connectors, global architectural structure, and con
tion process.

6.4 Design Methodologies

Most early research on software architecture was concentrated on design methodo
gies. For example, object-oriented design [Booch,1986]advocates a way to structure
problems that leads naturally to an object-based architecture (or, more accurately,
not lead naturally to any other form of architecture). One of the first design method
gies to emphasize design at the architectural level is Jackson System Developmen
[Cameron, 1986]. JSD intentionally structures the analysis of a problem so that it le
to a style of architecture that combines pipe-and-filter (data flow) and process cont
constraints. These design methodologies tend to produce only one style of architec

There has been some initial work investigating methodologies for the analysis and
development of architectures. Kazman et al. have described design methods for elic
the architectural aspects of a design through scenario-based analysis with SAAM [1
and architectural trade-off analysis viaATAM [1999]. Shaw[1995] compares a variety
of box-and-arrow designs for an automobile cruise control system, each done using
different design methodology and encompassing several architectural styles.

6.5 Handbooks for Design, Design Patterns, and Pattern Languages

Shaw [1990] advocates the development of architectural handbooks along the sam
lines as traditional engineering disciplines. As discussed in Section 2.3, the object-
oriented programming community has taken the lead in producing catalogs of design
patterns, as exemplified by the “Gang of Four” book [Gamma et al.,1995] and the
essays edited by Coplien and Schmidt [1995].

Software design patterns tend to be more problem-oriented than architectural style
Shaw [1996] presents eight example architectural patterns based on the architectu
styles described in [Garlan and Shaw, 1993], including information on the kinds of
problems best suited to each architecture. Buschmann et al. [1996] provide a comp
hensive examination of the architectural patterns common to object-based developm
Both references are purely descriptive and make no attempt to compare or illustrat
differences among architectural patterns.

Tepfenhart and Cusick [1997] use a two dimensional map to differentiate among
domain taxonomies, domain models, architectural styles, frameworks, kits, design
patterns, and applications. In the topology, design patterns are predefined design s
tures used as building blocks for a software architecture, whereas architectural style
sets of operational characteristics that identify an architectural family independent
application domain. However, they fail to define architecture itself.
26 Software Architectural Styles for Network-based Applications

archi-

nce
d
and
t

ame-

r
lica-

ing
yle

tural

n for
inter-

ows

archi-
nd

tec-

s
ith

ses,

ple,
hi-
t

ff
6.6 Reference Models and Domain-specific Software Architectures (DSSA)

Reference models are developed to provide conceptual frameworks for describing
tectures and showing how components are related to each other [Shaw, 1990]. The
Object Management Architecture (OMA), developed by the OMG [1995] as a refere
model for brokered distributed object architectures, specifies how objects are define
and created, how client applications invoke objects, and how objects can be shared
reused. The emphasis is on management of distributed objects, rather than efficien
application interaction.

Hayes-Roth et al. [1995] define domain-specific software architecture (DSSA) as
comprising: a) a reference architecture, which describes a general computational fr
work for a significant domain of applications, b) a component library, which contains
reusable chunks of domain expertise, and c) an application configuration method fo
selecting and configuring components within the architecture to meet particular app
tion requirements. Tracz [1995] provides a general overview of DSSA.

DSSA projects have been successful at transferring architectural decisions to runn
systems by restricting the software development space to a specific architectural st
that matches the domain requirements [Medvidovic et al., 1999]. Examples include
ADAGE [Batory et al., 1995] for avionics, AIS [Hayes-Roth et al., 1995] for adaptive
intelligent systems, and MetaH [Vestal, 1996] for missile guidance, navigation, and
control systems. DSSA emphasize reuse of components within a common architec
domain, rather than selecting an architectural style that is specific to each system.

6.7 Architecture Description Languages (ADL)

Most of the recent published work regarding software architectures is in the area of
architecture description languages (ADL). An ADL is, according to Medvidovic and
Taylor [1997], a language that provides features for the explicit specification and
modeling of a software system’s conceptual architecture, including at a minimum:
components, component interfaces, connectors, and architectural configurations.

Darwin is a declarative language which is intended to be a general purpose notatio
specifying the structure of systems composed of diverse components using diverse
action mechanisms [Magee et al., 1995]. Darwin’s interesting qualities are that it all
the specification of distributed architectures and dynamicallycomposed architectures
[Magee and Kramer, 1996].

UniCon [Shaw et al., 1995] is a language and associated toolset for composing an
tecture from a restricted set of component and connector examples. Wright [Allen a
Garlan, 1997] provides a formal basis for specifying the interactions between archi
tural components by specifying connector types by their interaction protocols.

Like design methodologies, ADLs often introduce specific architectural assumption
that may impact their ability to describe some architectural styles, and may conflict w
the assumptions in existing middleware [Di Nitto and Rosenblum, 1999]. In some ca
an ADL is designed specifically for a single architectural style, thus improving its
capacity for specialized description and analysis at the cost of generality. For exam
C2SADEL [Medvidovic et al., 1999] is an ADL designed specifically to describe arc
tectures developed in the C2 style [Taylor et al., 1996]. In contrast, ACME [Garlan e
al., 1997] is an ADL that attempts to be as generic as possible, but with the trade-o
being that it doesn’t support style-specific analysis.
Software Architectural Styles for Network-based Applications 27

of

ing

by
y

l, it
se

e
or
the
for

et of
hi-
lassi-

alua-

ons
ion.

.
nfor-

ote
.

it is
ility
ic of

lso
6.8 Formal Architectural Models

Abowd et al. [1995] claim that architectural styles can be described formally in terms
a small set of mappings from the syntactic domain of architectural descriptions(box-
and-line diagrams) to the semantic domain of architectural meaning. However, this
assumes that the architecture is the description, rather than an abstraction of a runn
system.

Inverardi and Wolf [1995] use the Chemical Abstract Machine (CHAM) formalism to
model software architecture elements as chemicals whose reactions are controlled
explicitly stated rules. It specifies the behavior of components according to how the
transform available data elements and uses composition rules to propagate the indi-
vidual transformations into an overall system result.While this is an interesting mode
is unclear as to how CHAM could be used to describe any form of architecture who
purpose goes beyond transforming a data stream.

Rapide [Luckham and Vera, 1995] is a concurrent, event-based simulation languag
specifically designed for defining and simulating system architectures. The simulat
produces a partially-ordered set of events that can be analyzed for conformance to
architectural constraints on interconnection. Le Métayer [1998] presents a formalism
the definition of architectures in terms of graphs and graph grammars.

7 Conclusions

Each architectural style promotes a certaintype of interaction among components.
When components are distributed across a wide-area network, use or misuse of the
network drives application usability. By characterizing styles by their influence on
architectural properties, and particularly on network-based application performance, we
gain the ability to better choose a software design that isappropriate for the application.

The primary contributions of this survey are the development of a comprehensive s
definitions for software architecture and architectural styles, identification of the arc
tectural properties that are most influenced by the constraints of each style, and a c
fication of styles according to those properties.

There are, however, a couple limitations with the chosen classification. First, the ev
tion of all network-based styles against the generic notion of network communication,
rather than a specific type of communication, leads to difficulty in accurate comparis
between styles that have different properties depending on the type of communicat
For example, many of the good qualities of the pipe-and-filter style disappear if the
communication is fine-grained control messages, and are not applicable at all if the
communication requires user interactivity. Likewise, layered caching only adds to
latency, without any benefit, if none of the responses to client requests are cachable
This type of distinction does not appear in the classification, and is only addressed i
mally in the discussion of each style. I believe this limitation can be overcome by
creating separate classification tables for each type of communication problem.
Example problem areas would include, among others, large grain data retrieval, rem
information monitoring, search, remote control systems, and distributed processing

A second limitation is with the grouping of architectural properties. In some cases,
better to identify the specific aspects of, for example, understandability and verifiab
induced by an architectural style, rather than lumping them together under the rubr
simplicity. This is particularly the case for styles which might improve verifiability at
the expense of understandability. However, the more abstract notion of a property a
28 Software Architectural Styles for Network-based Applications

cific

rther

,

y,

les,

gel.

tions

rna-
lso
M
8),

ft-
4),

5.
has value as a single metric, since we do not want to make the classification so spe
that no two styles impact the same category. One solution would be a classificationthat
presented both the specific properties and a summary property.

Regardless, this initial survey and classification is a necessary prerequisite to any fu
classifications that might address its limitations.

8 Acknowledgments

I’d like to thank Nenad Medvidovic for providing me with a copy of some hard-to-
obtain papers and pointing me in the direction of others. Peyman Oreizy’s survey
[Oreizy, 1998] provided a useful outline for structuring this survey. This version has
benefited from comments on earlier drafts by Richard N. Taylor, Mark S. Ackerman
and David S. Rosenblum.

9 References

[Abowd et al., 1995] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style tounderstand descriptions of
software architecture. ACM Transactions on Software Engineering and Methodolog
4(4), Oct. 1995, pp. 319-364. A shorter version also appeared as: Using style tounder-
stand descriptions of software architecture. In Proceedings of the First ACM SIGSOFT
Symposium on the Foundations of Software Engineering (SIGSOFT‘93), Los Ange
CA, Dec. 1993, pp. 9-20.

[Adobe, 1985] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985.

[Alexander et al., 1977] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. An
A Pattern Language. Oxford University Press, New York, 1977.

[Alexander, 1979] C. Alexander. The Timeless Way of Building. Oxford University Press, New York,
1979.

[Allen and Garlan, 1997] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transac
on Software Engineering and Methodology, 6(3), July1997. A shorter version also
appeared as: Formalizing architectural connection. In Proceedings of the 16th Inte
tional Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 71-80. A
as: Beyond Definition/Use: Architectural Interconnection. In Proceedings of the AC
Interface Definition Language Workshop, Portland, Oregon, SIGPLAN Notices, 29(
Aug. 1994.

[Andrews, 1991] G. Andrews. Paradigms for process interaction in distributed programs. ACM
Computing Surveys, 23(1), Mar. 1991, pp. 49-90.

[Barrett et al., 1996] D. J. Barrett, L. A. Clarke, P. L. Tarr, A. E. Wise. A Framework for Event-Based So
ware Integration. ACM Transactions on Software Engineering and Methodology, 5(
Oct. 1996, pp. 378-421.

[Bass et al., 1998] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Mass., 1998.

[Batory et al., 1995] D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE avionics reference
architecture. In Proceedings of AIAA Computing in Aerospace 10, San Antonio, 199
Software Architectural Styles for Network-based Applications 29

r

I):

ions

, pp.

ing,

ds.),

ted
6.

n of

CM

nera-

dison-

),

le-
nter-
-12.

e-
.

nfer-

.

[Berners-Lee, 1996] T. Berners-Lee. WWW: Past, present, and future. IEEE Computer, 29(10), Octobe
1996, pp. 69-77.

[Berners-Lee et al., 1998] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifiers (UR
Generic Syntax. Internet RFC 2396, Aug. 1998.

[Bernstein, 1996] P. Bernstein. Middleware: A model for distributed systems services. CACM, Feb.1996,
pp. 86-98.

[Birrell and Nelson, 1984] A. D. Birrell and B. J. Nelson. Implementing remote procedure call. ACM Transact
on Computer Systems, 2, Jan. 1984, pp. 39-59.

[Boasson, 1995] M. Boasson. The artistry of software architecture. IEEE Software, 12(6), Nov. 1995
13-16.

[Booch, 1986] G. Booch. Object-oriented development. IEEE Transactions on Software Engineer
12(2), Feb. 1986, pp. 211-221.

[Buschmann and Meunier, 1995 F. Buschmann and R. Meunier. A system of patterns. Coplien and Schmidt (e
Pattern Languages of Program Design, Addison-Wesley, 1995, pp. 325-343.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-orien
Software Architecture: A system of patterns. John Wiley & Sons Ltd., England, 199

[Cagan, 1990] M. R. Cagan. The HP SoftBench Environment: An architecture for a new qeneratio
software tools. Hewlett-Packard Journal, 41(3), June 1990, pp. 36-47.

[Cameron, 1986] J. R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering,
12(2), Feb. 1986, 222-240.

[Chin and Chanson, 1991] R. S. Chin and S. T. Chanson. Distributed object-based programming systems. A
Computing Surveys, 23(1), Mar. 1991, pp. 91-124.

[Clark and Tennenhouse, 1990] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new ge
tion of protocols. In Proceedings of ACM SIGCOMM‘90 Symposium, Philadelphia,
PA, Sep. 1990, pp. 200-208.

[Coplien and Schmidt, 1995] J. O. Coplien and D. C. Schmidt, ed. Pattern Languages of Program Design. Ad
Wesley, Reading, Mass., 1995.

[Coplien, 1997] J. O. Coplien. Idioms and Patterns as Architectural Literature. IEEE Software, 14(1
Jan. 1997, pp. 36-42.

[Dashofy et al., 1999] E. M. Dashofy, N. Medvidovic, R. N. Taylor. Using off-the-shelf middleware to imp
ment connectors in distributed software architectures. In Proceedings of the 1999 I
national Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp. 3

[DeRemer and Kron, 1976] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-th
small. IEEE Transactions on Software Engineering, SE-2(2), June 1976, pp. 80-86

[Di Nitto and Rosenblum, 1999] E. Di Nitto and D. Rosenblum. Exploiting ADLs to specify architectural styles
induced by middleware infrastructures. In Proceedings of the 1999 International Co
ence on Software Engineering, Los Angeles, May 16-22, 1999, pp. 13-22.

[Fielding et al., 1999] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Internet RFC 2616, June
1999. [Obsoletes RFC 2068, Jan. 1997.]

[Fridrich and Older, 1985] M. Fridrich and W. Older. Helix: The architecture of the XMS distributed file system
IEEE Software, 2, May 1985, pp. 21-29.
30 Software Architectural Styles for Network-based Applications

ac-

Reus-

envi-
re

ola

vi-
a-
8.

re.

to
nce

tch:

In

n-

ures

-T

ensed

ith

ision.

ser
[Fuggetta et al., 1998] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Trans
tions on Software Engineering, 24(5), May 1998, pp.342-361.

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
able Object-oriented Software. Addison-Wesley, Reading, Mass., 1995.

[Garlan and Ilias, 1990] D. Garlan and E. Ilias. Low-cost, adaptable tool integration policies for integrated
ronments. In Proceedings of the ACM SIGSOFT ‘90: Fourth Symposium on Softwa
Development Environments, Dec. 1990, pp. 1-10.

[Garlan and Shaw, 1993] D. Garlan and M. Shaw. An introduction to software architecture. Ambriola & Tort
(eds.), Advances in Software Engineering & Knowledge Engineering, vol. II, World
Scientific Pub Co., Singapore, 1993, pp. 1-39.

[Garlan et al., 1994] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design en
ronments. In Proceedings of the Second ACM SIGSOFT Symposium on the Found
tions of Software Engineering (SIGSOFT‘94), New Orleans, Dec. 1994, pp. 175-18

[Garlan and Perry, 1995] D. Garlan and D. E. Perry. Introduction to the special issue on software architectu
IEEE Transactions on Software Engineering, 21(4), Apr. 1995, pp. 269-274.

[Garlan et al., 1995] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch, or, Why it’s hard
build systems out of existing parts. In Proceedings of the 17th International Confere
on Software Engineering, Seattle, WA, 1995. Also appears as: Architectural misma
Why reuse is so hard. IEEE Software, 12(6), Nov. 1995, pp. 17-26.

[Garlan et al., 1997] D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description language.
Proceedings of CASCON‘97, Nov. 1997.

[Ghezzi et al., 1991] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice-Hall, 1991.

[Hayes-Roth et al., 1995] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A domai
specific software architecture for adaptive intelligent systems. IEEE Transactions on
Software Engineering, 21(4), Apr. 1995, pp. 288-301.

[Inverardi and Wolf, 1995] P. Inverardi and A. L. Wolf. Formal specification and analysis of software architect
using the chemical abstract machine model. IEEE Transactions on Software Engi-
neering, 21(4), Apr. 1995, pp. 373-386.

[ISO/IEC, 1995] ISO/IEC JTC1/SC21/WG7. Reference Model of Open Distributed Processing. ITU
X.901: ISO/IEC 10746-1, 07 June 1995.

[Jackson, 1994] M. Jackson. Problems, methods, and specialization. IEEE Software, 11(6), [cond
from Software Engineering Journal], Nov. 1994. pp. 57-62.

[Kazman et al., 1994] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A method for analyzing the
properties of software architectures. In Proceedings of the 16th International Confer-
ence on Software Engineering, Sorrento, Italy, May 1994, pp. 81-90.

[Kazman et al., 1999] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G. Woods. Experience w
performing architecture tradeoff analysis. In Proceedings of the 1999 International
Conference on Software Engineering, Los Angeles, May 16-22, 1999, pp. 54-63.

[Kerth and Cunningham, 1997] N. L. Kerth and W. Cunningham. Using patterns to improve our architectural v
IEEE Software, 14(1), Jan. 1997, pp. 53-59.

[Krasner and Pope, 1988] G. E. Krasner and S. T. Pope. A cookbook for using the Model-View-Controller u
interface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1(3),
Aug.-Sep. 1988, pp. 26-49.
Software Architectural Styles for Network-based Applications 31

95,

E

cifi-
ware

E

f

archi-

ings of

hi-
ering
of

rsity

or
9
pp.

n

ey &

d

volu-
,

rvey
[Kruchten, 1995] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 19
pp. 42-50.

[Le Métayer, 1998] D. Le Métayer. Describing software architectural styles using graph grammars. IEE
Transactions on Software Engineering, 24(7), Jul. 1998, pp. 521-533.

[Loerke, 1990] W. C. Loerke. On Style in Architecture. F. Wilson,Architecture: Fundamental Issues,
Van Nostrand Reinhold, New York, 1990, pp. 203-218.

[Luckham et al., 1995] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Spe
cation and analysis of system architecture using Rapide. IEEE Transactions on Soft
Engineering, 21(4), Apr. 1995, pp. 336-355.

[Luckham and Vera, 1995] D. C. Luckham and J. Vera. An event-based architecture definition language. IEE
Transactions on Software Engineering, 21(9), Sep. 1995, pp. 717-734.

[Maes, 1987] P. Maes. Concepts and experiments in computational reflection. In Proceedings o
OOPSLA ‘87, Orlando, Florida, Oct. 1987, pp. 147-155.

[Magee et al., 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
tectures. In Proceedings of the 5th European Software Engineering Conference
(ESEC‘95), Sitges, Spain, Sep. 1995, pp. 137-153.

[Magee and Kramer, 1996] J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceed
the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering
(SIGSOFT‘96), San Francisco, Oct. 1996, pp. 3-14.

[Medvidovic andTaylor.,1997] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing arc
tecture description languages. In Proceedings of the 6th European Software Engine
Conference held jointly with the 5th ACM SIGSOFT Symposium on the Foundations
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 60-76.

[Medvidovic, 1998] Architecture-based specification-time software evolution. Ph.D. Dissertation, Unive
of California, Irvine, Dec. 1998.

[Medvidovic et al., 1999] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and environment f
architecture-based software development and evolution. In Proceedings of the 199
International Conference on Software Engineering, Los Angeles, May 16-22, 1999,
44-53.

[Monroe et al, 1997] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural Styles, Desig
Patterns, and Objects. IEEE Software, 14(1), Jan. 1997, pp. 43-52.

[Moriconi et al., 1995] M. Moriconi, X. Qian, and R. A. Riemenscheider. Correct architecture refinement.
IEEE Transactions on Software Engineering, 21(4), April 1995, pp. 356-372.

[Nii, 1986] H. Penny Nii. Blackboard systems. AI Magazine, 7(3):38-53 and 7(4):82-107,1986.

[OMG, 1995] Object Management Group. Object Management Architecture Guide, Rev. 3.0. Sol
Stone (eds.), New York: J. Wiley, 3rd ed., 1995.

[OMG, 1997] Object Management Group. The Common Object Request Broker: Architecture an
Specification (CORBA 2.1). <http://www.omg.org/>, Aug. 1997.

[Oreizy et al., 1998] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software e
tion. In Proceedings of the 1998 International Conference on Software Engineering
Kyoto, Japan, Apr. 1998.

[Oreizy, 1998] P. Oreizy. Decentralized software evolution. Unpublished manuscript (Phase II Su
Paper), Dec. 1998.
32 Software Architectural Styles for Network-based Applications

gs of

nsac-

6.

57-62.

f

e
>.

evelop-
l.

EE

erva-

enta-

le. In
s,

ac-
t-

, pp.
[Parnas, 1971] D. L. Parnas. Information distribution aspects of design methodology. In Proceedin
IFIP Congress 71, Ljubljana, Aug. 1971, pp. 339-344.

[Parnas, 1972] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12), Dec. 1972, pp. 1053-1058.

[Parnas, 1979] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Tra
tions on Software Engineering, SE-5(3), Mar. 1979.

[Parnas et al., 1985] D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of complex
systems. IEEE Transactions on Software Engineering, SE-11(3), 1985, pp. 259-26

[Perry and Wolf, 1992] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4), Oct. 1992, pp. 40-52.

[Postel and Reynolds, 1983] J. Postel and J. Reynolds. TELNET Protocol Specification.Internet STD 8, RFC 854,
May 1983.

[Postel and Reynolds, 1985] J. Postel and J. Reynolds. File Transfer Protocol.Internet STD 9, RFC 959, October
1985.

[Pountain et al., 1994] D. Pountain and C. Szyperski. Extensible software systems. Byte, May 1994, pp.

[Prieto-Diaz et al., 1986] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal o
Systems and Software, 6(4), Nov. 1986, pp. 307-334.

[Purtilo, 1994] J. M. Purtilo. The Polylith software bus. ACM Transactions on Programming
Languages and Systems, 16(1), Jan. 1994, pp. 151-174.

[Python, 1970] M. Python. The Architects Sketch. Monty Python’s Flying Circus TV Show, Episod
17, Sep. 1970. Transcript at <http://www.stone-dead.asn.au/sketches/architec.htm

[Rasure and Young, 1992] J. Rasure and M. Young. Open environment for image processing and software d
ment. In Proceedings of the 1992 SPIE/IS&T Symposium on Electronic Imaging, Vo
1659, Feb. 1992.

[Reiss, 1990] S. P. Reiss. Connecting tools using message passing in the Field environment. IE
Software, 7(4), July 1990, pp. 57-67.

[Rosenblum and Wolf, 1997] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event obs
tion and notification. In Proceedings of the 6th European Software Engineering Confer-
ence held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, Sep. 1997, pp. 344-360.

[Sandberg et al., 1985] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implem
tion of the Sun network filesystem. In Proceedings of the Usenix Conference, June
1985, pp. 119-130.

[Shapiro, 1986] M. Shapiro. Structure and encapsulation in distributed systems: The proxy princip
Proceedings of the 6th International Conference on Distributed Computing System
Cambridge, MA, May 1986, pp. 198-204.

[Shaw, 1990] M. Shaw. Toward higher-level abstractions for software systems. Data & Knowledge
Engineering, 5, 1990, pp. 119-128.

[Shaw et al., 1995] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnick. Abstr
tions for software architecture and tools to support them. IEEE Transactions on Sof
ware Engineering, 21(4), Apr. 1995, pp. 314-335.

[Shaw, 1995] M. Shaw. Comparing architectural design styles. IEEE Software, 12(6), Nov. 1995
27-41.
Software Architectural Styles for Network-based Applications 33

.),

ipline.

l

lu-
,

puting

. A.
style
p.

ft-

ll

.

.

[Shaw, 1996] M. Shaw. Some patterns for software architecture. Vlissides, Coplien & Kerth (eds
Pattern Languages of Program Design, Vol. 2, Addison-Wesley, 1996, pp. 255-269.

[Shaw and Garlan, 1996] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging disc
Prentice-Hall, 1996.

[Shaw and Clements, 1997] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of
architectural styles for software systems. In Proceedings of the Twenty-First Annua
International Computer Software and Applications Conference (COMPSAC‘97),Wash-
ington, D.C., Aug. 1997, pp.6-13.

[Sinha, 1992] A. Sinha. Client-server computing. CACM, July1992, pp. 77-98.

[Sullivan and Notkin, 1992] K. J. Sullivan and D. Notkin. Reconciling environment integration and software evo
tion. ACM Transactions on Software Engineering and Methodology, 1(3), July 1992
pp. 229-268.

[Tanenbaum et al.., 1985] A. S. Tanenbaum and R. van Renesse. Distributed Operating Systems. ACM Com
Surveys, 17(4), Dec. 1985, pp. 419-470.

[Taylor et al., 1996] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K
Nies, P. Oreizy, and D. L. Dubrow. A component- and message-based architectural
for GUI software. IEEE Transactions on Software Engineering, 22(6), June 1996, p
390-406.

[Tepfenhart and Cusick, 1997] W. Tephenhart and J. J. Cusick. A Unified ObjectTopology.IEEE Software,14(1),
Jan. 1997, pp. 31-35.

[Tracz, 1995] W. Tracz. DSSA (domain-specific software architecture) pedagogical example. So
ware Engineering Notes, 20(3), July 1995, pp. 49-62.

[Umar, 1997] A. Umar. Object-Oriented Client/Server Internet Environments. Prentice Hall PTR,
1997.

[Vestal, 1996] S. Vestal. MetaH programmer’s manual, version 1.09. Technical Report, Honeywe
Technology Center, April 1996.

[Waldo et al., 1994] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc., Nov. 1994

[Wall et al., 1996] L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl, 2nd ed. O’Reilly &
Associates, 1996.

[Zimmer, 1995] W. Zimmer. Relationships between design patterns. Coplien and Schmidt (eds.), Pattern
Languages of Program Design, Addison-Wesley, 1995, pp. 345-364.

[Zimmerman, 1980] H. Zimmerman. OSI reference model --- The ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28, Apr. 1980, pp
425-432.
34 Software Architectural Styles for Network-based Applications

10 Summary of Architectural Style Classification

Style Derivation N
et

P
er

fo
rm

.

U
P

P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ±±±± ++++ ++++ ++++ ++++ ++++

UPF PF −−−− ±±±± ++++++++ ++++ ++++ ++++++++ ++++++++ ++++

CS ++++ ++++ ++++

LS −−−− ++++ ++++ ++++ ++++

LCS CS+LS −−−− ++++++++ ++++ ++++++++ ++++ ++++

CSS CS −−−− ++++++++ ++++ ++++ ++++ ++++

C$SS CSS+$ −−−− ++++ ++++ ++++++++ ++++ ++++ ++++ ++++

LC$SS LCS+C$SS −−−− ±±±± ++++ ++++++++++++ ++++++++ ++++++++ ++++ ++++ ++++ ++++

RS CS ++++ −−−− ++++ ++++ −−−−

RDA CS ++++ −−−− −−−− ++++ −−−−

VM ±±±± ++++ −−−− ++++

REV CS+VM ++++ −−−− ±±±± ++++ ++++ −−−− ++++ −−−−

COD CS+VM ++++ ++++ ++++ ±±±± ++++ ++++ −−−−

LCODC$SS LC$SS+COD −−−− ++++++++ ++++++++ ++++4444++++ ++++±±±±++++ ++++++++ ++++ ++++ ++++ ±±±± ++++ ++++

MA REV+COD ++++ ++++++++ ±±±± ++++++++ ++++ ++++ −−−− ++++

RR ++++++++ ++++ ++++

$ RR ++++ ++++ ++++ ++++

EBI ++++ − − − − −−−− ±±±± ++++ ++++ ++++ ++++ −−−− −−−−

C2 EBI+LCS −−−− ++++ ++++ ++++++++ ++++ ++++ ++++++++ ±±±± ++++ ±±±±

DO CS+CS −−−− ++++ ++++ ++++ ++++ ++++ −−−− −−−−

BDO DO+LCS −−−− −−−− ++++++++ ++++ ++++ ++++++++ −−−− ++++
Software Architectural Styles for Network-based Applications 35

	Software Architectural Styles for Network-based Applications
	Keywords
	1 Introduction
	2 Context within Software Architecture Research
	2.1 Software Architecture
	2.1.1 Architectural Elements
	Components
	Connectors
	Data

	2.1.2 Configurations
	2.1.3 Architectural Properties

	2.2 Architectural Styles
	2.3 Architectural Patterns and Pattern Languages
	2.4 Architectural Views

	3 Network-based Application Architectures
	3.1 Survey Scope
	3.1.1 Network-based vs. Distributed
	3.1.2 Application Software vs. Networking Software

	3.2 Evaluating the Design of Network-based Architectures
	3.3 Architectural Properties of Key Interest
	3.3.1 Performance
	Network Performance
	User-perceived Performance
	Network Efficiency

	3.3.2 Scalability
	3.3.3 Simplicity
	3.3.4 Modifiability
	Evolvability
	Extensibility
	Customizability
	Configurability
	Reusability

	3.3.5 Visibility
	3.3.6 Portability
	3.3.7 Reliability

	4 Classification Methodology
	4.1 Selection of Architectural Styles for Classification
	4.2 Style-induced Architectural Properties
	4.3 Visualization

	5 Architectural Styles for Network-based Applications
	5.1 Data-flow Styles
	5.1.1 Pipe and Filter (PF)
	5.1.2 Uniform Pipe and Filter (UPF)

	5.2 Replication Styles
	5.2.1 Replicated Repository (RR)
	5.2.2 Cache ($)

	5.3 Hierarchical Styles
	5.3.1 Client-Server (CS)
	5.3.2 Layered System (LS) and Layered-Client-Server (LCS)
	5.3.3 Client-Stateless-Server (CSS)
	5.3.4 Client-Cache-Stateless-Server (C$SS)
	5.3.5 Layered-Client-Cache-Stateless-Server (LC$SS)
	5.3.6 Remote Session (RS)
	5.3.7 Remote Data Access (RDA)

	5.4 Mobile Code Styles
	5.4.1 Virtual Machine (VM)
	5.4.2 Remote Evaluation (REV)
	5.4.3 Code on Demand (COD)
	5.4.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)
	5.4.5 Mobile Agent (MA)

	5.5 Peer-to-Peer Styles
	5.5.1 Event-based Integration (EBI)
	5.5.2 C2
	5.5.3 Distributed Objects
	5.5.4 Brokered Distributed Objects

	6 Related Work
	6.1 Classification of Architectural Styles and Patterns
	6.2 Distributed Systems and Programming Paradigms
	6.3 Middleware
	6.4 Design Methodologies
	6.5 Handbooks for Design, Design Patterns, and Pattern Languages
	6.6 Reference Models and Domain-specific Software Architectures (DSSA)
	6.7 Architecture Description Languages (ADL)
	6.8 Formal Architectural Models

	7 Conclusions
	8 Acknowledgments
	9 References
	10 Summary of Architectural Style Classification

